Although significant progress has been made in many aspects of the emerging aprotic Li-O2 battery system, an indepth understanding of the oxygen reactions is still underway. The oxygen reactions occurring in the posit...Although significant progress has been made in many aspects of the emerging aprotic Li-O2 battery system, an indepth understanding of the oxygen reactions is still underway. The oxygen reactions occurring in the positive electrode distinguish Li-O2 batteries from the conventional Li-ion cells and play a crucial role in the Li-O2 cell's performance (capacity, rate capability, and cycle life). Recent advances in fundamental studies of oxygen reactions in aprotic Li-O2 batteries are reviewed, including the reaction route, kinetics, morphological evolution of Li2O2, and charge transport within Li2O2. Prospects are also provided for future fundamental investigations of Li-O2 chemistry.展开更多
Nonaqueous Li-O2 batteries attract attention for their theoretical specific energy density.However,due to the difficulty of decomposition of Li2 O2,Li-O2 batteries have high charge overpotential and poor cycling life....Nonaqueous Li-O2 batteries attract attention for their theoretical specific energy density.However,due to the difficulty of decomposition of Li2 O2,Li-O2 batteries have high charge overpotential and poor cycling life.So all kinds of catalysts have been studied on the cathode.Compared to heterogeneous solid catalysts,soluble catalysts achieve faster and more effective transport of electrons by reversible redox pairs.Here,we first report ruthenocene(Ruc) as a mobile redox mediator in a Li-O2 battery.0.01 mol/L Ruc in the electrolyte effectively reduces the charging voltage by 610 mV.Additionally,Ruc greatly increases the cycling life by four-fold(up to 83 cycles) with a simple ketjen black(KB) cathode.The results of SEM,XPS and XRD confirm that less discharge product residue accumulated after recharge.To verify the reaction mechanisms of the mediato r,free energy profiles of the possible reaction pathways based on DFT are provided.展开更多
As one of the next-generation energy-storage devices,Li-O_2 battery has become the main research direction for the academic researchers due to its characteristics of environmental friendship,relatively simple structur...As one of the next-generation energy-storage devices,Li-O_2 battery has become the main research direction for the academic researchers due to its characteristics of environmental friendship,relatively simple structures,high energy density of 3500Wh/kg and low cost.However,Li-O_2 battery cannot be commercialized on a large scale because of the challenging issues including high-efficient electrocatalysts,membranes,Li-based anode and so on.In this review,we focused on the recent development of electrocatalyst materials as cathodes for the non-aqueous Li-O_2 batteries which are relatively simpler than other Li-O_2 batteries' structures.Electrocatalysts were summarized including noble metals,nanocarbon materials,transition metals and their hybrids.We points out that the challenges of preparation high-efficient catalysts not only require high catalytic activity and conductivity,but also have novel nanoarchitectures with large interface and porous volume for LiO_x storage.Furthermore,the further investigation of reaction mechanism and advanced in situ analysis technologies are welcome in the coming work.展开更多
Developing bifunctional catalysts that increase both the OER and ORR kinetics and transport reactants with high efficiency is desirable. Herein, micro–meso-macroporous FeCo-N-C-X(denoted as "MFeCo-N-C-X", X...Developing bifunctional catalysts that increase both the OER and ORR kinetics and transport reactants with high efficiency is desirable. Herein, micro–meso-macroporous FeCo-N-C-X(denoted as "MFeCo-N-C-X", X represents Fe/Co molar ratio in bimetallic zeolite imidazole frameworks FeCo-ZIFs) catalysts derived from hierarchical M-FeCo-ZIFs-X was prepared. The micropores in M-FeCo-N-C-X have strong capability in O2 capture as well as dictate the nucleation and early-stage deposition of Li2O2,the mesopores provided a channel for the electrolyte wetting, and the macroporous structure promoted more available active sites when used as cathode for Li-O2 batteries. More importantly, M-Fe CoN-C-0.2 based cathode showed a high initial capacity(18,750 mAh g-1@0.1 A g-1), good rate capability(7900 m Ah g-1@0.5 A g-1), and cycle stability up to 192 cycles. Interestingly, the FeCo-N-C-0.2 without macropores suffered relatively poorer stability with only 75 cycles, although its discharge capacity was still as high as 17,200 mA h g-1(@0.1 A g-1). The excellent performance attributed to the synergistic contribution of homogeneous Fe, Co nanoparticles and N co-doping carbon frameworks with special micro–meso-macroporous structure. The results showed that hierarchical FeCo-N-C architectures are promising cathode catalysts for Li-O2 batteries.展开更多
Co_(3)S_(4)electrocatalysts with mixed valences of Co ions and excellent structural stability possess favorable oxygen evolution reaction(OER)activity,yet challenges remain in fabricating rechargeable lithiumoxygen ba...Co_(3)S_(4)electrocatalysts with mixed valences of Co ions and excellent structural stability possess favorable oxygen evolution reaction(OER)activity,yet challenges remain in fabricating rechargeable lithiumoxygen batteries(LOBs)due to their poor OER performance,resulting from poor electrical conductivity and overly strong intermediate adsorption.In this work,fancy double heterojunctions on 1T/2H-MoS_(2)@Co_(3)S_(4)(1T/2H-MCS)were constructed derived from the charge donation from Co to Mo ions,thus inducing the phase transformation of Mo S_(2)from 2H to 1T.The unique features of these double heterojunctions endow the1T/2H-MCS with complementary catalysis during charging and discharging processes.It is worth noting that 1T-Mo S2@Co3S4could provide fast Co-S-Mo electron transport channels to promote ORR/OER kinetics,and 2H-MoS_(2)@Co_(3)S_(4)contributed to enabling moderate egorbital occupancy when adsorbed with oxygen-containing intermediates.On the basis,the Li_(2)O_(2)nucleation route was changed to solution and surface dual pathways,improving reversible deposition and decomposition kinetics.As a result,1T/2H-MCS cathodes exhibit an improved electrocatalytic performance compared with those of Co_(3)S_(4)and Mo S2cathodes.This innovative heterostructure design provides a reliable strategy to construct efficient transition metal sulfide catalysts by improving electrical conductivity and modulating adsorption toward oxygenated intermediates for LOBs.展开更多
Micro-sized anatase TiO_(2) displays inferior capacity as cathode material for magnesium ion batteries because of the higher diffusion energy barrier of Mg^(2+)in anatase TiO_(2) lattice.Herein,we report that nanosize...Micro-sized anatase TiO_(2) displays inferior capacity as cathode material for magnesium ion batteries because of the higher diffusion energy barrier of Mg^(2+)in anatase TiO_(2) lattice.Herein,we report that nanosized anatase TiO_(2) exposed(001)facet doubles the capacity compared to the micro-sized sample ascribed to the interfacial Mg^(2+)ion storage.First-principles calculations reveal that the diffusion energy barrier of Mg^(2+)on the(001)facet is significantly lower than those in the bulk phase and on(100)facet,and the adsorption energy of Mg^(2+)on the(001)facet is also considerably lower than that on(100)facet,which guarantees superior interfacial Mg^(2+)storage of(001)facet.Moreover,anatase TiO_(2) exposed(001)facet displays a significantly higher capacity of 312.9 mAh g^(−1) in Mg-Li dual-salt electrolyte compared to 234.3 mAh g^(−1) in Li salt electrolyte.The adsorption energies of Mg^(2+)on(001)facet are much lower than the adsorption energies of Li+on(001)facet,implying that the Mg^(2+)ion interfacial storage is more favorable.These results highlight that controlling the crystal facet of the nanocrystals effectively enhances the interfacial storage of multivalent ions.This work offers valuable guidance for the rational design of high-capacity storage systems.展开更多
