Although significant progress has been made in many aspects of the emerging aprotic Li-O2 battery system, an indepth understanding of the oxygen reactions is still underway. The oxygen reactions occurring in the posit...Although significant progress has been made in many aspects of the emerging aprotic Li-O2 battery system, an indepth understanding of the oxygen reactions is still underway. The oxygen reactions occurring in the positive electrode distinguish Li-O2 batteries from the conventional Li-ion cells and play a crucial role in the Li-O2 cell's performance (capacity, rate capability, and cycle life). Recent advances in fundamental studies of oxygen reactions in aprotic Li-O2 batteries are reviewed, including the reaction route, kinetics, morphological evolution of Li2O2, and charge transport within Li2O2. Prospects are also provided for future fundamental investigations of Li-O2 chemistry.展开更多
Nonaqueous Li-O2 batteries attract attention for their theoretical specific energy density.However,due to the difficulty of decomposition of Li2 O2,Li-O2 batteries have high charge overpotential and poor cycling life....Nonaqueous Li-O2 batteries attract attention for their theoretical specific energy density.However,due to the difficulty of decomposition of Li2 O2,Li-O2 batteries have high charge overpotential and poor cycling life.So all kinds of catalysts have been studied on the cathode.Compared to heterogeneous solid catalysts,soluble catalysts achieve faster and more effective transport of electrons by reversible redox pairs.Here,we first report ruthenocene(Ruc) as a mobile redox mediator in a Li-O2 battery.0.01 mol/L Ruc in the electrolyte effectively reduces the charging voltage by 610 mV.Additionally,Ruc greatly increases the cycling life by four-fold(up to 83 cycles) with a simple ketjen black(KB) cathode.The results of SEM,XPS and XRD confirm that less discharge product residue accumulated after recharge.To verify the reaction mechanisms of the mediato r,free energy profiles of the possible reaction pathways based on DFT are provided.展开更多
As one of the next-generation energy-storage devices,Li-O_2 battery has become the main research direction for the academic researchers due to its characteristics of environmental friendship,relatively simple structur...As one of the next-generation energy-storage devices,Li-O_2 battery has become the main research direction for the academic researchers due to its characteristics of environmental friendship,relatively simple structures,high energy density of 3500Wh/kg and low cost.However,Li-O_2 battery cannot be commercialized on a large scale because of the challenging issues including high-efficient electrocatalysts,membranes,Li-based anode and so on.In this review,we focused on the recent development of electrocatalyst materials as cathodes for the non-aqueous Li-O_2 batteries which are relatively simpler than other Li-O_2 batteries' structures.Electrocatalysts were summarized including noble metals,nanocarbon materials,transition metals and their hybrids.We points out that the challenges of preparation high-efficient catalysts not only require high catalytic activity and conductivity,but also have novel nanoarchitectures with large interface and porous volume for LiO_x storage.Furthermore,the further investigation of reaction mechanism and advanced in situ analysis technologies are welcome in the coming work.展开更多
Developing bifunctional catalysts that increase both the OER and ORR kinetics and transport reactants with high efficiency is desirable. Herein, micro–meso-macroporous FeCo-N-C-X(denoted as "MFeCo-N-C-X", X...Developing bifunctional catalysts that increase both the OER and ORR kinetics and transport reactants with high efficiency is desirable. Herein, micro–meso-macroporous FeCo-N-C-X(denoted as "MFeCo-N-C-X", X represents Fe/Co molar ratio in bimetallic zeolite imidazole frameworks FeCo-ZIFs) catalysts derived from hierarchical M-FeCo-ZIFs-X was prepared. The micropores in M-FeCo-N-C-X have strong capability in O2 capture as well as dictate the nucleation and early-stage deposition of Li2O2,the mesopores provided a channel for the electrolyte wetting, and the macroporous structure promoted more available active sites when used as cathode for Li-O2 batteries. More importantly, M-Fe CoN-C-0.2 based cathode showed a high initial capacity(18,750 mAh g-1@0.1 A g-1), good rate capability(7900 m Ah g-1@0.5 A g-1), and cycle stability up to 192 cycles. Interestingly, the FeCo-N-C-0.2 without macropores suffered relatively poorer stability with only 75 cycles, although its discharge capacity was still as high as 17,200 mA h g-1(@0.1 A g-1). The excellent performance attributed to the synergistic contribution of homogeneous Fe, Co nanoparticles and N co-doping carbon frameworks with special micro–meso-macroporous structure. The results showed that hierarchical FeCo-N-C architectures are promising cathode catalysts for Li-O2 batteries.展开更多
