期刊文献+
共找到2,466篇文章
< 1 2 124 >
每页显示 20 50 100
MoO2 nanoparticles/carbon textiles cathode for high performance flexible Li-O2 battery 被引量:3
1
作者 Jia Liu Dan Li +4 位作者 Ying Wang Siqi Zhang Ziye Kang Haiming Xie Liqun Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第8期66-71,I0003,共7页
Conventional Li-O2 battery is hardly considered as a next-generation flexible electronics thus far,since it is inflexible,bulk,and limited by the absence of the adjustable cell configuration.Here,we report a binder-fr... Conventional Li-O2 battery is hardly considered as a next-generation flexible electronics thus far,since it is inflexible,bulk,and limited by the absence of the adjustable cell configuration.Here,we report a binder-free and flexible electrode of x wt%MoO2 NPs/CTs(x=6,16,and 28).A cell with 16 wt% MoO2 NPs/CTs displays a good cyclability over 240 cycles with a low overpotential of 0.33 V on the 1st cycle at a constant current density of 0.2 mA cm-2,a considerable rate performance,a superior reversibility associated with the desired formation and degradation of Li2O2,and a high electrochemical stability even under stringent bending and twisting conditions.Our work represents a promising progress in the material development and architecture design of O2 electrode for flexible Li-O2 batteries. 展开更多
关键词 MoO2 nanoparticles Flexible electrode li-o2 battery High electrochemical stability
在线阅读 下载PDF
In situ decoration of nanosized metal oxide on highly conductive MXene nanosheets as efficient catalyst for Li-O2 battery 被引量:5
2
作者 Xingyu Li Caiying Wen +1 位作者 Huifeng Li Genban Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第8期272-280,I0010,共10页
Combining nanomaterials with complementary properties in a well-designed structure is an effective tactic to exploit multifunctional, high-performance materials for the energy conversion and storage. Nonprecious metal... Combining nanomaterials with complementary properties in a well-designed structure is an effective tactic to exploit multifunctional, high-performance materials for the energy conversion and storage. Nonprecious metal catalysts, such as cobalt oxide, with superior activity and excellent stability to other catalysts are widely desired. Nevertheless, the performance of CoO nanoparticles as an electrode material were significantly limit for its inferior conductivity, dissolution, and high cohesion. Herein, we grow ultrafine cobalt monoxide to decorate the interlayer and surface of the Ti3C2 Txnanosheets via a hydrothermal method companied by calcination. The layered MXenes act as the underlying conductive substrate,which not only increase the electron transfer rate at the interface but also greatly improve the electrochemical properties of the nanosized Co O particles by restricting the aggregation of CoO. The resulting CoO/Ti3C2 Txnanomaterial is applied as oxygen electrode for lithium-oxygen battery and achieves more than 160 cycles and first cycle capacity of 16,220 mAh g-1 at 100 mA g-1. This work paves a promising avenue for constructing a bi-functional catalyst by coupling the active component of a transition metal oxide(TMO) with the MXene materials in lithium-oxygen battery. 展开更多
关键词 MXene Nanosized CoO li-o2 batteries Cathode catalyst
在线阅读 下载PDF
Constructing Double Heterojunctions on 1T/2H-MoS_(2)@Co_(3)S_(4)Electrocatalysts for Regulating Li_(2)O_(2)Formation in Lithium-Oxygen Batteries
3
作者 Yichuan Dou Zhuang Liu +8 位作者 Lanling Zhao Jian Zhang Fanpeng Meng Yao Liu Zidong Zhang Xingao Li Zheng Shang Lu Wang Jun Wang 《Nano-Micro Letters》 2026年第2期383-403,共21页
Co_(3)S_(4)electrocatalysts with mixed valences of Co ions and excellent structural stability possess favorable oxygen evolution reaction(OER)activity,yet challenges remain in fabricating rechargeable lithiumoxygen ba... Co_(3)S_(4)electrocatalysts with mixed valences of Co ions and excellent structural stability possess favorable oxygen evolution reaction(OER)activity,yet challenges remain in fabricating rechargeable lithiumoxygen batteries(LOBs)due to their poor OER performance,resulting from poor electrical conductivity and overly strong intermediate adsorption.In this work,fancy double heterojunctions on 1T/2H-MoS_(2)@Co_(3)S_(4)(1T/2H-MCS)were constructed derived from the charge donation from Co to Mo ions,thus inducing the phase transformation of Mo S_(2)from 2H to 1T.The unique features of these double heterojunctions endow the1T/2H-MCS with complementary catalysis during charging and discharging processes.It is worth noting that 1T-Mo S2@Co3S4could provide fast Co-S-Mo electron transport channels to promote ORR/OER kinetics,and 2H-MoS_(2)@Co_(3)S_(4)contributed to enabling moderate egorbital occupancy when adsorbed with oxygen-containing intermediates.On the basis,the Li_(2)O_(2)nucleation route was changed to solution and surface dual pathways,improving reversible deposition and decomposition kinetics.As a result,1T/2H-MCS cathodes exhibit an improved electrocatalytic performance compared with those of Co_(3)S_(4)and Mo S2cathodes.This innovative heterostructure design provides a reliable strategy to construct efficient transition metal sulfide catalysts by improving electrical conductivity and modulating adsorption toward oxygenated intermediates for LOBs. 展开更多