The metal triazole(MTA)-based MOFs were found to preferentially adsorb O-rich species,which had enhanced electrocatalytic oxygen reduction reactions(ORR)and stabilized the O-containing species during the discharge and...The metal triazole(MTA)-based MOFs were found to preferentially adsorb O-rich species,which had enhanced electrocatalytic oxygen reduction reactions(ORR)and stabilized the O-containing species during the discharge and charge processes in Li-O_(2)battery.However,the MOFs exhibited low electron conductivity and poor electron transfer interface in the electrocatalysis,limiting the electrocatalytic activity.To address this issue,a nanocomposite with the Co-MTA-coated carbon nano tubes(Co-MTA-C)was constructed,which formed the three-dimensional conductivity network connected with the intersecting carbon nano tube(CNT).In this composite,the electron-rich Co-MTA interacted with the highly conductive CNT,resulting in a charge redistribution.Optimized the electronic structure of the Co center through compositional modifications presented a high valence compared to the pure MOFs.In situ X-ray absorption spectroscopy revealed a direct reaction of Co sites with intermediates such as LiO_(x),leading to the formation of nanosheet array discharge products.The battery based on optimized CoMTA-C demonstrated fast kinetics and superior stability,with a low overpotential of 1.13 V,high specific capacity of 9057 mAh g^(-1),and long-term durability of 600 cycles.It provides a facile and effective strategy for enhancing the electrocatalytic performance through rational tuning of high-conductivity substances.展开更多
Science 2015,350,530-533Rechargeable lithium-air(Li-O2)batteries have received considerable attentions due to their much higher theoretical energy densities than today’s lithium-ion batteries.However,they still suf...Science 2015,350,530-533Rechargeable lithium-air(Li-O2)batteries have received considerable attentions due to their much higher theoretical energy densities than today’s lithium-ion batteries.However,they still suffer from at least four limitations:(1)much lower capacity than theoretical capacity,stemming from the small pore sizes and volumes of the current porous electrode;(2)side reactions,including electrode materials,electrolyte,intermediate and final discharge products;(3)large展开更多
Layered transition metal oxides have emerged as promising cathode materials for sodium ion batteries.However,irreversible phase transitions cause structural distortion and cation rearrangement,leading to sluggish Na+d...Layered transition metal oxides have emerged as promising cathode materials for sodium ion batteries.However,irreversible phase transitions cause structural distortion and cation rearrangement,leading to sluggish Na+dynamics and rapid capacity decay.In this study,we propose a medium-entropy cathode by simultaneously introducing Fe,Mg,and Li dopants into a typical P2-type Na_(0.75)Ni_(0.25)Mn_(0.75)O_(2)cathode.The modified Na_(0.75)Ni_(0.2125)Mn_(0.6375)Fe_(0.05)Mg_(0.05)Li_(0.05)O_(2)cathode predominantly exhibits a main P2 phase(93.5%)with a minor O3 phase(6.5%).Through spectroscopy techniques and electrochemical investigations,we elucidate the redox mechanisms of Ni^(2+/3+/4+),Mn^(3+/4+),Fe^(3+/4+),and O_(2)-/O_(2)^(n-)during charging/discharging.The medium-entropy doping mitigates the detrimental P2-O_(2)phase transition at high-voltage,replacing it with a moderate and reversible structural evolution(P2-OP4),thereby enhancing structural stability.Consequently,the modified cathode exhibits a remarkable rate capacity of 108.4 mAh·g^(-1)at 10C,with a capacity retention of 99.0%after 200 cycles at 1C,82.5%after 500 cycles at 5C,and 76.7%after 600 cycles at 10C.Furthermore,it also demonstrates superior electrochemical performance at high cutoff voltage of 4.5 V and extreme temperature(55 and 0℃).This work offers solutions to critical challenges in sodium ion batteries cathode materials.展开更多
Li–CO_(2) batteries are considered promising energy storage systems in extreme environments such as Mars;however,severe performance degradation will occur at a subzero temperature owning to the sluggish reaction kine...Li–CO_(2) batteries are considered promising energy storage systems in extreme environments such as Mars;however,severe performance degradation will occur at a subzero temperature owning to the sluggish reaction kinetics.Herein,a photo-energized strategy adopting sustainable solar energy in wide working temperature range Li–CO_(2) battery was achieved with a binder-free MoS_(2)/carbon nanotube(CNT)photo-electrode as cathode.The unique layered structure and excellent photoelectric properties of MoS_(2) facilitate the abundant generation and rapid transfer of photo-excited carriers,which accelerate the CO_(2) reduction and Li_(2)CO_(3) decomposition upon illumination.The illuminated battery at room temperature exhibited high discharge voltage of 2.95 V and mitigated charge voltage of 3.27 V,attaining superior energy efficiency of 90.2%and excellent cycling stability of over 120 cycles.Even at an extremely low temperature of−30℃,the battery with same electrolyte can still deliver a small polarization of 0.45 V by the photoelectric and photothermal synergistic mechanism of MoS_(2)/CNT cathode.This work demonstrates the promising potential of the photo-energized wide working temperature range Li–CO_(2) battery in addressing the obstacle of charge overpotential and energy efficiency.展开更多
Aqueous aluminum ion batteries(AAIBs)have garnered extensive attention due to their environmental friendliness,high theoretical capacity,and low cost.However,the sluggish reaction kinetics and severe structural collap...Aqueous aluminum ion batteries(AAIBs)have garnered extensive attention due to their environmental friendliness,high theoretical capacity,and low cost.However,the sluggish reaction kinetics and severe structural collapse of the cathode material,especially manganese oxide,during the cycling process have hindered its further application.Herein,Cu^(2+)pre-interca la ted layeredδ-MnO_(2)was synthesized via a hydrothermal method.The pre-intercalated Cu^(2+)ions not only improve the conductivity of MnO_(2)cathode but also stabilize the structure to enhance stability.X-ray absorption fine structure(XAFS)combined with density functional theory(DFT)calculations confirm the formation of the covalent bond between Cu and O,increasing the electronegativity of O atoms and enhancing the H^(+)adsorption energy.Moreover,ex-situ measurements not only elucidate the Al^(3+)/H^(+)co-insertion energy storage mechanism but also demonstrate the high reversibility of the Cu-MnO_(2)cathode during cycling.This work provides a promising modification approach for the application of manganese oxides in AAIBs.展开更多