Li–CO_(2) batteries are considered promising energy storage systems in extreme environments such as Mars;however,severe performance degradation will occur at a subzero temperature owning to the sluggish reaction kine...Li–CO_(2) batteries are considered promising energy storage systems in extreme environments such as Mars;however,severe performance degradation will occur at a subzero temperature owning to the sluggish reaction kinetics.Herein,a photo-energized strategy adopting sustainable solar energy in wide working temperature range Li–CO_(2) battery was achieved with a binder-free MoS_(2)/carbon nanotube(CNT)photo-electrode as cathode.The unique layered structure and excellent photoelectric properties of MoS_(2) facilitate the abundant generation and rapid transfer of photo-excited carriers,which accelerate the CO_(2) reduction and Li_(2)CO_(3) decomposition upon illumination.The illuminated battery at room temperature exhibited high discharge voltage of 2.95 V and mitigated charge voltage of 3.27 V,attaining superior energy efficiency of 90.2%and excellent cycling stability of over 120 cycles.Even at an extremely low temperature of−30℃,the battery with same electrolyte can still deliver a small polarization of 0.45 V by the photoelectric and photothermal synergistic mechanism of MoS_(2)/CNT cathode.This work demonstrates the promising potential of the photo-energized wide working temperature range Li–CO_(2) battery in addressing the obstacle of charge overpotential and energy efficiency.展开更多
Layered transition metal oxides have emerged as promising cathode materials for sodium ion batteries.However,irreversible phase transitions cause structural distortion and cation rearrangement,leading to sluggish Na+d...Layered transition metal oxides have emerged as promising cathode materials for sodium ion batteries.However,irreversible phase transitions cause structural distortion and cation rearrangement,leading to sluggish Na+dynamics and rapid capacity decay.In this study,we propose a medium-entropy cathode by simultaneously introducing Fe,Mg,and Li dopants into a typical P2-type Na_(0.75)Ni_(0.25)Mn_(0.75)O_(2)cathode.The modified Na_(0.75)Ni_(0.2125)Mn_(0.6375)Fe_(0.05)Mg_(0.05)Li_(0.05)O_(2)cathode predominantly exhibits a main P2 phase(93.5%)with a minor O3 phase(6.5%).Through spectroscopy techniques and electrochemical investigations,we elucidate the redox mechanisms of Ni^(2+/3+/4+),Mn^(3+/4+),Fe^(3+/4+),and O_(2)-/O_(2)^(n-)during charging/discharging.The medium-entropy doping mitigates the detrimental P2-O_(2)phase transition at high-voltage,replacing it with a moderate and reversible structural evolution(P2-OP4),thereby enhancing structural stability.Consequently,the modified cathode exhibits a remarkable rate capacity of 108.4 mAh·g^(-1)at 10C,with a capacity retention of 99.0%after 200 cycles at 1C,82.5%after 500 cycles at 5C,and 76.7%after 600 cycles at 10C.Furthermore,it also demonstrates superior electrochemical performance at high cutoff voltage of 4.5 V and extreme temperature(55 and 0℃).This work offers solutions to critical challenges in sodium ion batteries cathode materials.展开更多
Aqueous Zn-ion batteries(AZIBs)have been regarded as promising alternatives to Li-ion batteries due to their advantages,such as low cost,high safety,and environmental friendliness.However,AZIBs face significant challe...Aqueous Zn-ion batteries(AZIBs)have been regarded as promising alternatives to Li-ion batteries due to their advantages,such as low cost,high safety,and environmental friendliness.However,AZIBs face significant challenges in limited stability and lifetime owing to zinc dendrite growth and serious side reactions caused by water molecules in the aqueous electrolyte during cycling.To address these issues,a new eutectic electrolyte based on Zn(ClO_(4))_(2)·6H_(2)O-N-methylacetamide(ZN)is proposed in this work.Compared with aqueous electrolyte,the ZN eutectic electrolyte containing organic N-methylacetamide could regulate the solvated structure of Zn^(2+),effectively suppressing zinc dendrite growth and side reactions.As a result,the Zn//NH4 V4 O10 full cell with the eutectic ZN-1-3 electrolyte demonstrates significantly enhanced cycling stability after 1000 cycles at 1 A g^(-1).Therefore,this study not only presents a new eutectic electrolyte for zinc-ion batteries but also provides a deep understanding of the influence of Zn^(2+)solvation structure on the cycle stability,contributing to the exploration of novel electrolytes for high-performance AZIBs.展开更多