关键词 Double heterojunctions d-p hybridization Tunable Li_(2)O_(2)deposition ELECTROCATALYSTS Lithium-oxygen batteries
在线阅读 下载PDF
Nanosized Anatase TiO_(2) with Exposed(001)Facet for High-Capacity Mg^(2+)Ion Storage in Magnesium Ion Batteries
4
作者 Rong Li Liuyan Xia +6 位作者 Jili Yue Junhan Wu Xuxi Teng Jun Chen Guangsheng Huang Jingfeng Wang Fusheng Pan 《Nano-Micro Letters》 2026年第1期438-457,共20页
Micro-sized anatase TiO_(2) displays inferior capacity as cathode material for magnesium ion batteries because of the higher diffusion energy barrier of Mg^(2+)in anatase TiO_(2) lattice.Herein,we report that nanosize... Micro-sized anatase TiO_(2) displays inferior capacity as cathode material for magnesium ion batteries because of the higher diffusion energy barrier of Mg^(2+)in anatase TiO_(2) lattice.Herein,we report that nanosized anatase TiO_(2) exposed(001)facet doubles the capacity compared to the micro-sized sample ascribed to the interfacial Mg^(2+)ion storage.First-principles calculations reveal that the diffusion energy barrier of Mg^(2+)on the(001)facet is significantly lower than those in the bulk phase and on(100)facet,and the adsorption energy of Mg^(2+)on the(001)facet is also considerably lower than that on(100)facet,which guarantees superior interfacial Mg^(2+)storage of(001)facet.Moreover,anatase TiO_(2) exposed(001)facet displays a significantly higher capacity of 312.9 mAh g^(−1) in Mg-Li dual-salt electrolyte compared to 234.3 mAh g^(−1) in Li salt electrolyte.The adsorption energies of Mg^(2+)on(001)facet are much lower than the adsorption energies of Li+on(001)facet,implying that the Mg^(2+)ion interfacial storage is more favorable.These results highlight that controlling the crystal facet of the nanocrystals effectively enhances the interfacial storage of multivalent ions.This work offers valuable guidance for the rational design of high-capacity storage systems. 展开更多
关键词 Magnesium ion batteries High capacity Nanosized anatase TiO_(2) Crystal facet Interfacial ion storage
在线阅读 下载PDF
Rationally tuning the oxidation state of the open active sites in Co-based MOFs to enhance the kinetics of Li-O_(2)batteries
5
作者 Pei-Yuan Su Xing-Zi Zheng +13 位作者 Si-Ao Li Jing-Shen Xu Hao-Min Jiang Qing-Yu Kong Wei-Jie Zeng Fei Jia Ji-Hao Zhang Fan Bai Wen-Li Su Jing-Le Wang Cheng Zhang Zheng-Long Wu Wen-Kai Zhang Meng-Wei Yuan 《Rare Metals》 2025年第7期4595-4608,共14页
The metal triazole(MTA)-based MOFs were found to preferentially adsorb O-rich species,which had enhanced electrocatalytic oxygen reduction reactions(ORR)and stabilized the O-containing species during the discharge and... The metal triazole(MTA)-based MOFs were found to preferentially adsorb O-rich species,which had enhanced electrocatalytic oxygen reduction reactions(ORR)and stabilized the O-containing species during the discharge and charge processes in Li-O_(2)battery.However,the MOFs exhibited low electron conductivity and poor electron transfer interface in the electrocatalysis,limiting the electrocatalytic activity.To address this issue,a nanocomposite with the Co-MTA-coated carbon nano tubes(Co-MTA-C)was constructed,which formed the three-dimensional conductivity network connected with the intersecting carbon nano tube(CNT).In this composite,the electron-rich Co-MTA interacted with the highly conductive CNT,resulting in a charge redistribution.Optimized the electronic structure of the Co center through compositional modifications presented a high valence compared to the pure MOFs.In situ X-ray absorption spectroscopy revealed a direct reaction of Co sites with intermediates such as LiO_(x),leading to the formation of nanosheet array discharge products.The battery based on optimized CoMTA-C demonstrated fast kinetics and superior stability,with a low overpotential of 1.13 V,high specific capacity of 9057 mAh g^(-1),and long-term durability of 600 cycles.It provides a facile and effective strategy for enhancing the electrocatalytic performance through rational tuning of high-conductivity substances. 展开更多
关键词 Metal-organic frameworks li-o_(2)battery NANOCOMPOSITE ELECTROCATALYST X-ray absorption spectrum
原文传递
Remarkable improvement of cyclic stability in Li-O2 batteries using ruthenocene as a redox mediator 被引量:5