Aqueous Zn-ion batteries(AZIBs)have been regarded as promising alternatives to Li-ion batteries due to their advantages,such as low cost,high safety,and environmental friendliness.However,AZIBs face significant challe...Aqueous Zn-ion batteries(AZIBs)have been regarded as promising alternatives to Li-ion batteries due to their advantages,such as low cost,high safety,and environmental friendliness.However,AZIBs face significant challenges in limited stability and lifetime owing to zinc dendrite growth and serious side reactions caused by water molecules in the aqueous electrolyte during cycling.To address these issues,a new eutectic electrolyte based on Zn(ClO_(4))_(2)·6H_(2)O-N-methylacetamide(ZN)is proposed in this work.Compared with aqueous electrolyte,the ZN eutectic electrolyte containing organic N-methylacetamide could regulate the solvated structure of Zn^(2+),effectively suppressing zinc dendrite growth and side reactions.As a result,the Zn//NH4 V4 O10 full cell with the eutectic ZN-1-3 electrolyte demonstrates significantly enhanced cycling stability after 1000 cycles at 1 A g^(-1).Therefore,this study not only presents a new eutectic electrolyte for zinc-ion batteries but also provides a deep understanding of the influence of Zn^(2+)solvation structure on the cycle stability,contributing to the exploration of novel electrolytes for high-performance AZIBs.展开更多
Na_(3)V_(2)(PO_(4))_(3)(NVP)has garnered great attentions as a prospective cathode material for sodium-ion batteries(SIBs)by virtue of its decent theoretical capacity,superior ion conductivity and high structural stab...Na_(3)V_(2)(PO_(4))_(3)(NVP)has garnered great attentions as a prospective cathode material for sodium-ion batteries(SIBs)by virtue of its decent theoretical capacity,superior ion conductivity and high structural stability.However,the inherently poor electronic conductivity and sluggish sodium-ion diffusion kinetics of NVP material give rise to inferior rate performance and unsatisfactory energy density,which strictly confine its further application in SIBs.Thus,it is of significance to boost the sodium storage performance of NVP cathode material.Up to now,many methods have been developed to optimize the electrochemical performance of NVP cathode material.In this review,the latest advances in optimization strategies for improving the electrochemical performance of NVP cathode material are well summarized and discussed,including carbon coating or modification,foreign-ion doping or substitution and nanostructure and morphology design.The foreign-ion doping or substitution is highlighted,involving Na,V,and PO_(4)^(3−)sites,which include single-site doping,multiple-site doping,single-ion doping,multiple-ion doping and so on.Furthermore,the challenges and prospects of high-performance NVP cathode material are also put forward.It is believed that this review can provide a useful reference for designing and developing high-performance NVP cathode material toward the large-scale application in SIBs.展开更多
Aqueous sodium-ion batteries(ASIBs) offer significant advantages for energy storage on a large scale,attributed to their economical cost,secure operatio n,and eco-friend ly natu re.Among the leading cathode materials ...Aqueous sodium-ion batteries(ASIBs) offer significant advantages for energy storage on a large scale,attributed to their economical cost,secure operatio n,and eco-friend ly natu re.Among the leading cathode materials for ASIBs,Na_(3)V_(2)(PO_(4))_(3)(NVP) exhibits excellent structural stability and a high Na+diffusion coefficient,making it a promising option.However,the high solubility of vanadium-based materials in aqueous electrolytes engenders suboptimal cycling stability for Na_(3)V_(2)(PO_(4))_(3),constraining its application in ASIBs.Herein,the Cr-substituted Na_(3)V_(1.3)Cr_(0.7)(PO_(4))3@C(NV_(1.3)Cr_(0.7)P) cathode material was synthesized via a simple sol-gel method.It is found that Cr substitution reduces the cell parameters of NV_(1.3)Cr_(0.7)P,effectively reinforcing the crystal structure.Furthermore,NV_(1.3)Cr_(0.7)P alters the Na^(+)insertion/extraction mechanism,transforming the typical two-phase reaction between Na_(1)V_(2)(PO_(4))_(3)and Na_(3)V_(2)(PO_(4))3into continuous solid-solution reactions with stable intermediates.The Cr substitution diminishes the sodium-ion diffusion energy barrier in NV_(1.3)Cr_(0.7)P,leading to smoother Na+insertion and extraction processes.Consequently,NV_(1.3)Cr_(0.7)P exhibits impressive cycling stability,retaining 74.8% of its capacity after 5,000 cycles at a current density of 5 A g^(-1),along with an outstanding rate performance of 79,2% at 10 A g^(-1).This work elucidates the stable Na^(+)insertion/extraction processes in Cr-substituted NV_(1.3)Cr_(0.7)P,offering insights into the application of vanadium-based materials in aqueous sodium-ion batteries.展开更多
The successful development of Li-O_2 battery technology depends on developing a stable and efficient cathode. As an important step toward this goal, for the first time, we report the development of CeO_2 nanoparticles...The successful development of Li-O_2 battery technology depends on developing a stable and efficient cathode. As an important step toward this goal, for the first time, we report the development of CeO_2 nanoparticles modified NiCo_2O_4 nanowire arrays(NWAs) grown on the carbon textiles as a new carbon-free and binder-free cathode system. In this study, the Li-O_2 battery with the CeO_2@NiCo_2O_4 NWAs has exhibited much reduced overpotentials, a high discharge capacity, an improved cycling stability,outperforming the Li-O_2 battery with NiCo_2O_4 NWAs. These improvements can be attributed to both the tailored morphology of discharge product and improved oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) activity after CeO_2 NPs deposition. To a considerable extent, this idea of cathode construction including structure design and composition optimization can provide guidance for further researches in developing more powerful cathode for Li-O_2 battery.展开更多
Lithium nickel oxide(Li_(2)NiO_(2)),as a sacrificial cathode prelithiation additive,has been used to compensate for the lithium loss for improving the lifespan of lithium-ion batteries(LIBs).However,high-cost Li_(2)Ni...Lithium nickel oxide(Li_(2)NiO_(2)),as a sacrificial cathode prelithiation additive,has been used to compensate for the lithium loss for improving the lifespan of lithium-ion batteries(LIBs).However,high-cost Li_(2)NiO_(2)suffers from inferior delithiation kinetics during the first cycle.Herein,we investigated the effects of the cost-effective copper substituted Li_(2)Ni_(1-x)Cu_(x)O_(2)(x=0,0.2,0.3,0.5,0.7)synthesized by a high-temperature solid-phase method on the structure,morphology,electrochemical performance of graphite‖LiFePO_(4)battery.The X-ray diffraction(XRD)refinement result demonstrated that Cu substitution strategy could be favorable for eliminating the NiO_(x)impurity phase and weakening Li-O bond.Analysis on density of states(DOS)indicates that Cu substitution is good for enhancing the electronic conductivity,as well as reducing the delithi-ation voltage polarization confirmed by electrochemical characterizations.Therefore,the optimal Li_(2)Ni_(0.7)Cu_(0.3)O_(2)delivered a high delithiation capacity of 437 mAh·g^(-1),around 8%above that of the pristine Li_(2)NiO_(2).Furthermore,a graphite‖LiFePO_(4)pouch cell with a nominal capacity of 3000 mAh demonstrated a notably improved reversible capacity,energy density and cycle life through introducing 2 wt%Li_(2)Ni_(0.7)Cu_(0.3)O_(2)additive,delivering a 6.2 mAh·g^(-1)higher initial discharge capacity and achieving around 5%improvement in capacity retentnion at 0.5P over 1000 cycles.Additionally,the post-mortem analyses testified that the Li_(2)Ni_(0.7)Cu_(0.3)O_(2)additive could suppress solid electrolyte interphase(SEI)decomposition and homogenize the Li distribution,which benefits to stabilizing interface between graphite and electrolyte,and alleviating dendritic Li plating.In conclusion,the Li_(2)Ni_(0.7)Cu_(0.3)O_(2)additive may offer advantages such as lower cost,lower delithiation voltage and higher prelithiation capacity compared with Li_(2)NiO_(2),making it a promising candidate of cathode prelithiation additive for next-generation LIBs.展开更多