Na_(3)V_(2)(PO_(4))_(3)(NVP)has garnered great attentions as a prospective cathode material for sodium-ion batteries(SIBs)by virtue of its decent theoretical capacity,superior ion conductivity and high structural stab...Na_(3)V_(2)(PO_(4))_(3)(NVP)has garnered great attentions as a prospective cathode material for sodium-ion batteries(SIBs)by virtue of its decent theoretical capacity,superior ion conductivity and high structural stability.However,the inherently poor electronic conductivity and sluggish sodium-ion diffusion kinetics of NVP material give rise to inferior rate performance and unsatisfactory energy density,which strictly confine its further application in SIBs.Thus,it is of significance to boost the sodium storage performance of NVP cathode material.Up to now,many methods have been developed to optimize the electrochemical performance of NVP cathode material.In this review,the latest advances in optimization strategies for improving the electrochemical performance of NVP cathode material are well summarized and discussed,including carbon coating or modification,foreign-ion doping or substitution and nanostructure and morphology design.The foreign-ion doping or substitution is highlighted,involving Na,V,and PO_(4)^(3−)sites,which include single-site doping,multiple-site doping,single-ion doping,multiple-ion doping and so on.Furthermore,the challenges and prospects of high-performance NVP cathode material are also put forward.It is believed that this review can provide a useful reference for designing and developing high-performance NVP cathode material toward the large-scale application in SIBs.展开更多
Lithium nickel oxide(Li_(2)NiO_(2)),as a sacrificial cathode prelithiation additive,has been used to compensate for the lithium loss for improving the lifespan of lithium-ion batteries(LIBs).However,high-cost Li_(2)Ni...Lithium nickel oxide(Li_(2)NiO_(2)),as a sacrificial cathode prelithiation additive,has been used to compensate for the lithium loss for improving the lifespan of lithium-ion batteries(LIBs).However,high-cost Li_(2)NiO_(2)suffers from inferior delithiation kinetics during the first cycle.Herein,we investigated the effects of the cost-effective copper substituted Li_(2)Ni_(1-x)Cu_(x)O_(2)(x=0,0.2,0.3,0.5,0.7)synthesized by a high-temperature solid-phase method on the structure,morphology,electrochemical performance of graphite‖LiFePO_(4)battery.The X-ray diffraction(XRD)refinement result demonstrated that Cu substitution strategy could be favorable for eliminating the NiO_(x)impurity phase and weakening Li-O bond.Analysis on density of states(DOS)indicates that Cu substitution is good for enhancing the electronic conductivity,as well as reducing the delithi-ation voltage polarization confirmed by electrochemical characterizations.Therefore,the optimal Li_(2)Ni_(0.7)Cu_(0.3)O_(2)delivered a high delithiation capacity of 437 mAh·g^(-1),around 8%above that of the pristine Li_(2)NiO_(2).Furthermore,a graphite‖LiFePO_(4)pouch cell with a nominal capacity of 3000 mAh demonstrated a notably improved reversible capacity,energy density and cycle life through introducing 2 wt%Li_(2)Ni_(0.7)Cu_(0.3)O_(2)additive,delivering a 6.2 mAh·g^(-1)higher initial discharge capacity and achieving around 5%improvement in capacity retentnion at 0.5P over 1000 cycles.Additionally,the post-mortem analyses testified that the Li_(2)Ni_(0.7)Cu_(0.3)O_(2)additive could suppress solid electrolyte interphase(SEI)decomposition and homogenize the Li distribution,which benefits to stabilizing interface between graphite and electrolyte,and alleviating dendritic Li plating.In conclusion,the Li_(2)Ni_(0.7)Cu_(0.3)O_(2)additive may offer advantages such as lower cost,lower delithiation voltage and higher prelithiation capacity compared with Li_(2)NiO_(2),making it a promising candidate of cathode prelithiation additive for next-generation LIBs.展开更多
Developing effective heterostructure strategies to mitigate the shuttling effect and accelerate lithium polysulfide(Li PS)conversion remains a critical challenge in lithium–sulfur(Li–S)batteries.Here,we report the f...Developing effective heterostructure strategies to mitigate the shuttling effect and accelerate lithium polysulfide(Li PS)conversion remains a critical challenge in lithium–sulfur(Li–S)batteries.Here,we report the first carbon–free VO_(2)–VS_(2)heterostructure material synthesized via in situ sulfurization,applied as a modifier on a commercial polypropylene(PP)separator(denoted as VO_(2)–VS_(2)@PP).The as–prepared VO_(2)–VS_(2)nanorods synergistically combine the high absorptivity of VO_(2)with the efficient catalytic properties of VS_(2),simultaneously enhancing Li PS anchoring and promoting its conversion.We systematically investigate the influence of material composition on battery performance,leveraging these functional attributes,Li–S cells incorporating VO_(2)–VS_(2)@PP exhibit exceptional cycle stability(over 500cycles at 1C),impressive rate performance(807 m Ah.g^(–1)at 5C),desirable reversibility(49.9%capacity retention after 300 cycles at 5C)and exceptional pouch cell performance(3.65 m Ah.cm^(–2)after 50 stable cycles at 0.1C).This study underscores the potential of tailored heterostructures in realizing high–performance Li–S batteries,offering new insights for next–generation energy storage solutions.展开更多
