期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Confining ultrafine Li3P nanoclusters in porous carbon for highperformance lithium-ion battery anode 被引量:3
1
作者 Eryang Mao Wenyu Wang +3 位作者 Mintao Wan Li Wang Xiangming He Yongming Sun 《Nano Research》 SCIE EI CAS CSCD 2020年第4期1122-1126,共5页
High-capacity lithium-containing alloy anodes(e.g.,Li4.4Si,Li4.4Sn,and Li3P)enable lithium-free cathodes(e.g.,Sulfur,V2O5,and FeF3)to produce next-generation lithium-ion batteries(LIBs)with high energy density.Herein,... High-capacity lithium-containing alloy anodes(e.g.,Li4.4Si,Li4.4Sn,and Li3P)enable lithium-free cathodes(e.g.,Sulfur,V2O5,and FeF3)to produce next-generation lithium-ion batteries(LIBs)with high energy density.Herein,we design a Li3P/C nanocomposite with Li3P ultrafine nanodomains embedded in micrometer-scale porous carbon particles.Benefiting from the unique micro/nanostructure of the Li3P/C nanocomposite,electrons transfer rapidly through the conductive pathway provided by the porous carbon framework and the volume change between Li3P and P is confined in the nanopores of the carbon,which avoids the collapse of the whole Li3P/C composite particles.As expected,the as-achieved Li3P/C nanocomposite provided a high available lithium-ion capacity of 791 mAh/g(calculated based on the mass of Li3P/C)at 0.1 C during the initial delithiation process.Meanwhile,the Li3P/C nanocomposite showed 75%of its 0.5 C capacity at 6 C and stable cycling stability. 展开更多
关键词 li3p nanoclusters porous carbon lithium-containing anode high capacity lithium-ion batteries
原文传递
Ti^(4+)离子掺杂对Li_3V_2(PO_4)_3晶体结构与性能的影响 被引量:21
2
作者 刘素琴 李世彩 +1 位作者 黄可龙 陈朝晖 《物理化学学报》 SCIE CAS CSCD 北大核心 2007年第4期537-542,共6页
采用溶胶凝胶/碳热还原法合成了锂离子电池正极材料Li_3V_2(PO_4)_3及其掺Ti化合物Li_(3-2x)(V_(1-x)Ti_x)_2-(PO_4)_3.电化学测试结果表明,经Ti^(4+)离子掺杂后材料的充放电性能及循环性能明显提高.与纯相Li_3V_2(PO_4)_3在3.58、3.67... 采用溶胶凝胶/碳热还原法合成了锂离子电池正极材料Li_3V_2(PO_4)_3及其掺Ti化合物Li_(3-2x)(V_(1-x)Ti_x)_2-(PO_4)_3.电化学测试结果表明,经Ti^(4+)离子掺杂后材料的充放电性能及循环性能明显提高.与纯相Li_3V_2(PO_4)_3在3.58、3.67和4.08V出现三个平台相比,掺杂后材料的前两个平台发生简并且平台趋于模糊的倾斜状态.这种趋势随掺杂量的增大而增强.差热分析(DTA)表明掺杂生成了稳定的γ相产物.采用X射线衍射和Rietveld方法表征了化合物的晶体结构,结果表明,三个不同位置Li的不完全占据导致晶体中产生阳离子空穴,使材料在常温下的离子电导率提高了3个数量级.锂离子混排提高了样品的电导率和充放电比容量. 展开更多
关键词 锂离子电池 相转移 RIETVELD结构精修 Li3V2(P04)3 正极材料
在线阅读 下载PDF
Investigation of Li-ion transport in Li7P3S11 and solid-state lithium batteries 被引量:4
3
作者 Chuang Yu Swapna Ganapathy +4 位作者 Ernst R.H.van Eck Lambert van Eijck Niek de Klerk Erik M.Kelder Marnix Wagemaker 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第11期1-7,共7页
The high Li-ion conductivity of the Li7P3S11 sulfide-based solid electrolyte makes it a promising candidate for all-solid-state lithium batteries. The Li-ion transport over electrode-electrolyte and electrolyteelectro... The high Li-ion conductivity of the Li7P3S11 sulfide-based solid electrolyte makes it a promising candidate for all-solid-state lithium batteries. The Li-ion transport over electrode-electrolyte and electrolyteelectrolyte interfaces, vital for the performance of solid-state batteries, is investigated by impedance spectroscopy and solid-state NMR experiments. An all-solid-state Li-ion battery is assembled with the Li7P3S11 electrolyte, nano-Li2S cathode and Li-In foil anode, showing a relatively large initial discharge capacity of 1139.5 m Ah/g at a current density of 0.064 m A/cm^ 2 retaining 850.0 m Ah/g after 30 cycles. Electrochemical impedance spectroscopy suggests that the decrease in capacity over cycling is due to the increased interfacial resistance between the electrode and the electrolyte. 1D exchange ^7Li NMR quantifies the interfacial Li-ion transport between the uncycled electrode and the electrolyte, resulting in a diffusion coefficient of 1.70(3) ×10^-14cm^2/s at 333 K and an energy barrier of 0.132 e V for the Li-ion transport between Li2S cathode and Li7P3S11 electrolyte. This indicates that the barrier for Li-ion transport over the electrode-electrolyte interface is small. However, the small diffusion coefficient for Li-ion diffusion between the Li2S and the Li7P3S11 suggests that these contact interfaces between electrode and electrolyte are relatively scarce, challenging the performance of these solid-state batteries. 展开更多