Lithium-oxygen batteries have attracted considerable interest in the past a few years, because they have higher theoretical specific energy than Li-ion batteries. However, the available en ergy den sities of the Li-O2...Lithium-oxygen batteries have attracted considerable interest in the past a few years, because they have higher theoretical specific energy than Li-ion batteries. However, the available en ergy den sities of the Li-O2 batteries are much less than expected. It is particularly urgent to find catalyst with high activity. Herein, a series of Co3O4 with differe nt morphologies (ordered two-dimensio nal porous nano sheets, flowerlike and cuboidlike) were successfully prepared through facile hydrothermal and calcinatio n methods. Ordered two-dime nsional Co3O4 nano sheets show the best cycling stability. Detailed experimental results reveal that the superiority of the unique two-dimensional uniform porous structures is vital for Li-O2 batteries cathode catalysts. Due to the ordered structures with high surface areas and active sites, the catalysts indicate a high specific discharge capacity of about 10,417 mAh/g at a current density of 200 mA/g, and steadily cycle for more than 50 times with a limited capacity of 1,000 mAh/g.展开更多
When aprotic Li-O2 batteries recharge, the solid Li2O2 in the positive electrode is oxidized, which often exhibits a continuous or step increase in the charging potential as a function of the charging capacity, and it...When aprotic Li-O2 batteries recharge, the solid Li2O2 in the positive electrode is oxidized, which often exhibits a continuous or step increase in the charging potential as a function of the charging capacity, and its origin remains incompletely understood. Here, we report a model study of electro-oxidation of a Li2O2 film on an Au electrode using voltammetry coupled with in situ Raman spectroscopy. It was found that the charging reaction initializes at the positive electrodelLizO2 interface, instead of the previously presumed Li2O2 surface, and consists of two temporally and spatially separated Li2O2 oxidation processes, accounting for the potential rise during charging of Li-O2 batteries. Moreover, the electrode surface-initialized oxidation can disintegrate the Li2O2 film resulting in a loss of Li2O2 into electrolyte solution, which drastically decreases the charging efficiency and highlights the importance of using soluble electro-catalyst for the complete charging of Li-02 batteries.展开更多
Developing effective heterostructure strategies to mitigate the shuttling effect and accelerate lithium polysulfide(Li PS)conversion remains a critical challenge in lithium–sulfur(Li–S)batteries.Here,we report the f...Developing effective heterostructure strategies to mitigate the shuttling effect and accelerate lithium polysulfide(Li PS)conversion remains a critical challenge in lithium–sulfur(Li–S)batteries.Here,we report the first carbon–free VO_(2)–VS_(2)heterostructure material synthesized via in situ sulfurization,applied as a modifier on a commercial polypropylene(PP)separator(denoted as VO_(2)–VS_(2)@PP).The as–prepared VO_(2)–VS_(2)nanorods synergistically combine the high absorptivity of VO_(2)with the efficient catalytic properties of VS_(2),simultaneously enhancing Li PS anchoring and promoting its conversion.We systematically investigate the influence of material composition on battery performance,leveraging these functional attributes,Li–S cells incorporating VO_(2)–VS_(2)@PP exhibit exceptional cycle stability(over 500cycles at 1C),impressive rate performance(807 m Ah.g^(–1)at 5C),desirable reversibility(49.9%capacity retention after 300 cycles at 5C)and exceptional pouch cell performance(3.65 m Ah.cm^(–2)after 50 stable cycles at 0.1C).This study underscores the potential of tailored heterostructures in realizing high–performance Li–S batteries,offering new insights for next–generation energy storage solutions.展开更多
Solid-state batteries are attracting considerable attention for their high-energy density and improved safety over conventional lithium-ion batteries.Among solid-state electrolytes,sulfide-based options like Li_(6)PS_...Solid-state batteries are attracting considerable attention for their high-energy density and improved safety over conventional lithium-ion batteries.Among solid-state electrolytes,sulfide-based options like Li_(6)PS_(5)Cl are especially promising due to their superior ionic conductivity.However,interfacial degradation between sulfide electrolytes and high-voltage cathodes,such as LiCoO_(2),limits long-term performance.This study demonstrates that a LiBF_(4)-derived F-rich coating on LiCoO_(2),applied by immersing LiCoO_(2) particles in a LiBF_(4) solution followed by annealing,can significantly enhance performance in Li_(6)PS_(5)Cl-based solid-state batteries.This coating enables stable high-voltage(4.5 V vs Li^(+)/Li)operation,achieving an initial specific capacity of 153.82 mAh g^(−1) and 87.1%capacity retention over 300 cycles at 0.5C.The enhanced performance stems from the F-rich coating,composed of multiple phases including LiF,CoF_(2),Li_(x)BF_(y)O_(z),and Li_(x)BO_(y),which effectively suppresses side reactions at the LiCoO_(2)|Li_(6)PS_(5)Cl interface and improves lithium-ion diffusivity,thereby enabling greater Li capacity utilization.Our findings provide a practical pathway for advancing solid-state batteries with high-voltage LiCoO_(2) cathodes,offering substantial promise for next-generation energy storage systems.展开更多
基金supported by the Recruitment Program of Global Youth Experts of Chinathe Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA09010401)+1 种基金the Science and Technology Development Program of Jilin Province,China(Grant No.20150623002TC)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20131139)
文摘Although significant progress has been made in many aspects of the emerging aprotic Li-O2 battery system, an indepth understanding of the oxygen reactions is still underway. The oxygen reactions occurring in the positive electrode distinguish Li-O2 batteries from the conventional Li-ion cells and play a crucial role in the Li-O2 cell's performance (capacity, rate capability, and cycle life). Recent advances in fundamental studies of oxygen reactions in aprotic Li-O2 batteries are reviewed, including the reaction route, kinetics, morphological evolution of Li2O2, and charge transport within Li2O2. Prospects are also provided for future fundamental investigations of Li-O2 chemistry.