6
作者 Cuicui Zhu Yiping Wang +9 位作者 Ling Shuai Yizhao Tang Ming Qiu Jian Xie Jia Liu Wen Wen Hengquan Chen Suifei Nan Mei Dou Qinggang He 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第7期1997-2002,共6页
Nonaqueous Li-O2 batteries attract attention for their theoretical specific energy density.However,due to the difficulty of decomposition of Li2 O2,Li-O2 batteries have high charge overpotential and poor cycling life.... Nonaqueous Li-O2 batteries attract attention for their theoretical specific energy density.However,due to the difficulty of decomposition of Li2 O2,Li-O2 batteries have high charge overpotential and poor cycling life.So all kinds of catalysts have been studied on the cathode.Compared to heterogeneous solid catalysts,soluble catalysts achieve faster and more effective transport of electrons by reversible redox pairs.Here,we first report ruthenocene(Ruc) as a mobile redox mediator in a Li-O2 battery.0.01 mol/L Ruc in the electrolyte effectively reduces the charging voltage by 610 mV.Additionally,Ruc greatly increases the cycling life by four-fold(up to 83 cycles) with a simple ketjen black(KB) cathode.The results of SEM,XPS and XRD confirm that less discharge product residue accumulated after recharge.To verify the reaction mechanisms of the mediato r,free energy profiles of the possible reaction pathways based on DFT are provided. 展开更多
关键词 li-o2 battery Redox mediator Ruthenocene Li2O2 Cycling life
原文传递
Uniformly dispersed FeOx atomic clusters by pulsed arc plasma deposition: An efficient electrocatalyst for improving the performance of Li-O2 battery 被引量:3
7
作者 Xiangyi Luo Jun Lu +8 位作者 Evan Sohm Lu Ma Tianpin Wu Jianguo Wen Dantong Qiu YunKai Xu Yang Ren Dean J. Miller Khalil Amine 《Nano Research》 SCIE EI CAS CSCD 2016年第7期1913-1920,共8页
The present study explored a new method to improve the catalytic activity of non-precious metals, especially in electrochemical reactions. Highly ionized Fe plasma produced by arc discharge was uniformly deposited on ... The present study explored a new method to improve the catalytic activity of non-precious metals, especially in electrochemical reactions. Highly ionized Fe plasma produced by arc discharge was uniformly deposited on a porous carbon substrate and formed atomic clusters on the carbon surface. The as-prepared FeO~/C material was tested as a cathode material in a rechargeable Li-02 battery under different current rates. The results showed significant improvement in battery performance in terms of both cycle life and reaction rate. Furthermore, X-ray diffraction (XRD) and scanning electron microscopy (SEM) results showed that the as-prepared cathode material stabilized the cathode and reduced side reactions and that the current rate was a critical factor in the nucleation of the discharge products. 展开更多
关键词 li-o2 battery FeOx atomic cluster ELECTROCATALYST pulsed arc plasmadeposition (APD)
原文传递
Recent advances in electrocatalysts for non-aqueous Li-O2 batteries 被引量:3
8
作者 Wei Chen Ya-Feng Gong Jie-Hua Liu 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第4期709-718,共10页
As one of the next-generation energy-storage devices,Li-O_2 battery has become the main research direction for the academic researchers due to its characteristics of environmental friendship,relatively simple structur... As one of the next-generation energy-storage devices,Li-O_2 battery has become the main research direction for the academic researchers due to its characteristics of environmental friendship,relatively simple structures,high energy density of 3500Wh/kg and low cost.However,Li-O_2 battery cannot be commercialized on a large scale because of the challenging issues including high-efficient electrocatalysts,membranes,Li-based anode and so on.In this review,we focused on the recent development of electrocatalyst materials as cathodes for the non-aqueous Li-O_2 batteries which are relatively simpler than other Li-O_2 batteries' structures.Electrocatalysts were summarized including noble metals,nanocarbon materials,transition metals and their hybrids.We points out that the challenges of preparation high-efficient catalysts not only require high catalytic activity and conductivity,but also have novel nanoarchitectures with large interface and porous volume for LiO_x storage.Furthermore,the further investigation of reaction mechanism and advanced in situ analysis technologies are welcome in the coming work. 展开更多
关键词 Electric vehicle li-o2 battery High capacity Catalysts Electrocatalysis
原文传递
Battery Separators Functionalized with Edge-Rich MoS2/C Hollow Microspheres for the Uniform Deposition of Li2S in High-Performance Lithium-Sulfur Batteries 被引量:12
9