关键词 Li7P3S11 Li-ion transport Spin-lattice NMR Exchange NMR Solid-state battery
在线阅读 下载PDF
Co部分取代V对Li_3V_2P_3O_(12)/C电化学性能的影响
4
作者 范富强 徐艳辉 《电池》 CAS CSCD 北大核心 2014年第5期271-273,共3页
分析了Co部分取代V对磷酸钒锂(Li3V2P3O12)正极电化学性能的影响。Co部分取代后结晶结构不变,仍然保持单斜结构,具有P21/n空间群,XRD测试未发现杂质相。Co部分取代会降低0.1 C倍率下材料的放电容量,但是有助于提高0.5 C倍率循环时的放... 分析了Co部分取代V对磷酸钒锂(Li3V2P3O12)正极电化学性能的影响。Co部分取代后结晶结构不变,仍然保持单斜结构,具有P21/n空间群,XRD测试未发现杂质相。Co部分取代会降低0.1 C倍率下材料的放电容量,但是有助于提高0.5 C倍率循环时的放电容量与循环稳定性。 展开更多
关键词 磷酸钒锂(Li3V2P3O12) 锂离子电池 电化学性能
在线阅读 下载PDF
Electrochemical performance of Al-substituted Li_3V_2(PO_4)_3 cathode materials synthesized by sol-gel method 被引量:2
5
作者 张宝 刘洁群 +1 位作者 张倩 李艳红 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第4期619-623,共5页
The effect of Al-substitution on the electrochemical performances of Li3V2(PO4)3 cathode materials was studied.Samples with stoichiometric proportion of Li3AlxV2-x(PO4)3(x=0,0.05,0.10)were prepared by adding Al(NO3)3 ... The effect of Al-substitution on the electrochemical performances of Li3V2(PO4)3 cathode materials was studied.Samples with stoichiometric proportion of Li3AlxV2-x(PO4)3(x=0,0.05,0.10)were prepared by adding Al(NO3)3 in the raw materials of Li3V2(PO4)3.The XRD analysis shows that the Al-substituted Li3V2(PO4)3 has the same monoclinic structure as the un-substituted Li3V2(PO4)3.The SEM images show that Al-substituted Li3V2(PO4)3 has regular and uniform particles.The electrochemical measurements show that Al-substitution can improve the rate capability of cathode materials.The Li3Al0.05V1.95(PO4)3 sample shows the best high-rate performance.The discharge capacity at 1C rate is 119 mA·h/g with 30th capacity retention rate about 92.97%.The electrode reaction reversibility and electronic conductivity are enhanced,and the charge transfer resistance decreases through Al-substitution.The improved electrochemical performances of Al-substituted Li3V2(PO4)3 cathode materials offer some favorable properties for their commercial application. 展开更多
关键词 lithium ion batteries cathode material Li3V2(P04)3 electrochemical performance sol-gel method
在线阅读 下载PDF
A Li_(3)P nanoparticle dispersion strengthened ultrathin Li metal electrode for high energy density rechargeable batteries
6
作者 Lin Fu Xiancheng Wang +3 位作者 Bao Zhang Zihe Chen Yuanjian Li Yongming Sun 《Nano Research》 SCIE EI CSCD 2024年第5期4031-4038,共8页
Achievement of lithium(Li)metal anode with thin thickness(e.g.,≤30µm)is highly desirable for rechargeable high energy density batteries.However,the fabrication and application of such thin Li metal foil electrod... Achievement of lithium(Li)metal anode with thin thickness(e.g.,≤30µm)is highly desirable for rechargeable high energy density batteries.However,the fabrication and application of such thin Li metal foil electrode remain challenging due to the poor mechanical processibility and inferior electrochemical performance of metallic Li.Here,mechanico-chemical synthesis of robust ultrathin Li/Li_(3)P(LLP)composite foils(~15µm)is demonstrated by employing repeated mechanical rolling/stacking operations using red P and metallic Li as raw materials.The in-situ formed Li+-conductive Li_(3)P nanoparticles in metallic Li matrix and their tight bonding strengthen the mechanical durability and enable the successful fabrication of free-standing ultrathin Li metal composite foil.Besides,it also reduces the electrochemical Li nucleation barrier and homogenizes Li plating/stripping behavior.When matching to high-voltage LiCoO_(2),the full cell with a low negative/positive(N/P)capacity ratio of~1.5 offers a high energy density of~522 W·h·kg^(-1) at 0.5 C based on the mass of cathode and anode.Taking into account its facile manufacturing,potentially low cost,and good electrochemical performance,we believe that such an ultrathin composite Li metal foil design with nanoparticle-dispersion-strengthened mechanism may boost the development of high energy density Li metal batteries. 展开更多
关键词 lithium metal anode high energy density battery mechanico-chemical synthesis ultrathin Li/Li_(3)P composite foil low negative/positive capacity ratio