基金the National Natural Science Foundation of China (Nos.U1732111 and 21676241)“The Recruitment Program of Global Youth Experts” from the Chinese government+2 种基金the “Hundred Talents Program” of Zhejiang UniversityHubei Natural Science Foundation of China (No.2018CFB531)Self-determined Research Funds of CCNU from Colleges’ Basic Research and Operation of MOE (No.CCNU18TS045)。
文摘Nonaqueous Li-O2 batteries attract attention for their theoretical specific energy density.However,due to the difficulty of decomposition of Li2 O2,Li-O2 batteries have high charge overpotential and poor cycling life.So all kinds of catalysts have been studied on the cathode.Compared to heterogeneous solid catalysts,soluble catalysts achieve faster and more effective transport of electrons by reversible redox pairs.Here,we first report ruthenocene(Ruc) as a mobile redox mediator in a Li-O2 battery.0.01 mol/L Ruc in the electrolyte effectively reduces the charging voltage by 610 mV.Additionally,Ruc greatly increases the cycling life by four-fold(up to 83 cycles) with a simple ketjen black(KB) cathode.The results of SEM,XPS and XRD confirm that less discharge product residue accumulated after recharge.To verify the reaction mechanisms of the mediato r,free energy profiles of the possible reaction pathways based on DFT are provided.
基金supported by the Natural Science Foundation of China(No.21303038)Scientific Research Foundation for the Returned Overseas Chinese Scholars+1 种基金State Education Ministry One Hundred,Talents Program of Anhui ProvinceOpen Funds of the State Key Laboratory of Rare Earth Resource Utilization(No.RERU2016004)
文摘As one of the next-generation energy-storage devices,Li-O_2 battery has become the main research direction for the academic researchers due to its characteristics of environmental friendship,relatively simple structures,high energy density of 3500Wh/kg and low cost.However,Li-O_2 battery cannot be commercialized on a large scale because of the challenging issues including high-efficient electrocatalysts,membranes,Li-based anode and so on.In this review,we focused on the recent development of electrocatalyst materials as cathodes for the non-aqueous Li-O_2 batteries which are relatively simpler than other Li-O_2 batteries' structures.Electrocatalysts were summarized including noble metals,nanocarbon materials,transition metals and their hybrids.We points out that the challenges of preparation high-efficient catalysts not only require high catalytic activity and conductivity,but also have novel nanoarchitectures with large interface and porous volume for LiO_x storage.Furthermore,the further investigation of reaction mechanism and advanced in situ analysis technologies are welcome in the coming work.
基金sponsored by the National Natural Science Foundation of China(21475021 and 21427807)the Fundamental Research Funds for the Central Universities(2242017 K41023)
文摘Developing bifunctional catalysts that increase both the OER and ORR kinetics and transport reactants with high efficiency is desirable. Herein, micro–meso-macroporous FeCo-N-C-X(denoted as "MFeCo-N-C-X", X represents Fe/Co molar ratio in bimetallic zeolite imidazole frameworks FeCo-ZIFs) catalysts derived from hierarchical M-FeCo-ZIFs-X was prepared. The micropores in M-FeCo-N-C-X have strong capability in O2 capture as well as dictate the nucleation and early-stage deposition of Li2O2,the mesopores provided a channel for the electrolyte wetting, and the macroporous structure promoted more available active sites when used as cathode for Li-O2 batteries. More importantly, M-Fe CoN-C-0.2 based cathode showed a high initial capacity(18,750 mAh g-1@0.1 A g-1), good rate capability(7900 m Ah g-1@0.5 A g-1), and cycle stability up to 192 cycles. Interestingly, the FeCo-N-C-0.2 without macropores suffered relatively poorer stability with only 75 cycles, although its discharge capacity was still as high as 17,200 mA h g-1(@0.1 A g-1). The excellent performance attributed to the synergistic contribution of homogeneous Fe, Co nanoparticles and N co-doping carbon frameworks with special micro–meso-macroporous structure. The results showed that hierarchical FeCo-N-C architectures are promising cathode catalysts for Li-O2 batteries.
基金financially supported by the National Natural Science Foundation of China(U21A20311,U24A2040,52171141,52272117)the Natural Science Foundation of Shandong Province(ZR2022JQ19)+3 种基金the Key Technology Research Project of Shandong Province(2023CXGC010202)the Taishan Industrial Experts Program(TSCX202306142)the Core Facility Sharing Platform of Shandong Universitythe Foundation of Key Laboratory of Advanced Energy Materials Chemistry(Ministry of Education),Nankai University。
文摘Co_(3)S_(4)electrocatalysts with mixed valences of Co ions and excellent structural stability possess favorable oxygen evolution reaction(OER)activity,yet challenges remain in fabricating rechargeable lithiumoxygen batteries(LOBs)due to their poor OER performance,resulting from poor electrical conductivity and overly strong intermediate adsorption.In this work,fancy double heterojunctions on 1T/2H-MoS_(2)@Co_(3)S_(4)(1T/2H-MCS)were constructed derived from the charge donation from Co to Mo ions,thus inducing the phase transformation of Mo S_(2)from 2H to 1T.The unique features of these double heterojunctions endow the1T/2H-MCS with complementary catalysis during charging and discharging processes.It is worth noting that 1T-Mo S2@Co3S4could provide fast Co-S-Mo electron transport channels to promote ORR/OER kinetics,and 2H-MoS_(2)@Co_(3)S_(4)contributed to enabling moderate egorbital occupancy when adsorbed with oxygen-containing intermediates.On the basis,the Li_(2)O_(2)nucleation route was changed to solution and surface dual pathways,improving reversible deposition and decomposition kinetics.As a result,1T/2H-MCS cathodes exhibit an improved electrocatalytic performance compared with those of Co_(3)S_(4)and Mo S2cathodes.This innovative heterostructure design provides a reliable strategy to construct efficient transition metal sulfide catalysts by improving electrical conductivity and modulating adsorption toward oxygenated intermediates for LOBs.
基金supported by the National Key R&D Program of China(No.2023YFB3809500)the Fundamental Research Funds for the Central Universities(No.2024CDJXY003)+1 种基金the Venture&Innovation Support Program for Chongqing Overseas Returnees(cx2023087)The Chongqing Technology Innovation and Application Development Project(No.2024TIAD-KPX0003).
文摘Micro-sized anatase TiO_(2) displays inferior capacity as cathode material for magnesium ion batteries because of the higher diffusion energy barrier of Mg^(2+)in anatase TiO_(2) lattice.Herein,we report that nanosized anatase TiO_(2) exposed(001)facet doubles the capacity compared to the micro-sized sample ascribed to the interfacial Mg^(2+)ion storage.First-principles calculations reveal that the diffusion energy barrier of Mg^(2+)on the(001)facet is significantly lower than those in the bulk phase and on(100)facet,and the adsorption energy of Mg^(2+)on the(001)facet is also considerably lower than that on(100)facet,which guarantees superior interfacial Mg^(2+)storage of(001)facet.Moreover,anatase TiO_(2) exposed(001)facet displays a significantly higher capacity of 312.9 mAh g^(−1) in Mg-Li dual-salt electrolyte compared to 234.3 mAh g^(−1) in Li salt electrolyte.The adsorption energies of Mg^(2+)on(001)facet are much lower than the adsorption energies of Li+on(001)facet,implying that the Mg^(2+)ion interfacial storage is more favorable.These results highlight that controlling the crystal facet of the nanocrystals effectively enhances the interfacial storage of multivalent ions.This work offers valuable guidance for the rational design of high-capacity storage systems.