Mn-based P2-type oxides are considered as promising cathodes for Na-ion batteries;however,they face significant challenges,including structural degradation when charged at high cutoff voltages and structural changes u...Mn-based P2-type oxides are considered as promising cathodes for Na-ion batteries;however,they face significant challenges,including structural degradation when charged at high cutoff voltages and structural changes upon storing in a humid atmosphere.In response to these issues,we have designed an oxide with co-doping of Cu and Al which can balance both cost and structural stability.The redox reaction of Cu^(2+/3+)can provide certain charge compensation,and the introduction of Al can further suppress the Jahn-Teller effect of Mn,thereby achieving superior long-term cycling performance.The ex-situ XRD testing indicates that Cu/Al co-doping can effectively suppress the phase transition of P2-O2 at high voltage,thereby explaining the improvement in electrochemical performance.DFT calculations reveal a high chemical tolerance to moisture,with lower adsorption energy for H_(2)O compared to pure Na_(0.67)Cu_(0.25)Mn_(0.75)O_(2).A representative Na_(0.67)Cu_(0.20)Al_(0.05)Mn_(0.75)O_(2)cathode demonstrates impressive reversible capacities of 148.7 mAh/g at 0.2 C,along with a remarkable capacity retention of 79.1%(2 C,500 cycles).展开更多
The metal-carbon dioxide batteries,emerging as high-energy-density energy storage devices,enable direct CO_(2)utilization,offering promising prospects for CO_(2)capture and utilization,energy conversion,and storage.Ho...The metal-carbon dioxide batteries,emerging as high-energy-density energy storage devices,enable direct CO_(2)utilization,offering promising prospects for CO_(2)capture and utilization,energy conversion,and storage.However,the electrochemical performance of M-CO_(2)batteries faces significant challenges,particularly at extreme temperatures.Issues such as high overpotential,poor charge reversibility,and cycling capacity decay arise from complex reaction interfaces,sluggish oxidation kinetics,inefficient catalysts,dendrite growth,and unstable electrolytes.Despite significant advancements at room temperature,limited research has focused on the performance of M-CO_(2)batteries across a wide-temperature range.This review examines the effects of low and high temperatures on M-CO_(2)battery components and their reaction mechanism,as well as the advancements made in extending operational ranges from room temperature to extremely low and high temperatures.It discusses strategies to enhance electrochemical performance at extreme temperatures and outlines opportunities,challenges,and future directions for the development of M-CO_(2)batteries.展开更多
The electrochemical performance of layered O3-type NaCrO_(2)cathode material is significantly affected by the side reactions between NaCrO_(2)and electrolyte during sodium storage.A uniform Cr_(2)O_(3)coating layer wa...The electrochemical performance of layered O3-type NaCrO_(2)cathode material is significantly affected by the side reactions between NaCrO_(2)and electrolyte during sodium storage.A uniform Cr_(2)O_(3)coating layer was in situ constructed on the surface of NaCrO_(2)by controlling the excess ratio of sodium source.The structure,morphology,valence and electrochemical performance of the Cr_(2)O_(3)-coated NaCrO_(2)were characterized.The results indicate that the Cr_(2)O_(3)coating layer does not alter the crystal structure and morphology of NaCrO_(2),but effectively suppresses the side reactions between NaCrO_(2)and electrolyte,and improves the surface/interfacial stability of NaCrO_(2)material.The Cr_(2)O_(3)-coated NaCrO_(2)exhibits improved electrochemical performance with a capacity retention of 66.4%after 500 cycles at 10C.展开更多
Despite significant progress has been achieved regarding the shuttle-effect of lithium polysulfides,the suppressed specific capacity and retarded redox kinetics under high sulfur loading still threat the actual energy...Despite significant progress has been achieved regarding the shuttle-effect of lithium polysulfides,the suppressed specific capacity and retarded redox kinetics under high sulfur loading still threat the actual energy density and power density of lithium-sulfur batteries.In this study,a graham condenser-inspired carbon@WS_(2)host with coil-in-tube structure was designed and synthesized using anodic aluminum oxide(AAO)membrane with vertically aligned nanopores as template.The vertical array of carbon nanotubes with internal carbon coils not only leads to efficient charge transfer across through the thickness of the cathode,but also provides significant confinement to polysulfide diffusion towards both the lateral and longitudinal directions.Few-layer WS_(2)in the carbon coils perform a synergistic role in suppressing the shuttle-effect as well as boosting the cathodic kinetics.As a result,high specific capacity(1180 m Ah/g at 0.1 C)and long-cycling stability at 0.5 C for 500 cycles has been achieved at 3 mgS/cm^(2).Impressive areal capacity of 7.4 m Ah/cm^(2)has been demonstrated when the sulfur loading reaches 8.4 mg/cm^(2).The unique coil-in-tube structure developed in this work provides a new solution for high sulfur loading cathode towards practical lithium-sulfur batteries.展开更多
