In order to develop high-performance diamond wheels,the vitrified bond with different contents of Li2O addition and corresponding diamond composites were prepared.The experimental results show that the addition of a s...In order to develop high-performance diamond wheels,the vitrified bond with different contents of Li2O addition and corresponding diamond composites were prepared.The experimental results show that the addition of a small content of Li2O leads the formation of the mullite phase in vitrified bond.When the Li2O content is 3wt%,the mullite content in the vitrified bond reaches the maximum.Whereas,the vitrified bond turns into a pure glass phase when the Li2O content further increases to 5wt%.The softening temperature of vitrified bond,wetting angle between the vitrified bond and the diamond film decrease with the increasing of the Li2O content.The softening point of the vitrified bond with 5wt% Li2O is 537 ℃ and the contact angle is 32°,which are 44 ℃ and 44° lower than those of the sample without Li2O.The CTE (coefficient of thermal expansion),the flexural strength and hardness of the diamond composite sample first increase and then decrease with the increasing of the Li2O content.When the Li2O addition is 3wt%,the flexural strength and hardness of the composites reaches the maximum values of 93 MPa and 98 HRB,respectively,which are 43.1% and 12.6% higher than those of the sample without Li2O.展开更多
In this study the mechanical properties of bovine hydroxyapatite (BHA)-Li2O composites are predicted using artificial neural networks (ANN) and then compared with obtained experimental values. BHA was mixed with lithi...In this study the mechanical properties of bovine hydroxyapatite (BHA)-Li2O composites are predicted using artificial neural networks (ANN) and then compared with obtained experimental values. BHA was mixed with lithium carbonate (Li2CO3) and sintered at various temperatures between 900-1300°C. Selected experimental values obtained for the compression strength, microhardness and density were used to define and train the ANN system. Intermediate data values not used to train the ANN model were then used to compare and determine the reliability of the ANN system. The results demonstrate the viable potential in using the ANN approach in predicting mechanical properties even with limited data sets.展开更多
The lithium-oxygen battery(LOB)is a promising source of green energy due to its energy density.However,the development of this technology is limited by the insoluble discharge product it produces.In this work,a cathod...The lithium-oxygen battery(LOB)is a promising source of green energy due to its energy density.However,the development of this technology is limited by the insoluble discharge product it produces.In this work,a cathode material with a p-n heterostructure of polyaniline(PANI)/ZnS is prepared to trap visible light,utilizing a ZnS quantum dot(ZnS QD)network to form a large number of photogenerated electron–hole pairs,thus promoting the generation and decomposition of Li_(2)O_(2).The prepared PANI/ZnS has an ultra-low overpotential of 0.06 V under illumination.Furthermore,density functional theory theoretical calculation has demonstrated the ability of the heterostructures to adsorb oxygen-containing intermediates,which not only facilitates the growth of Li_(2)O_(2),but also reduces the reaction energy required to decompose Li_(2)O_(2).The present work provides a solution to the problem of insolubility of discharge products in photo-assisted LOB.展开更多
The lithium ion-conductive solid electrolyte in the oxide systems of Li2O-TiO2-SiO2-P2O5 and Li2O-TiO2-Al2O3-P2O5 was prepared by solid-state reaction. The electrolyte pellets by cold-pressing method is 13 mm in diame...The lithium ion-conductive solid electrolyte in the oxide systems of Li2O-TiO2-SiO2-P2O5 and Li2O-TiO2-Al2O3-P2O5 was prepared by solid-state reaction. The electrolyte pellets by cold-pressing method is 13 mm in diameter, about 1 mm in thickness. Phase identification and surface morphology of the products were carried out by X-ray diffraction and scanning electron microscopy. Ionic conductivity of the pellets was investigated through AC impedance. The results show that adulterate other cations can improve the ionic conductivity of the solid electrolyte. The maximum ionic conductivity in the samples is 9.912 × 10-4 S·cm-1 in the Li2O-TiO2-SiO2-P2O5 system.展开更多