作者 Nan Zheng Guangyu Jiang +3 位作者 Xiao Chen Jiayi Mao Nan Jiang Yongsheng Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第3期104-118,共15页
As promising energy storage systems,lithium-sulfur(Li-S)batteries have attracted significant attention because of their ultra-high energy densities.However,Li-S battery suffers problems related to the complex phase co... As promising energy storage systems,lithium-sulfur(Li-S)batteries have attracted significant attention because of their ultra-high energy densities.However,Li-S battery suffers problems related to the complex phase conversion that occurs during the charge-discharge process,particularly the deposition of solid Li2S from the liquid-phase polysulfides,which greatly limits its practical application.In this paper,edge-rich MoS2/C hollow microspheres(Edg-MoS2/C HMs)were designed and used to functionalize separator for Li-S battery,resulting in the uniform deposition of Li2S.The microspheres were fabricated through the facile hydrothermal treatment of MoO3-aniline nanowires and a subsequent carbonization process.The obtained Edg-MoS2/C HMs have a strong chemical absorption capability and high density of Li2S binding sites,and exhibit excellent electrocatalytic performance and can effectively hinder the polysulfide shuttle effect and guide the uniform nucleation and growth of Li2S.Furthermore,we demonstrate that the Edg-MoS2/C HMs can effectively regulate the deposition of Li2S and significantly improve the reversibility of the phase conversion of the active sulfur species,especially at high sulfur loadings and high C-rates.As a result,a cell containing a separator functionalized with Edg-MoS2/C HMs exhibited an initial discharge capacity of 935 mAh g-1 at 1.0 C and maintained a capacity of 494 mAh g-1 after 1000 cycles with a sulfur loading of 1.7 mg cm-2.Impressively,at a high sulfur loading of 6.1 mg cm-2 and high rate of 0.5 C,the cell still delivered a high reversible discharge capacity of 478 mAh g-1 after 300 cycles.This work provides fresh insights into energy storage systems related to complex phase conversions. 展开更多
关键词 Edge-rich MoS2/C Hollow microspheres Li2S Lithium-sulfur BATTERIES
在线阅读 下载PDF
Micro–meso-macroporous FeCo-N-C derived from hierarchical bimetallic FeCo-ZIFs as cathode catalysts for enhanced Li-O2 batteries performance 被引量:2
10
作者 Fufang Chao Baoxing Wang +6 位作者 Jiaojiao Ren Yingwei Lu Wenrui Zhang Xizhang Wang Lin Cheng Yongbing Lou Jinxi Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第8期212-219,I0008,共9页
Developing bifunctional catalysts that increase both the OER and ORR kinetics and transport reactants with high efficiency is desirable. Herein, micro–meso-macroporous FeCo-N-C-X(denoted as "MFeCo-N-C-X", X... Developing bifunctional catalysts that increase both the OER and ORR kinetics and transport reactants with high efficiency is desirable. Herein, micro–meso-macroporous FeCo-N-C-X(denoted as "MFeCo-N-C-X", X represents Fe/Co molar ratio in bimetallic zeolite imidazole frameworks FeCo-ZIFs) catalysts derived from hierarchical M-FeCo-ZIFs-X was prepared. The micropores in M-FeCo-N-C-X have strong capability in O2 capture as well as dictate the nucleation and early-stage deposition of Li2O2,the mesopores provided a channel for the electrolyte wetting, and the macroporous structure promoted more available active sites when used as cathode for Li-O2 batteries. More importantly, M-Fe CoN-C-0.2 based cathode showed a high initial capacity(18,750 mAh g-1@0.1 A g-1), good rate capability(7900 m Ah g-1@0.5 A g-1), and cycle stability up to 192 cycles. Interestingly, the FeCo-N-C-0.2 without macropores suffered relatively poorer stability with only 75 cycles, although its discharge capacity was still as high as 17,200 mA h g-1(@0.1 A g-1). The excellent performance attributed to the synergistic contribution of homogeneous Fe, Co nanoparticles and N co-doping carbon frameworks with special micro–meso-macroporous structure. The results showed that hierarchical FeCo-N-C architectures are promising cathode catalysts for Li-O2 batteries. 展开更多
关键词 Micro–meso-macroporous FeCo-N-C li-o2 battery Cathode catalyst Oxygen evolution/reduction reaction
在线阅读 下载PDF
Medium-entropy configuration enabling reversible P2-OP4 phase transition in layered oxides for high-rate sodium-ion batteries 被引量:2
11
作者 Fei-Fei Hong Xin Zhou +9 位作者 Hao Liu Gui-Lin Feng Xiao-Hong Liu Heng Zhang Wei-Feng Fan Bin Zhang Mei-Hua Zuo Wang-Yan Xing Ping Zhang Wei Xiang 《Rare Metals》 2025年第5期2997-3007,共11页