Manganese dioxide(MnO_(2))electrode material possesses the advantages of high energy density,structural diversity and high modification potential.This allows it become one of the important cathodes for aqueous zinc io...Manganese dioxide(MnO_(2))electrode material possesses the advantages of high energy density,structural diversity and high modification potential.This allows it become one of the important cathodes for aqueous zinc ion battery.However,the applications are limited by the poor electrical conductivity,narrow layer spacing and the ease of dissolution.Herein,we prepare MnO_(2)-PVP@0.03GO composites by the co-modification of polyvinylpyrrolidone(PVP)pre-insertion layer and graphene oxide(GO)self-assembly layer.The Zn//MnO_(2)-PVP@0.03GO cells deliver a discharge specific capacity of 442 mAh/g at a current density of 0.2 A/g.It also maintains 100%capacity for 1000 times cycling at 1 A/g.The assembled soft package batteries demonstrate superior flexibility and adaptability under different bending conditions.展开更多
As a cathode material for thermal batteries,NiS_(2)has a high theoretical capacity but low thermal stability.Besides,the poor formability of NiS_(2)powders also restricts the cathode performance of thermal batteries.I...As a cathode material for thermal batteries,NiS_(2)has a high theoretical capacity but low thermal stability.Besides,the poor formability of NiS_(2)powders also restricts the cathode performance of thermal batteries.In this paper,the novel NiS_(2)/SiO_(2)composite material was developed by high temperature vulcanization to improve the thermal stability formability of NiS_(2).The good filling and lubrication of spherical SiO_(2)can improve the thermal conductivity of NiS_(2)electrode.The discharge test shows that the NiS_(2)/SiO_(2)cathode has a stable discharge voltage at a current density of 200 mA/cm^(2),and the activation time is shortened by nearly 20%compared with the NiS_(2)cathode.In addition,due to the favorable thermal insulation protection of SiO_(2),the initial decomposition temperature of NiS_(2)is increased by 30℃after the addition of SiO_(2).The incorporation of SiO_(2)not only effectively improves the thermal stability and electrochemical properties of NiS_(2),but also improves the cold pressing forming performance of the NiS_(2)powder.Therefore,the novel NiS_(2)/SiO_(2)composite material is more suitable for thermal batteries with high stability and fast response,which is of great significance for improving the maneuverability and quality reliability of weapons and equipment.展开更多
The Li-CO_(2)battery has been highly rated as an intriguing technique for balancing the carbon cycle for years,but it is still significantly challenged by the obstacles such as limited reversibility,sluggish kinetics,...The Li-CO_(2)battery has been highly rated as an intriguing technique for balancing the carbon cycle for years,but it is still significantly challenged by the obstacles such as limited reversibility,sluggish kinetics,and poor energy efficiency.Hence,the design and development of advance catalysts that can enhance the kinetics and reversibility of the CO_(2)electrochemical cycling reactions are considered the imperative tasks.Transition metal-based catalysts are widely considered appealing owing to their unfilled dorbitals,rich and adjustable valences,as well as processibility.In this review,the working mechanism and the key issues of the CO_(2)electrochemical cycling reaction are discussed first.Then the strategies for composition and structure design of different type of transition metal-based catalysts are highlighted,including their benefits,limitations,and the ways to implement these strategies.Finally,based on the pioneering research,the perspectives on the challenges and key points for the future development of cathode catalyst are proposed.展开更多
Aqueous iron-ion batteries are regarded as one of the most promising candidates for grid applications owing to their low cost,high theoretical capacity,and excellent stability of iron in aqueous electrolytes.However,t...Aqueous iron-ion batteries are regarded as one of the most promising candidates for grid applications owing to their low cost,high theoretical capacity,and excellent stability of iron in aqueous electrolytes.However,the slow Fe(de)insertion caused by the high polarity of Fe^(2+)makes it difficult to match suitable cathode materials.Herein,defect-rich MoS_(2)with abundant 1T phase is synthesized and successfully applied in aqueous iron-ion batteries.Benefit from abundant active sites generated by the heteroatom incorporation and S vacancy,as well as the highly conductive 1T phase,it can deliver a specific capacity of 123 mAh/g at a current density of 100mA/g,and demonstrates an impressive capacity retention of 88%after 600 cycles at 200mA/g.This work presents a novel pathway for the advancement of cathode materials for aqueous iron-ion batteries.展开更多