基金Funded by the Zhejiang Provincial Key Research and Development Project(No.2018C01076)。
文摘In order to develop high-performance diamond wheels,the vitrified bond with different contents of Li2O addition and corresponding diamond composites were prepared.The experimental results show that the addition of a small content of Li2O leads the formation of the mullite phase in vitrified bond.When the Li2O content is 3wt%,the mullite content in the vitrified bond reaches the maximum.Whereas,the vitrified bond turns into a pure glass phase when the Li2O content further increases to 5wt%.The softening temperature of vitrified bond,wetting angle between the vitrified bond and the diamond film decrease with the increasing of the Li2O content.The softening point of the vitrified bond with 5wt% Li2O is 537 ℃ and the contact angle is 32°,which are 44 ℃ and 44° lower than those of the sample without Li2O.The CTE (coefficient of thermal expansion),the flexural strength and hardness of the diamond composite sample first increase and then decrease with the increasing of the Li2O content.When the Li2O addition is 3wt%,the flexural strength and hardness of the composites reaches the maximum values of 93 MPa and 98 HRB,respectively,which are 43.1% and 12.6% higher than those of the sample without Li2O.
文摘In this study the mechanical properties of bovine hydroxyapatite (BHA)-Li2O composites are predicted using artificial neural networks (ANN) and then compared with obtained experimental values. BHA was mixed with lithium carbonate (Li2CO3) and sintered at various temperatures between 900-1300°C. Selected experimental values obtained for the compression strength, microhardness and density were used to define and train the ANN system. Intermediate data values not used to train the ANN model were then used to compare and determine the reliability of the ANN system. The results demonstrate the viable potential in using the ANN approach in predicting mechanical properties even with limited data sets.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.52171206 and52271209)Key Project of Hebei Natural Science Foundation(Nos.F2024201031 and E20202201030)+4 种基金Beijing-Tianjin-Hebei Collaborative Innovation Community Construction Project(No.21344301D)the Second Batch of Young Talent of Hebei Province(Nos.70280016160250 and 70280011808)Key Fund in Hebei Province Department of Education China(No.ZD2021014)the Central Government Guide Local Funding Projects for Scientific and Technological Development(Nos.216Z4404G and 206Z4402G)Interdisciplinary Research Program of Natural Science of Hebei University(No.DXK202107)。
文摘The lithium-oxygen battery(LOB)is a promising source of green energy due to its energy density.However,the development of this technology is limited by the insoluble discharge product it produces.In this work,a cathode material with a p-n heterostructure of polyaniline(PANI)/ZnS is prepared to trap visible light,utilizing a ZnS quantum dot(ZnS QD)network to form a large number of photogenerated electron–hole pairs,thus promoting the generation and decomposition of Li_(2)O_(2).The prepared PANI/ZnS has an ultra-low overpotential of 0.06 V under illumination.Furthermore,density functional theory theoretical calculation has demonstrated the ability of the heterostructures to adsorb oxygen-containing intermediates,which not only facilitates the growth of Li_(2)O_(2),but also reduces the reaction energy required to decompose Li_(2)O_(2).The present work provides a solution to the problem of insolubility of discharge products in photo-assisted LOB.
文摘The lithium ion-conductive solid electrolyte in the oxide systems of Li2O-TiO2-SiO2-P2O5 and Li2O-TiO2-Al2O3-P2O5 was prepared by solid-state reaction. The electrolyte pellets by cold-pressing method is 13 mm in diameter, about 1 mm in thickness. Phase identification and surface morphology of the products were carried out by X-ray diffraction and scanning electron microscopy. Ionic conductivity of the pellets was investigated through AC impedance. The results show that adulterate other cations can improve the ionic conductivity of the solid electrolyte. The maximum ionic conductivity in the samples is 9.912 × 10-4 S·cm-1 in the Li2O-TiO2-SiO2-P2O5 system.