Layered transition metal oxides have emerged as promising cathode materials for sodium ion batteries.However,irreversible phase transitions cause structural distortion and cation rearrangement,leading to sluggish Na+d... Layered transition metal oxides have emerged as promising cathode materials for sodium ion batteries.However,irreversible phase transitions cause structural distortion and cation rearrangement,leading to sluggish Na+dynamics and rapid capacity decay.In this study,we propose a medium-entropy cathode by simultaneously introducing Fe,Mg,and Li dopants into a typical P2-type Na_(0.75)Ni_(0.25)Mn_(0.75)O_(2)cathode.The modified Na_(0.75)Ni_(0.2125)Mn_(0.6375)Fe_(0.05)Mg_(0.05)Li_(0.05)O_(2)cathode predominantly exhibits a main P2 phase(93.5%)with a minor O3 phase(6.5%).Through spectroscopy techniques and electrochemical investigations,we elucidate the redox mechanisms of Ni^(2+/3+/4+),Mn^(3+/4+),Fe^(3+/4+),and O_(2)-/O_(2)^(n-)during charging/discharging.The medium-entropy doping mitigates the detrimental P2-O_(2)phase transition at high-voltage,replacing it with a moderate and reversible structural evolution(P2-OP4),thereby enhancing structural stability.Consequently,the modified cathode exhibits a remarkable rate capacity of 108.4 mAh·g^(-1)at 10C,with a capacity retention of 99.0%after 200 cycles at 1C,82.5%after 500 cycles at 5C,and 76.7%after 600 cycles at 10C.Furthermore,it also demonstrates superior electrochemical performance at high cutoff voltage of 4.5 V and extreme temperature(55 and 0℃).This work offers solutions to critical challenges in sodium ion batteries cathode materials. 展开更多
关键词 Layered oxide cathode Sodium ion batteries Phase transition Medium-entropy P2/O3 biphasic structure
原文传递
Photo‑Energized MoS_(2)/CNT Cathode for High‑Performance Li–CO_(2)Batteries in a Wide‑Temperature Range
12
作者 Tingsong Hu Wenyi Lian +4 位作者 Kang Hu Qiuju Li Xueliang Cui Tengyu Yao Laifa Shen 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期160-175,共16页
Li–CO_(2) batteries are considered promising energy storage systems in extreme environments such as Mars;however,severe performance degradation will occur at a subzero temperature owning to the sluggish reaction kine... Li–CO_(2) batteries are considered promising energy storage systems in extreme environments such as Mars;however,severe performance degradation will occur at a subzero temperature owning to the sluggish reaction kinetics.Herein,a photo-energized strategy adopting sustainable solar energy in wide working temperature range Li–CO_(2) battery was achieved with a binder-free MoS_(2)/carbon nanotube(CNT)photo-electrode as cathode.The unique layered structure and excellent photoelectric properties of MoS_(2) facilitate the abundant generation and rapid transfer of photo-excited carriers,which accelerate the CO_(2) reduction and Li_(2)CO_(3) decomposition upon illumination.The illuminated battery at room temperature exhibited high discharge voltage of 2.95 V and mitigated charge voltage of 3.27 V,attaining superior energy efficiency of 90.2%and excellent cycling stability of over 120 cycles.Even at an extremely low temperature of−30℃,the battery with same electrolyte can still deliver a small polarization of 0.45 V by the photoelectric and photothermal synergistic mechanism of MoS_(2)/CNT cathode.This work demonstrates the promising potential of the photo-energized wide working temperature range Li–CO_(2) battery in addressing the obstacle of charge overpotential and energy efficiency. 展开更多
关键词 Li-CO_(2)batteries Photo-energized Wide operation-temperature Kinetics MoS_(2)
在线阅读 下载PDF
Revealing the illumination effect on the discharge products in high-performance Li-O_(2) batteries with heterostructured photocatalysts 被引量:5
13
作者 Hao Gong Tao Wang +8 位作者 Kun Chang Peng Li Lequan Liu Xingyu Yu Bin Gao Hairong Xue Renzhi Ma Jianping He Jinhua Ye 《Carbon Energy》 SCIE CAS 2022年第6期1169-1181,共13页
Aprotic lithium–oxygen batteries(LOBs)have been recognized as novel energy storage devices for their outstanding specific energy density,while the large discharge/charge overpotential is a tough barrier to be overcom... Aprotic lithium–oxygen batteries(LOBs)have been recognized as novel energy storage devices for their outstanding specific energy density,while the large discharge/charge overpotential is a tough barrier to be overcome.Here,hetero-structured MoS_(2)/ZnIn_(2)S_(4) nanosheets have been prepared to capture visible light and the generated charge carriers are utilized for promoting both the oxygen reduction reaction and the oxygen evolution reaction.With the light illumination in the discharge process,the abundant photo-inspired electrons serve as the reaction sites to promote the reduction of O_(2) into LiO_(2) which is finally deposited as Li_(2)O_(2).On the contrary,the generated holes in the valence band can contribute to the low oxidization potential of Li_(2)O_(2) during the charge process.It delivers a low charge potential of 3.29 V,with an excellent resulting energy efficiency of 96.7%,much superior to that of 69.2%in the dark condition.It is noted that the involvement of photoelectrons has influenced the growth of Li_(2)O_(2) films on the MoS_(2)/ZnIn_(2)S_(4) nanosheets through the surface-adsorption pathway.The insights from the theoretical calculation confirm that the photoelectrons favor the absorption of LiO_(2) and the formation of the Li_(2)O_(2) film through the surface route.Therefore,this paper provides a deeper understanding of the mechanism of photoinspired charge carriers in LOBs and will enable further exploration of photo-involved energy storage systems. 展开更多