Aqueous aluminum ion batteries(AAIBs)have garnered extensive attention due to their environmental friendliness,high theoretical capacity,and low cost.However,the sluggish reaction kinetics and severe structural collap...Aqueous aluminum ion batteries(AAIBs)have garnered extensive attention due to their environmental friendliness,high theoretical capacity,and low cost.However,the sluggish reaction kinetics and severe structural collapse of the cathode material,especially manganese oxide,during the cycling process have hindered its further application.Herein,Cu^(2+)pre-interca la ted layeredδ-MnO_(2)was synthesized via a hydrothermal method.The pre-intercalated Cu^(2+)ions not only improve the conductivity of MnO_(2)cathode but also stabilize the structure to enhance stability.X-ray absorption fine structure(XAFS)combined with density functional theory(DFT)calculations confirm the formation of the covalent bond between Cu and O,increasing the electronegativity of O atoms and enhancing the H^(+)adsorption energy.Moreover,ex-situ measurements not only elucidate the Al^(3+)/H^(+)co-insertion energy storage mechanism but also demonstrate the high reversibility of the Cu-MnO_(2)cathode during cycling.This work provides a promising modification approach for the application of manganese oxides in AAIBs.展开更多
δ-MnO_(2)has received constantly growing attention due to its stable tunnel-type crystalline structures for Zn^(2+)or Zn^(2+)/H^(+)intercalation,however,only partial Mn active sites exhibit electrochemical reactions,...δ-MnO_(2)has received constantly growing attention due to its stable tunnel-type crystalline structures for Zn^(2+)or Zn^(2+)/H^(+)intercalation,however,only partial Mn active sites exhibit electrochemical reactions,and most Mn atoms would stay the same to maintain the structure frame,indicative of low capacity and long cycling life theoretically.By comparison,for Cu-based conversion-typed materials,all Cu sites can perform electrochemical reactions if fully utilized,resulting in high rate capacity,however,short cycling life due to fracture,and even pulverization induced by volume changes during cycling.In this work,a hybrid cathode with intercalation and conversion behaviors is devised,in which intertwinedδ-MnO_(2)nanosheets shell wrap conversion-typed Cu_(2)O core firmly for stable conversion reaction during cycling.As a result,the optimized Cu_(2)O/MnO_(2)(denoted as MCO)cathode demonstrates the hybrid properties of long cycling life and high rate capacity,inheriting fromδ-MnO_(2)and Cu_(2)O,respectively.MCO cathodes with carbon cloth current collectors in full batteries deliver reversible capacities of 291.9 mA h g^(−1)at 1 A g^(−1),and retain 95%capacity at 20.0 A g^(−1)after 4300 cycles.Additionally,the energy density of 513.94 Wh kg^(−1)and power density of 7.2 kW kg^(−1)based on the MCO mass are exhibited,verifying its practical application.This work demonstrates the combination of intercalation and conversion in one electrochemical system and may provide new perspectives for the optimizing application of hybrid mechanisms.展开更多
基金supported by the Recruitment Program of Global Youth Experts of Chinathe Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA09010401)+1 种基金the Science and Technology Development Program of Jilin Province,China(Grant No.20150623002TC)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20131139)
文摘Although significant progress has been made in many aspects of the emerging aprotic Li-O2 battery system, an indepth understanding of the oxygen reactions is still underway. The oxygen reactions occurring in the positive electrode distinguish Li-O2 batteries from the conventional Li-ion cells and play a crucial role in the Li-O2 cell's performance (capacity, rate capability, and cycle life). Recent advances in fundamental studies of oxygen reactions in aprotic Li-O2 batteries are reviewed, including the reaction route, kinetics, morphological evolution of Li2O2, and charge transport within Li2O2. Prospects are also provided for future fundamental investigations of Li-O2 chemistry.
基金the National Natural Science Foundation of China (Nos.U1732111 and 21676241)“The Recruitment Program of Global Youth Experts” from the Chinese government+2 种基金the “Hundred Talents Program” of Zhejiang UniversityHubei Natural Science Foundation of China (No.2018CFB531)Self-determined Research Funds of CCNU from Colleges’ Basic Research and Operation of MOE (No.CCNU18TS045)。
文摘Nonaqueous Li-O2 batteries attract attention for their theoretical specific energy density.However,due to the difficulty of decomposition of Li2 O2,Li-O2 batteries have high charge overpotential and poor cycling life.So all kinds of catalysts have been studied on the cathode.Compared to heterogeneous solid catalysts,soluble catalysts achieve faster and more effective transport of electrons by reversible redox pairs.Here,we first report ruthenocene(Ruc) as a mobile redox mediator in a Li-O2 battery.0.01 mol/L Ruc in the electrolyte effectively reduces the charging voltage by 610 mV.Additionally,Ruc greatly increases the cycling life by four-fold(up to 83 cycles) with a simple ketjen black(KB) cathode.The results of SEM,XPS and XRD confirm that less discharge product residue accumulated after recharge.To verify the reaction mechanisms of the mediato r,free energy profiles of the possible reaction pathways based on DFT are provided.