基金financially supported by the National Natural Science Foundations of China(No.12304037)the Interdisciplinary Intelligence Super Computer Center of BNUZH
文摘The metal triazole(MTA)-based MOFs were found to preferentially adsorb O-rich species,which had enhanced electrocatalytic oxygen reduction reactions(ORR)and stabilized the O-containing species during the discharge and charge processes in Li-O_(2)battery.However,the MOFs exhibited low electron conductivity and poor electron transfer interface in the electrocatalysis,limiting the electrocatalytic activity.To address this issue,a nanocomposite with the Co-MTA-coated carbon nano tubes(Co-MTA-C)was constructed,which formed the three-dimensional conductivity network connected with the intersecting carbon nano tube(CNT).In this composite,the electron-rich Co-MTA interacted with the highly conductive CNT,resulting in a charge redistribution.Optimized the electronic structure of the Co center through compositional modifications presented a high valence compared to the pure MOFs.In situ X-ray absorption spectroscopy revealed a direct reaction of Co sites with intermediates such as LiO_(x),leading to the formation of nanosheet array discharge products.The battery based on optimized CoMTA-C demonstrated fast kinetics and superior stability,with a low overpotential of 1.13 V,high specific capacity of 9057 mAh g^(-1),and long-term durability of 600 cycles.It provides a facile and effective strategy for enhancing the electrocatalytic performance through rational tuning of high-conductivity substances.
文摘Science 2015,350,530-533Rechargeable lithium-air(Li-O2)batteries have received considerable attentions due to their much higher theoretical energy densities than today’s lithium-ion batteries.However,they still suffer from at least four limitations:(1)much lower capacity than theoretical capacity,stemming from the small pore sizes and volumes of the current porous electrode;(2)side reactions,including electrode materials,electrolyte,intermediate and final discharge products;(3)large
基金supported by the National Natural Science Foundation of China(No.21805018)by Sichuan Science and Technology Program(Nos.2022ZHCG0018,2023NSFSC0117 and 2023ZHCG0060)Yibin Science and Technology Program(No.2022JB005)and China Postdoctoral Science Foundation(No.2022M722704).
文摘Layered transition metal oxides have emerged as promising cathode materials for sodium ion batteries.However,irreversible phase transitions cause structural distortion and cation rearrangement,leading to sluggish Na+dynamics and rapid capacity decay.In this study,we propose a medium-entropy cathode by simultaneously introducing Fe,Mg,and Li dopants into a typical P2-type Na_(0.75)Ni_(0.25)Mn_(0.75)O_(2)cathode.The modified Na_(0.75)Ni_(0.2125)Mn_(0.6375)Fe_(0.05)Mg_(0.05)Li_(0.05)O_(2)cathode predominantly exhibits a main P2 phase(93.5%)with a minor O3 phase(6.5%).Through spectroscopy techniques and electrochemical investigations,we elucidate the redox mechanisms of Ni^(2+/3+/4+),Mn^(3+/4+),Fe^(3+/4+),and O_(2)-/O_(2)^(n-)during charging/discharging.The medium-entropy doping mitigates the detrimental P2-O_(2)phase transition at high-voltage,replacing it with a moderate and reversible structural evolution(P2-OP4),thereby enhancing structural stability.Consequently,the modified cathode exhibits a remarkable rate capacity of 108.4 mAh·g^(-1)at 10C,with a capacity retention of 99.0%after 200 cycles at 1C,82.5%after 500 cycles at 5C,and 76.7%after 600 cycles at 10C.Furthermore,it also demonstrates superior electrochemical performance at high cutoff voltage of 4.5 V and extreme temperature(55 and 0℃).This work offers solutions to critical challenges in sodium ion batteries cathode materials.
基金supported by the National Natural Science Foundation of China(52072173)the International Science and Technology Cooperation Program of Jiangsu Province(SBZ2022000084).
文摘Li–CO_(2) batteries are considered promising energy storage systems in extreme environments such as Mars;however,severe performance degradation will occur at a subzero temperature owning to the sluggish reaction kinetics.Herein,a photo-energized strategy adopting sustainable solar energy in wide working temperature range Li–CO_(2) battery was achieved with a binder-free MoS_(2)/carbon nanotube(CNT)photo-electrode as cathode.The unique layered structure and excellent photoelectric properties of MoS_(2) facilitate the abundant generation and rapid transfer of photo-excited carriers,which accelerate the CO_(2) reduction and Li_(2)CO_(3) decomposition upon illumination.The illuminated battery at room temperature exhibited high discharge voltage of 2.95 V and mitigated charge voltage of 3.27 V,attaining superior energy efficiency of 90.2%and excellent cycling stability of over 120 cycles.Even at an extremely low temperature of−30℃,the battery with same electrolyte can still deliver a small polarization of 0.45 V by the photoelectric and photothermal synergistic mechanism of MoS_(2)/CNT cathode.This work demonstrates the promising potential of the photo-energized wide working temperature range Li–CO_(2) battery in addressing the obstacle of charge overpotential and energy efficiency.
基金financially supported by the National Natural Science Foundation of China(52102233)Science and Technology Project of Hebei Education Department(QN2023019)。
文摘Aqueous aluminum ion batteries(AAIBs)have garnered extensive attention due to their environmental friendliness,high theoretical capacity,and low cost.However,the sluggish reaction kinetics and severe structural collapse of the cathode material,especially manganese oxide,during the cycling process have hindered its further application.Herein,Cu^(2+)pre-interca la ted layeredδ-MnO_(2)was synthesized via a hydrothermal method.The pre-intercalated Cu^(2+)ions not only improve the conductivity of MnO_(2)cathode but also stabilize the structure to enhance stability.X-ray absorption fine structure(XAFS)combined with density functional theory(DFT)calculations confirm the formation of the covalent bond between Cu and O,increasing the electronegativity of O atoms and enhancing the H^(+)adsorption energy.Moreover,ex-situ measurements not only elucidate the Al^(3+)/H^(+)co-insertion energy storage mechanism but also demonstrate the high reversibility of the Cu-MnO_(2)cathode during cycling.This work provides a promising modification approach for the application of manganese oxides in AAIBs.
基金supported by the Natural Science Foundation of Henan Province(No.242300420021)the Major Science and Technology Projects of Henan Province(No.221100230200)+4 种基金the Open Fund of State Key Laboratory of Advanced Refractories(No.SKLAR202210)the Key Science and Technology Program of Henan Province(No.232102241020)the Undergraduate Innovation and Entrepreneurship Training Program of Henan Province(No.S202310464012)the Ph.D.Research Startup Foundation of Henan University of Science and Technology(No.400613480015)the Postdoctoral Research Startup Foundation of Henan University of Science and Technology(No.400613554001).