关键词 bifunctional catalysts li-o_(2)battery OVERPOTENTIAL surface-route growth theoretical calculation
在线阅读 下载PDF
Tuning the nucleation and decomposition of Li2O_(2) by fluorine-doped carbon vesicles towards high performance Li-O_(2) batteries 被引量:4
14
作者 Shiyu Ma Hongchang Yao +1 位作者 Zhongjun Li Qingchao Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期614-622,I0015,共10页
Li-O_(2) batteries provide an attractive and potential strategy for energy conversion and storage with high specific energy densities.However,large over-potential in oxygen evolution reactions (OER) caused by the deco... Li-O_(2) batteries provide an attractive and potential strategy for energy conversion and storage with high specific energy densities.However,large over-potential in oxygen evolution reactions (OER) caused by the decomposition obstacles of Li_(2)O_(2) seriously impedes its electrochemical performances.Herein,a novel N,O,S and F co-doping vesicular carbon was prepared by self-template pyrolysis method and used in LiO_(2) battery to tune the nucleation and decomposition of Li_(2)O_(2).The introduction of F in the carbon matrix with suitable content can regulate the adsorption of intermediates,through which the morphology of Li_(2)O_(2) can be controlled to film,favorable to its decomposition in charge process.The cathode based on the optimized F doped carbon vesicle exhibits improved electrochemical performances including a low over-potential,large capacity and a long-term stability.Density functional theory (DFT) results show that F and C in C–F bond hasve a strong interaction to Li and O in Li_(2)O_(2),respectively,which can enhance the transfer of electrons from Li_(2)O_(2) to the carbon matrix to generate hole polaron and thus accelerate the delithiation and decomposition of Li_(2)O_(2).This work provides a new sight into understanding the mechanism of nucleation and decomposition of Li_(2)O_(2) for the development of high-performance Li-O_(2) batteries. 展开更多
关键词 li-o_(2)batteries F-doped carbon vesicles DFT Li2O_(2)nucleation and decomposition
在线阅读 下载PDF
Enhancing H^(+)intercalation kinetics and stability in Cu^(2+)pre-intercalatedδ-MnO_(2)for aqueous aluminum batteries 被引量:1
15
作者 Hanqing Gu Mingjun Chen +2 位作者 Zhibao Wang Wenming Zhang Zhanyu Li 《Journal of Energy Chemistry》 2025年第3期126-133,共8页
Aqueous aluminum ion batteries(AAIBs)have garnered extensive attention due to their environmental friendliness,high theoretical capacity,and low cost.However,the sluggish reaction kinetics and severe structural collap... Aqueous aluminum ion batteries(AAIBs)have garnered extensive attention due to their environmental friendliness,high theoretical capacity,and low cost.However,the sluggish reaction kinetics and severe structural collapse of the cathode material,especially manganese oxide,during the cycling process have hindered its further application.Herein,Cu^(2+)pre-interca la ted layeredδ-MnO_(2)was synthesized via a hydrothermal method.The pre-intercalated Cu^(2+)ions not only improve the conductivity of MnO_(2)cathode but also stabilize the structure to enhance stability.X-ray absorption fine structure(XAFS)combined with density functional theory(DFT)calculations confirm the formation of the covalent bond between Cu and O,increasing the electronegativity of O atoms and enhancing the H^(+)adsorption energy.Moreover,ex-situ measurements not only elucidate the Al^(3+)/H^(+)co-insertion energy storage mechanism but also demonstrate the high reversibility of the Cu-MnO_(2)cathode during cycling.This work provides a promising modification approach for the application of manganese oxides in AAIBs. 展开更多
关键词 Aqueous aluminum-ion batteries Energy storage mechanism MnO_(2)cathodes Cu^(2+)pre-intercalated
在线阅读 下载PDF
Advances in cathode materials for Li-O_(2)batteries 被引量:2
16
作者 Pengcheng Xing Patrick Sanglier +3 位作者 Xikun Zhang Jing Li Yu Li Bao-Lian Su 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期126-167,I0004,共43页