基金supported by the Natural Science Foundation of China(No.21303038)Scientific Research Foundation for the Returned Overseas Chinese Scholars+1 种基金State Education Ministry One Hundred,Talents Program of Anhui ProvinceOpen Funds of the State Key Laboratory of Rare Earth Resource Utilization(No.RERU2016004)
文摘As one of the next-generation energy-storage devices,Li-O_2 battery has become the main research direction for the academic researchers due to its characteristics of environmental friendship,relatively simple structures,high energy density of 3500Wh/kg and low cost.However,Li-O_2 battery cannot be commercialized on a large scale because of the challenging issues including high-efficient electrocatalysts,membranes,Li-based anode and so on.In this review,we focused on the recent development of electrocatalyst materials as cathodes for the non-aqueous Li-O_2 batteries which are relatively simpler than other Li-O_2 batteries' structures.Electrocatalysts were summarized including noble metals,nanocarbon materials,transition metals and their hybrids.We points out that the challenges of preparation high-efficient catalysts not only require high catalytic activity and conductivity,but also have novel nanoarchitectures with large interface and porous volume for LiO_x storage.Furthermore,the further investigation of reaction mechanism and advanced in situ analysis technologies are welcome in the coming work.
基金sponsored by the National Natural Science Foundation of China(21475021 and 21427807)the Fundamental Research Funds for the Central Universities(2242017 K41023)
文摘Developing bifunctional catalysts that increase both the OER and ORR kinetics and transport reactants with high efficiency is desirable. Herein, micro–meso-macroporous FeCo-N-C-X(denoted as "MFeCo-N-C-X", X represents Fe/Co molar ratio in bimetallic zeolite imidazole frameworks FeCo-ZIFs) catalysts derived from hierarchical M-FeCo-ZIFs-X was prepared. The micropores in M-FeCo-N-C-X have strong capability in O2 capture as well as dictate the nucleation and early-stage deposition of Li2O2,the mesopores provided a channel for the electrolyte wetting, and the macroporous structure promoted more available active sites when used as cathode for Li-O2 batteries. More importantly, M-Fe CoN-C-0.2 based cathode showed a high initial capacity(18,750 mAh g-1@0.1 A g-1), good rate capability(7900 m Ah g-1@0.5 A g-1), and cycle stability up to 192 cycles. Interestingly, the FeCo-N-C-0.2 without macropores suffered relatively poorer stability with only 75 cycles, although its discharge capacity was still as high as 17,200 mA h g-1(@0.1 A g-1). The excellent performance attributed to the synergistic contribution of homogeneous Fe, Co nanoparticles and N co-doping carbon frameworks with special micro–meso-macroporous structure. The results showed that hierarchical FeCo-N-C architectures are promising cathode catalysts for Li-O2 batteries.
基金supported by the National Natural Science Foundation of China(52072173)the International Science and Technology Cooperation Program of Jiangsu Province(SBZ2022000084).
文摘Li–CO_(2) batteries are considered promising energy storage systems in extreme environments such as Mars;however,severe performance degradation will occur at a subzero temperature owning to the sluggish reaction kinetics.Herein,a photo-energized strategy adopting sustainable solar energy in wide working temperature range Li–CO_(2) battery was achieved with a binder-free MoS_(2)/carbon nanotube(CNT)photo-electrode as cathode.The unique layered structure and excellent photoelectric properties of MoS_(2) facilitate the abundant generation and rapid transfer of photo-excited carriers,which accelerate the CO_(2) reduction and Li_(2)CO_(3) decomposition upon illumination.The illuminated battery at room temperature exhibited high discharge voltage of 2.95 V and mitigated charge voltage of 3.27 V,attaining superior energy efficiency of 90.2%and excellent cycling stability of over 120 cycles.Even at an extremely low temperature of−30℃,the battery with same electrolyte can still deliver a small polarization of 0.45 V by the photoelectric and photothermal synergistic mechanism of MoS_(2)/CNT cathode.This work demonstrates the promising potential of the photo-energized wide working temperature range Li–CO_(2) battery in addressing the obstacle of charge overpotential and energy efficiency.
基金supported by the National Natural Science Foundation of China(No.21805018)by Sichuan Science and Technology Program(Nos.2022ZHCG0018,2023NSFSC0117 and 2023ZHCG0060)Yibin Science and Technology Program(No.2022JB005)and China Postdoctoral Science Foundation(No.2022M722704).