文摘Aqueous Zn-ion batteries(AZIBs)have been regarded as promising alternatives to Li-ion batteries due to their advantages,such as low cost,high safety,and environmental friendliness.However,AZIBs face significant challenges in limited stability and lifetime owing to zinc dendrite growth and serious side reactions caused by water molecules in the aqueous electrolyte during cycling.To address these issues,a new eutectic electrolyte based on Zn(ClO_(4))_(2)·6H_(2)O-N-methylacetamide(ZN)is proposed in this work.Compared with aqueous electrolyte,the ZN eutectic electrolyte containing organic N-methylacetamide could regulate the solvated structure of Zn^(2+),effectively suppressing zinc dendrite growth and side reactions.As a result,the Zn//NH4 V4 O10 full cell with the eutectic ZN-1-3 electrolyte demonstrates significantly enhanced cycling stability after 1000 cycles at 1 A g^(-1).Therefore,this study not only presents a new eutectic electrolyte for zinc-ion batteries but also provides a deep understanding of the influence of Zn^(2+)solvation structure on the cycle stability,contributing to the exploration of novel electrolytes for high-performance AZIBs.
基金partly supported by the National Natural Science Foundation of China(Grant No.52272225).
文摘Na_(3)V_(2)(PO_(4))_(3)(NVP)has garnered great attentions as a prospective cathode material for sodium-ion batteries(SIBs)by virtue of its decent theoretical capacity,superior ion conductivity and high structural stability.However,the inherently poor electronic conductivity and sluggish sodium-ion diffusion kinetics of NVP material give rise to inferior rate performance and unsatisfactory energy density,which strictly confine its further application in SIBs.Thus,it is of significance to boost the sodium storage performance of NVP cathode material.Up to now,many methods have been developed to optimize the electrochemical performance of NVP cathode material.In this review,the latest advances in optimization strategies for improving the electrochemical performance of NVP cathode material are well summarized and discussed,including carbon coating or modification,foreign-ion doping or substitution and nanostructure and morphology design.The foreign-ion doping or substitution is highlighted,involving Na,V,and PO_(4)^(3−)sites,which include single-site doping,multiple-site doping,single-ion doping,multiple-ion doping and so on.Furthermore,the challenges and prospects of high-performance NVP cathode material are also put forward.It is believed that this review can provide a useful reference for designing and developing high-performance NVP cathode material toward the large-scale application in SIBs.
基金financially supported by the Scientific and Technological Plan Project of Guizhou Province ([2024]054)Additional support came from the Industry and Education Combination Innovation Platform of Intelligent Manufacturing and Graduate Joint Training Base at Guizhou University (2020-520000-83-01324061)the Guizhou Engineering Research Center for Smart Services (2203-520102-04-04-298868)。
文摘Aqueous sodium-ion batteries(ASIBs) offer significant advantages for energy storage on a large scale,attributed to their economical cost,secure operatio n,and eco-friend ly natu re.Among the leading cathode materials for ASIBs,Na_(3)V_(2)(PO_(4))_(3)(NVP) exhibits excellent structural stability and a high Na+diffusion coefficient,making it a promising option.However,the high solubility of vanadium-based materials in aqueous electrolytes engenders suboptimal cycling stability for Na_(3)V_(2)(PO_(4))_(3),constraining its application in ASIBs.Herein,the Cr-substituted Na_(3)V_(1.3)Cr_(0.7)(PO_(4))3@C(NV_(1.3)Cr_(0.7)P) cathode material was synthesized via a simple sol-gel method.It is found that Cr substitution reduces the cell parameters of NV_(1.3)Cr_(0.7)P,effectively reinforcing the crystal structure.Furthermore,NV_(1.3)Cr_(0.7)P alters the Na^(+)insertion/extraction mechanism,transforming the typical two-phase reaction between Na_(1)V_(2)(PO_(4))_(3)and Na_(3)V_(2)(PO_(4))3into continuous solid-solution reactions with stable intermediates.The Cr substitution diminishes the sodium-ion diffusion energy barrier in NV_(1.3)Cr_(0.7)P,leading to smoother Na+insertion and extraction processes.Consequently,NV_(1.3)Cr_(0.7)P exhibits impressive cycling stability,retaining 74.8% of its capacity after 5,000 cycles at a current density of 5 A g^(-1),along with an outstanding rate performance of 79,2% at 10 A g^(-1).This work elucidates the stable Na^(+)insertion/extraction processes in Cr-substituted NV_(1.3)Cr_(0.7)P,offering insights into the application of vanadium-based materials in aqueous sodium-ion batteries.
基金supported by the Ministry of Science and Technology of the People’s Republic of China (2017YFA0206704, 2016YFB0100103)the National Basic Research Program of China (2014CB932300)+3 种基金Strategic Priority Research Program of the Chinese Academy of Sciences (XDA09010404)Technology and Industry for National Defence of the People’s Republic of China (JCKY2016130B010)the National Natural Science Foundation of China (51771177, 21422108, 51472232)Jilin Province Science and Technology Development Program (20160101289JC)
文摘The successful development of Li-O_2 battery technology depends on developing a stable and efficient cathode. As an important step toward this goal, for the first time, we report the development of CeO_2 nanoparticles modified NiCo_2O_4 nanowire arrays(NWAs) grown on the carbon textiles as a new carbon-free and binder-free cathode system. In this study, the Li-O_2 battery with the CeO_2@NiCo_2O_4 NWAs has exhibited much reduced overpotentials, a high discharge capacity, an improved cycling stability,outperforming the Li-O_2 battery with NiCo_2O_4 NWAs. These improvements can be attributed to both the tailored morphology of discharge product and improved oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) activity after CeO_2 NPs deposition. To a considerable extent, this idea of cathode construction including structure design and composition optimization can provide guidance for further researches in developing more powerful cathode for Li-O_2 battery.
基金supported by the Significant Science and Technology Project in Xiamen(Future Industry Field)(Grant No.3502Z20231057).