Lithium-oxygen(Li-O_(2))batteries have attracted significant attention due to their ultra-high theoretical energy density.However,serious challenges,such as potential lag,low-rate capability,round-trip efficiency,and ... Lithium-oxygen(Li-O_(2))batteries have attracted significant attention due to their ultra-high theoretical energy density.However,serious challenges,such as potential lag,low-rate capability,round-trip efficiency,and poor cycle stability,greatly limit their practical application.This review provides a comprehensive account of the development of Li-O_(2)batteries,elucidates the current discharge/charge mechanism,and highlights both the advantages and bottlenecks of this technology.In particular,recent research progress on various cathode materials,such as carbon-based materials,noble metals,and non-noble metals,for Li-O_(2)batteries is deeply reviewed,emphasizing the impact of design strategies,material structures,chemical compositions,and microphysical parameters on oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)kinetics,as well as discharge products and overall battery performance.This review will also shed light on future research directions for oxygen electrode catalysts and material construction to facilitate the development of Li-O_(2)batteries with maximized electrochemical performance. 展开更多
关键词 li-o_(2)batteries Mechanism CATHODE OER ORR
在线阅读 下载PDF
Regulation of Zn^(2+) solvation shell by a novel N-methylacetamide based eutectic electrolyte toward high-performance zinc-ion batteries 被引量:1
17
作者 Yong Liu Kaijia Feng +7 位作者 Junmei Han Fei Wang Yibo Xing Feng Tao Haoming Li Binrui Xu Jiangtao Ji Hongxia Li 《Journal of Materials Science & Technology》 2025年第8期53-61,共9页
Aqueous Zn-ion batteries(AZIBs)have been regarded as promising alternatives to Li-ion batteries due to their advantages,such as low cost,high safety,and environmental friendliness.However,AZIBs face significant challe... Aqueous Zn-ion batteries(AZIBs)have been regarded as promising alternatives to Li-ion batteries due to their advantages,such as low cost,high safety,and environmental friendliness.However,AZIBs face significant challenges in limited stability and lifetime owing to zinc dendrite growth and serious side reactions caused by water molecules in the aqueous electrolyte during cycling.To address these issues,a new eutectic electrolyte based on Zn(ClO_(4))_(2)·6H_(2)O-N-methylacetamide(ZN)is proposed in this work.Compared with aqueous electrolyte,the ZN eutectic electrolyte containing organic N-methylacetamide could regulate the solvated structure of Zn^(2+),effectively suppressing zinc dendrite growth and side reactions.As a result,the Zn//NH4 V4 O10 full cell with the eutectic ZN-1-3 electrolyte demonstrates significantly enhanced cycling stability after 1000 cycles at 1 A g^(-1).Therefore,this study not only presents a new eutectic electrolyte for zinc-ion batteries but also provides a deep understanding of the influence of Zn^(2+)solvation structure on the cycle stability,contributing to the exploration of novel electrolytes for high-performance AZIBs. 展开更多
关键词 Zinc-ion batteries Eutectic electrolyte Zn dendrites Suppressed side reactions Zn^(2+)solvation structure Electrochemical performance
原文传递
The initial stages of Li_(2)O_(2) formation during oxygen reduction reaction in Li-O_(2) batteries:The significance of Li_(2)O_(2) in charge-transfer reactions within devices 被引量:3
18
作者 Daniela M.Josepetti Bianca P.Sousa +2 位作者 Simone A.J.Rodrigues Renato G.Freitas Gustavo Doubek 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期223-231,I0006,共10页
Lithium-oxygen batteries are a promising technology because they can greatly surpass the energy density of lithium-ion batteries.However,this theoretical characteristic has not yet been converted into a real device wi... Lithium-oxygen batteries are a promising technology because they can greatly surpass the energy density of lithium-ion batteries.However,this theoretical characteristic has not yet been converted into a real device with high cyclability.Problems with air contamination,metallic lithium reactivity,and complex discharge and charge reactions are the main issues for this technology.A fast and reversible oxygen reduction reaction(ORR)is crucial for good performance of secondary batteries',but the partial knowledge of its mechanisms,especially when devices are concerned,hinders further development.From this perspective,the present work uses operando Raman experiments and electrochemical impedance spectroscopy(EIS)to assess the first stages of the discharge processes in porous carbon electrodes,following their changes cycle by cycle at initial operation.A growth kinetic formation of the discharge product signal(Li_(2)O_(2))was observed with operando Raman,indicating a first-order reaction and enabling an analysis by a microkinetic model.The solution mechanism