采用1 000℃煅烧并在液氮中淬冷的方法制备LiNi(0.5)Co(0.5)O2正极材料,在2.50~4.50 V范围内,以0.1 C (28m A/g)放电,其初始比容量可达到255.0 m Ah/g,为理论值的93%,并且具有高放电容量循环性能;在大倍率条件下,仍有175.6 m Ah/g (5 C)...采用1 000℃煅烧并在液氮中淬冷的方法制备LiNi(0.5)Co(0.5)O2正极材料,在2.50~4.50 V范围内,以0.1 C (28m A/g)放电,其初始比容量可达到255.0 m Ah/g,为理论值的93%,并且具有高放电容量循环性能;在大倍率条件下,仍有175.6 m Ah/g (5 C)和145.4 m Ah/g (10 C)的初始放电比容量。采用循环伏安(CV)、交流阻抗谱(EIS)、X射线衍射(XRD)等测试技术进行测试,结果表明高温淬冷处理方法有利于提高LiNi(0.5)Co(0.5)O2正极材料的晶胞体积与晶体的层间距,降低材料接触与迁移电阻,改善其电化学性能。展开更多
用柠檬酸溶胶-凝胶燃烧法制备了锂离子电池正极材料L iN i0.5Co0.5O2,并对材料进行了热分析、红外分析及X射线衍射分析。研究结果表明,L iN i0.5Co0.5O2干凝胶在空气中自蔓延燃烧,燃烧产物再于800℃烧结10 h,可避免因缺氧而导致杂相L i2...用柠檬酸溶胶-凝胶燃烧法制备了锂离子电池正极材料L iN i0.5Co0.5O2,并对材料进行了热分析、红外分析及X射线衍射分析。研究结果表明,L iN i0.5Co0.5O2干凝胶在空气中自蔓延燃烧,燃烧产物再于800℃烧结10 h,可避免因缺氧而导致杂相L i2CO3、L i2N i8O10的产生,产物晶型完整。展开更多
用高分子分散及微波-固相复合加热技术合成了层状锂离子电池正极材料L iN i0.5Co0.5O2.采用循环伏安、充放电循环、扫描电子显微镜(SEM)以及X射线粉末衍射(XRD)等测试技术,研究了煅烧条件对材料微观形貌、相结构以及电化学性能的影响规...用高分子分散及微波-固相复合加热技术合成了层状锂离子电池正极材料L iN i0.5Co0.5O2.采用循环伏安、充放电循环、扫描电子显微镜(SEM)以及X射线粉末衍射(XRD)等测试技术,研究了煅烧条件对材料微观形貌、相结构以及电化学性能的影响规律.研究结果表明:在750℃煅烧4 h即可得到形状为类球形的纯相层状L iN i0.5Co0.5O2正极材料,该材料的最大放电容量达到154 mA.h/g,循环10周后放电容量仍保持在148 mA.h/g以上.展开更多
LiNiO2 and LiNi0.5Co0.5O2 cathodes for lithium-ion batteries were synthesized with co-precipitation method and their electrochemical property was characterized by Galvanostatic cycling. Meanwhile, plane-wave pseudopot...LiNiO2 and LiNi0.5Co0.5O2 cathodes for lithium-ion batteries were synthesized with co-precipitation method and their electrochemical property was characterized by Galvanostatic cycling. Meanwhile, plane-wave pseudopotential method base on density functional theory was used to calculate average cell voltage and the electronic structure of LiNiO2 and LiNi0.5Co0.5O2. The experimental and computational results showed that the average voltage of the cell decreased as Li-ion intercalated to the host cathode (discharge); The potential of LixNi0.5Co0.5O2 was higher than that of LixNiO2 (when 0.25≤x≤0.5). The calculations also indicated that the distortion of the NiO6 octahedron in LixNiO2 was decreased by Co-doped. During the Li-ion intercalates to the host cathode, the micro-structures of NiO6 and CoO6 in the LixNi0.5Co0.5O2 were mutually stabilized, the Jahn-Teller effect was weakened and the electrochemical properties of the materials were enhanced.展开更多
文摘采用1 000℃煅烧并在液氮中淬冷的方法制备LiNi(0.5)Co(0.5)O2正极材料,在2.50~4.50 V范围内,以0.1 C (28m A/g)放电,其初始比容量可达到255.0 m Ah/g,为理论值的93%,并且具有高放电容量循环性能;在大倍率条件下,仍有175.6 m Ah/g (5 C)和145.4 m Ah/g (10 C)的初始放电比容量。采用循环伏安(CV)、交流阻抗谱(EIS)、X射线衍射(XRD)等测试技术进行测试,结果表明高温淬冷处理方法有利于提高LiNi(0.5)Co(0.5)O2正极材料的晶胞体积与晶体的层间距,降低材料接触与迁移电阻,改善其电化学性能。
文摘用柠檬酸溶胶-凝胶燃烧法制备了锂离子电池正极材料L iN i0.5Co0.5O2,并对材料进行了热分析、红外分析及X射线衍射分析。研究结果表明,L iN i0.5Co0.5O2干凝胶在空气中自蔓延燃烧,燃烧产物再于800℃烧结10 h,可避免因缺氧而导致杂相L i2CO3、L i2N i8O10的产生,产物晶型完整。
文摘用高分子分散及微波-固相复合加热技术合成了层状锂离子电池正极材料L iN i0.5Co0.5O2.采用循环伏安、充放电循环、扫描电子显微镜(SEM)以及X射线粉末衍射(XRD)等测试技术,研究了煅烧条件对材料微观形貌、相结构以及电化学性能的影响规律.研究结果表明:在750℃煅烧4 h即可得到形状为类球形的纯相层状L iN i0.5Co0.5O2正极材料,该材料的最大放电容量达到154 mA.h/g,循环10周后放电容量仍保持在148 mA.h/g以上.
文摘LiNiO2 and LiNi0.5Co0.5O2 cathodes for lithium-ion batteries were synthesized with co-precipitation method and their electrochemical property was characterized by Galvanostatic cycling. Meanwhile, plane-wave pseudopotential method base on density functional theory was used to calculate average cell voltage and the electronic structure of LiNiO2 and LiNi0.5Co0.5O2. The experimental and computational results showed that the average voltage of the cell decreased as Li-ion intercalated to the host cathode (discharge); The potential of LixNi0.5Co0.5O2 was higher than that of LixNiO2 (when 0.25≤x≤0.5). The calculations also indicated that the distortion of the NiO6 octahedron in LixNiO2 was decreased by Co-doped. During the Li-ion intercalates to the host cathode, the micro-structures of NiO6 and CoO6 in the LixNi0.5Co0.5O2 were mutually stabilized, the Jahn-Teller effect was weakened and the electrochemical properties of the materials were enhanced.