原文传递
In situ formation of ionically conductive nanointerphase on Si particles for stable battery anode 被引量:5
7
作者 Xiaoxue Chen Gaofeng Ge +7 位作者 Wenyu Wang Bao Zhang Jianjun Jiang Xuelin Yang Yuzhang Li Li Wang Xiangming He Yongming Sun 《Science China Chemistry》 SCIE EI CSCD 2021年第8期1417-1425,共9页
Silicon(Si)is a promising anode candidate for next-generation lithium-ion batteries(LIBs)due to its high theoretical capacity.Solar Si photovoltaic waste possesses good purity and high output.Using it as the raw mater... Silicon(Si)is a promising anode candidate for next-generation lithium-ion batteries(LIBs)due to its high theoretical capacity.Solar Si photovoltaic waste possesses good purity and high output.Using it as the raw material for battery anodes can synchronously solve the problem of solid waste pollution and enable high energy density LIBs.A critical issue impeding the practical application of Si is the undesirable side reactions at the electrolyte-particle interface and the resulting increase in impedance during cycling.Herein,a Si-P core shell structure with chemical bonding at the Si-P interface is fabricated through a simple mechanical alloying reaction between red P and solar Si photovoltaic waste.The P nanoshell with thickness within 15 nm converts to Li3P during the initial lithiation process and maintains its phase on cycling.The as-formed Li3P nanolayer functions as a stable,ionically conductive protective layer that reduces the direct contact between Si and electrolytes,and thus suppresses undesired side reactions.The Si-P nanocomposite exhibits stable electrochemical cycling with a high reversible capacity of 1,178 mAh g^(−1)after 500 cycles at 1,200 mA g^(−1),as well as excellent rate capability(912 mAh g^(−1)at 2 C).With 15 wt%addition to graphite,a graphite/Si-P hybrid electrode shows a high overall reversible specific capacity of 447 mAh g^(−1)and 88.3%capacity retention after 100 cycles at high areal capacity of 2.64 mAh cm^(−2) at 100 mA g^(−1),indicating its promise as a drop-in anode in practical LIBs. 展开更多
关键词 silicon anode li3p interface stability lithium-ion batteries
原文传递
NASICON solid electrolyte coated by indium film for all-solid-state Li-metal batteries 被引量:6
8
作者 Yi-Jie Liu Ru-Yi Fang David Mitlin 《Tungsten》 EI 2022年第4期316-322,共7页
The application of all-solid-state Li-metal batteries with solid oxide electrolytes is hindered by interfacial issues,especially the solid electrolyte/Li-metal interface.This work introduced a uniform indium film laye... The application of all-solid-state Li-metal batteries with solid oxide electrolytes is hindered by interfacial issues,especially the solid electrolyte/Li-metal interface.This work introduced a uniform indium film layer on the surface of Na^(+)super ionic conductor(NASICON)solid electrolyte Li_(1.5)Al_(0.5)Ge_(1.5)P_(3)O_(12)(LAGP),which promotes the intimate contact between Li metal and solid electrolyte and hinders the side reactions at the interface.Electrochemical impedance spectra show that the battery with coated solid electrolyte presents a smaller interfacial resistance and maintains stability after a long cycling time.By contrast,the baseline battery with a pure LAGP pellet shows a contact loss after cycling with the vibration of interfacial impedance.The Li symmetric cells with indium-modified solid electrolyte present stable cycling behavior over 400 h at 0.1 and 0.2 mA·cm^(−2).The all-solid-state Li-metal batteries with a Li anode,indium coating LAGP and two kinds of cathodes,namely carbon nanotubes(CNTs)and LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811),are prepared and tested.The CNTs cathode for Li-O2 and Li-air batteries has a higher specific capacity than traditional Li-ion battery cathodes.The Li-NCM811 batteries deliver an initial Coulombic efficiency of about 75%,with 82%capacity retention after 20 cycles. 展开更多
关键词 All-solid-state batteries Solid electrolyte Li1.5Al0.5Ge1.5P3O12 Li-metal anode Interfacial chemistry
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部