文摘Lithium nickel oxide(Li_(2)NiO_(2)),as a sacrificial cathode prelithiation additive,has been used to compensate for the lithium loss for improving the lifespan of lithium-ion batteries(LIBs).However,high-cost Li_(2)NiO_(2)suffers from inferior delithiation kinetics during the first cycle.Herein,we investigated the effects of the cost-effective copper substituted Li_(2)Ni_(1-x)Cu_(x)O_(2)(x=0,0.2,0.3,0.5,0.7)synthesized by a high-temperature solid-phase method on the structure,morphology,electrochemical performance of graphite‖LiFePO_(4)battery.The X-ray diffraction(XRD)refinement result demonstrated that Cu substitution strategy could be favorable for eliminating the NiO_(x)impurity phase and weakening Li-O bond.Analysis on density of states(DOS)indicates that Cu substitution is good for enhancing the electronic conductivity,as well as reducing the delithi-ation voltage polarization confirmed by electrochemical characterizations.Therefore,the optimal Li_(2)Ni_(0.7)Cu_(0.3)O_(2)delivered a high delithiation capacity of 437 mAh·g^(-1),around 8%above that of the pristine Li_(2)NiO_(2).Furthermore,a graphite‖LiFePO_(4)pouch cell with a nominal capacity of 3000 mAh demonstrated a notably improved reversible capacity,energy density and cycle life through introducing 2 wt%Li_(2)Ni_(0.7)Cu_(0.3)O_(2)additive,delivering a 6.2 mAh·g^(-1)higher initial discharge capacity and achieving around 5%improvement in capacity retentnion at 0.5P over 1000 cycles.Additionally,the post-mortem analyses testified that the Li_(2)Ni_(0.7)Cu_(0.3)O_(2)additive could suppress solid electrolyte interphase(SEI)decomposition and homogenize the Li distribution,which benefits to stabilizing interface between graphite and electrolyte,and alleviating dendritic Li plating.In conclusion,the Li_(2)Ni_(0.7)Cu_(0.3)O_(2)additive may offer advantages such as lower cost,lower delithiation voltage and higher prelithiation capacity compared with Li_(2)NiO_(2),making it a promising candidate of cathode prelithiation additive for next-generation LIBs.
基金the National Natural Science Foundation of China (No. 21606021)Youth Scholars Program of Beijing Normal University (No. 2014NT07).
文摘Lithium-oxygen batteries have attracted considerable interest in the past a few years, because they have higher theoretical specific energy than Li-ion batteries. However, the available en ergy den sities of the Li-O2 batteries are much less than expected. It is particularly urgent to find catalyst with high activity. Herein, a series of Co3O4 with differe nt morphologies (ordered two-dimensio nal porous nano sheets, flowerlike and cuboidlike) were successfully prepared through facile hydrothermal and calcinatio n methods. Ordered two-dime nsional Co3O4 nano sheets show the best cycling stability. Detailed experimental results reveal that the superiority of the unique two-dimensional uniform porous structures is vital for Li-O2 batteries cathode catalysts. Due to the ordered structures with high surface areas and active sites, the catalysts indicate a high specific discharge capacity of about 10,417 mAh/g at a current density of 200 mA/g, and steadily cycle for more than 50 times with a limited capacity of 1,000 mAh/g.
基金supported by the National Natural Science Foundation of China (91545129, 21575135, 21605136)the “Strategic Priority Research Program” of the Chinese Academy of Science (XDA09010401)+1 种基金the National Key Technology Research and Development Program of China (2016YBF0100100)the Science and Technology Development Program of the Jilin Province (20150623002TC, 20160414034GH)
文摘When aprotic Li-O2 batteries recharge, the solid Li2O2 in the positive electrode is oxidized, which often exhibits a continuous or step increase in the charging potential as a function of the charging capacity, and its origin remains incompletely understood. Here, we report a model study of electro-oxidation of a Li2O2 film on an Au electrode using voltammetry coupled with in situ Raman spectroscopy. It was found that the charging reaction initializes at the positive electrodelLizO2 interface, instead of the previously presumed Li2O2 surface, and consists of two temporally and spatially separated Li2O2 oxidation processes, accounting for the potential rise during charging of Li-O2 batteries. Moreover, the electrode surface-initialized oxidation can disintegrate the Li2O2 film resulting in a loss of Li2O2 into electrolyte solution, which drastically decreases the charging efficiency and highlights the importance of using soluble electro-catalyst for the complete charging of Li-02 batteries.
基金financially supported by Jilin province science and technology department(No.20230402059GH)Changchun Science and Technology Bureau(No.23YQ11)+4 种基金Jilin Province Science and Technology Department major science and technology project(Nos.20220301004GX and 20220301005GX)Key Subject Construction of Physical Chemistry of Northeast Normal University(No.2412022XK004)the National Natural Science Foundation of China(No.22102020)the Swedish Foundation for International Cooperation in Research and Higher Education(No.KO2017-7351)Swedish Energy Agency(No.P2020-90216)。
文摘Developing effective heterostructure strategies to mitigate the shuttling effect and accelerate lithium polysulfide(Li PS)conversion remains a critical challenge in lithium–sulfur(Li–S)batteries.Here,we report the first carbon–free VO_(2)–VS_(2)heterostructure material synthesized via in situ sulfurization,applied as a modifier on a commercial polypropylene(PP)separator(denoted as VO_(2)–VS_(2)@PP).The as–prepared VO_(2)–VS_(2)nanorods synergistically combine the high absorptivity of VO_(2)with the efficient catalytic properties of VS_(2),simultaneously enhancing Li PS anchoring and promoting its conversion.We systematically investigate the influence of material composition on battery performance,leveraging these functional attributes,Li–S cells incorporating VO_(2)–VS_(2)@PP exhibit exceptional cycle stability(over 500cycles at 1C),impressive rate performance(807 m Ah.g^(–1)at 5C),desirable reversibility(49.9%capacity retention after 300 cycles at 5C)and exceptional pouch cell performance(3.65 m Ah.cm^(–2)after 50 stable cycles at 0.1C).This study underscores the potential of tailored heterostructures in realizing high–performance Li–S batteries,offering new insights for next–generation energy storage solutions.
基金financial support under the scope of the COMET program within the K2 Center“Integrated Computational Material,Process and Product Engineering(IC-MPPE)”(Project ASSESS P1.10)financial support by the Austrian Federal Ministry for Digital and Economic Affairs,the National Foundation for Research,Technology and Development and the Christian Doppler Research Association(Christian Doppler Laboratory for Solid-State Batteries).
文摘Solid-state batteries are attracting considerable attention for their high-energy density and improved safety over conventional lithium-ion batteries.Among solid-state electrolytes,sulfide-based options like Li_(6)PS_(5)Cl are especially promising due to their superior ionic conductivity.However,interfacial degradation between sulfide electrolytes and high-voltage cathodes,such as LiCoO_(2),limits long-term performance.This study demonstrates that a LiBF_(4)-derived F-rich coating on LiCoO_(2),applied by immersing LiCoO_(2) particles in a LiBF_(4) solution followed by annealing,can significantly enhance performance in Li_(6)PS_(5)Cl-based solid-state batteries.This coating enables stable high-voltage(4.5 V vs Li^(+)/Li)operation,achieving an initial specific capacity of 153.82 mAh g^(−1) and 87.1%capacity retention over 300 cycles at 0.5C.The enhanced performance stems from the F-rich coating,composed of multiple phases including LiF,CoF_(2),Li_(x)BF_(y)O_(z),and Li_(x)BO_(y),which effectively suppresses side reactions at the LiCoO_(2)|Li_(6)PS_(5)Cl interface and improves lithium-ion diffusivity,thereby enabling greater Li capacity utilization.Our findings provide a practical pathway for advancing solid-state batteries with high-voltage LiCoO_(2) cathodes,offering substantial promise for next-generation energy storage systems.