in the evaluated system was ascribed for an equivalent circuit with three time constants.While the time constant for the anode interface reveals to remain relatively constant after the first discharge,its surface seemed to be more non-uniform.The model indicated that the reaction occurs at the Li_(2)O_(2) surface,decreasing the associated resistance during the initial discharge phase.Furthermore,the growth of Li_(2)O_(2) forms a hetero-phase between Li_(2)O_(2)/electrolyte,while creating a more compact and homogeneous on the Li_(2)O_(2)/cathode surface.The methodology here described thus offers a way of directly probing changes in surface chemistry evolution during cycling from a device through EIS analysis. 展开更多
关键词 li-o_(2)battery Operando Raman analysis Equivalent circuit modeling Time-constant distribution
在线阅读 下载PDF
Co3O4 nanocage derived from metal-organic frameworks: An excellent cathode catalyst for rechargeable Li-O2 battery 被引量:6
19
作者 Zhuoliang Jiang Hui Sun +5 位作者 Wenke Shi Tianhang Zhou Jianyong Hu Jingyang Cheng Pengfei Hu Shigang Sun 《Nano Research》 SCIE EI CAS CSCD 2019年第7期1555-1562,共8页
Rechargeable non-aqueous Li-O2 battery is regarded as one of the most promising energy-storage technologies on account of its high energy density.It is believed that the rational design of three-dimensional (3D) archi... Rechargeable non-aqueous Li-O2 battery is regarded as one of the most promising energy-storage technologies on account of its high energy density.It is believed that the rational design of three-dimensional (3D) architecture for catalyst is a key factor for the remarkable performance.Metal-organic frameworks (MOFs) derived materials possess excellent architecture,which is beneficial for Li-O2 batteries.In this work,ZIF-67 is used as precursor template and calcinated under different temperature to produce Co3O4 crystals.When the anneal treatment is under 350℃,the derived Co3O4 nanocage holds the most complete skeleton,which provides better charge transfer ability as well as O2 and Li^+ diffusion.Meanwhile,the Co3O4 nanocage owns more oxygen vacancies,offering more active sites.With the synergistic effect of nanocage structure and active sites,the Co3O4 nanocage stably delivers a large specific capacity of 15,500 mAh·g^-1 as well as a long cycle-life of 132 cycles at limited discharge capacity of 1,000 mAh·g^-1 under discharge/charge current density of 0.5 A·g^-1. 展开更多
关键词 U-O2 batteries METAL-ORGANIC framework (MOF)-derived CO3O4 NANOCAGE CO3O4 POLYHEDRON CO3O4 particle
原文传递
Construction of MnS/MoS_(2) heterostructure on two-dimensional MoS_(2) surface to regulate the reaction pathways for high-performance Li-O_(2) batteries 被引量:2
20
作者 Guoliang Zhang Han Yu +6 位作者 Xia Li Xiuqi Zhang Chuanxin Hou Shuhui Sun Yong Du Zhanhu Guo Feng Dang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期443-452,I0012,共11页
The inherent catalytic anisotropy of two-dimensional(2D) materials has limited the enhancement of LiO_(2) batteries(LOBs) performance due to the significantly different adsorption energies on 2D and edge surfaces.Tuni... The inherent catalytic anisotropy of two-dimensional(2D) materials has limited the enhancement of LiO_(2) batteries(LOBs) performance due to the significantly different adsorption energies on 2D and edge surfaces.Tuning the adsorption strength in 2D materials to the reaction intermediates is essential for achieving high-performance LOBs.Herein,a MnS/MoS_(2) heterostructure is designed as a cathode catalyst by adjusting the adsorption behavior at the surface.Different from the toroidal-like discharge products on the MoS_(2) cathode,the MnS/MoS_(2) surface displays an improved adsorption energy to reaction species,thereby promoting the growth of the film-like discharge products.MnS can disturb the layer growth of MoS_(2),in which the stack edge plane features a strong interaction with the intermediates and limits the growth of the discharge products.Experimental and theoretical results confirm that the MnS/MoS_(2) heterostructure possesses improved electron transfer kinetics at the interface and plays an important role in the adsorption process for reaction species,which finally affects the morphology of Li_2O_(2),In consequence,the MnS/MoS_(2) heterostructure exhibits a high specific capacity of 11696.0 mA h g^(-1) and good cycle stability over 1800 h with a fixed specific capacity of 600 mA h g^(-1) at current density of100 mA g^(-1) This work provides a novel interfacial engineering strategy to enhance the performance of LOBs by tuning the adsorption properties of 2D materials. 展开更多
关键词 li-o_(2)batteries Two-dimensional materials MnS/MoS_(2)heterostructure Edge plane Adsorption behavior
在线阅读 下载PDF
上一页 1 2 124 下一页 到第
使用帮助 返回顶部