文摘Layered transition metal oxides have emerged as promising cathode materials for sodium ion batteries.However,irreversible phase transitions cause structural distortion and cation rearrangement,leading to sluggish Na+dynamics and rapid capacity decay.In this study,we propose a medium-entropy cathode by simultaneously introducing Fe,Mg,and Li dopants into a typical P2-type Na_(0.75)Ni_(0.25)Mn_(0.75)O_(2)cathode.The modified Na_(0.75)Ni_(0.2125)Mn_(0.6375)Fe_(0.05)Mg_(0.05)Li_(0.05)O_(2)cathode predominantly exhibits a main P2 phase(93.5%)with a minor O3 phase(6.5%).Through spectroscopy techniques and electrochemical investigations,we elucidate the redox mechanisms of Ni^(2+/3+/4+),Mn^(3+/4+),Fe^(3+/4+),and O_(2)-/O_(2)^(n-)during charging/discharging.The medium-entropy doping mitigates the detrimental P2-O_(2)phase transition at high-voltage,replacing it with a moderate and reversible structural evolution(P2-OP4),thereby enhancing structural stability.Consequently,the modified cathode exhibits a remarkable rate capacity of 108.4 mAh·g^(-1)at 10C,with a capacity retention of 99.0%after 200 cycles at 1C,82.5%after 500 cycles at 5C,and 76.7%after 600 cycles at 10C.Furthermore,it also demonstrates superior electrochemical performance at high cutoff voltage of 4.5 V and extreme temperature(55 and 0℃).This work offers solutions to critical challenges in sodium ion batteries cathode materials.
基金supported by the Natural Science Foundation of Henan Province(No.242300420021)the Major Science and Technology Projects of Henan Province(No.221100230200)+4 种基金the Open Fund of State Key Laboratory of Advanced Refractories(No.SKLAR202210)the Key Science and Technology Program of Henan Province(No.232102241020)the Undergraduate Innovation and Entrepreneurship Training Program of Henan Province(No.S202310464012)the Ph.D.Research Startup Foundation of Henan University of Science and Technology(No.400613480015)the Postdoctoral Research Startup Foundation of Henan University of Science and Technology(No.400613554001).
文摘Aqueous Zn-ion batteries(AZIBs)have been regarded as promising alternatives to Li-ion batteries due to their advantages,such as low cost,high safety,and environmental friendliness.However,AZIBs face significant challenges in limited stability and lifetime owing to zinc dendrite growth and serious side reactions caused by water molecules in the aqueous electrolyte during cycling.To address these issues,a new eutectic electrolyte based on Zn(ClO_(4))_(2)·6H_(2)O-N-methylacetamide(ZN)is proposed in this work.Compared with aqueous electrolyte,the ZN eutectic electrolyte containing organic N-methylacetamide could regulate the solvated structure of Zn^(2+),effectively suppressing zinc dendrite growth and side reactions.As a result,the Zn//NH4 V4 O10 full cell with the eutectic ZN-1-3 electrolyte demonstrates significantly enhanced cycling stability after 1000 cycles at 1 A g^(-1).Therefore,this study not only presents a new eutectic electrolyte for zinc-ion batteries but also provides a deep understanding of the influence of Zn^(2+)solvation structure on the cycle stability,contributing to the exploration of novel electrolytes for high-performance AZIBs.
基金partly supported by the National Natural Science Foundation of China(Grant No.52272225).
文摘Na_(3)V_(2)(PO_(4))_(3)(NVP)has garnered great attentions as a prospective cathode material for sodium-ion batteries(SIBs)by virtue of its decent theoretical capacity,superior ion conductivity and high structural stability.However,the inherently poor electronic conductivity and sluggish sodium-ion diffusion kinetics of NVP material give rise to inferior rate performance and unsatisfactory energy density,which strictly confine its further application in SIBs.Thus,it is of significance to boost the sodium storage performance of NVP cathode material.Up to now,many methods have been developed to optimize the electrochemical performance of NVP cathode material.In this review,the latest advances in optimization strategies for improving the electrochemical performance of NVP cathode material are well summarized and discussed,including carbon coating or modification,foreign-ion doping or substitution and nanostructure and morphology design.The foreign-ion doping or substitution is highlighted,involving Na,V,and PO_(4)^(3−)sites,which include single-site doping,multiple-site doping,single-ion doping,multiple-ion doping and so on.Furthermore,the challenges and prospects of high-performance NVP cathode material are also put forward.It is believed that this review can provide a useful reference for designing and developing high-performance NVP cathode material toward the large-scale application in SIBs.
基金supported by the Significant Science and Technology Project in Xiamen(Future Industry Field)(Grant No.3502Z20231057).
文摘Lithium nickel oxide(Li_(2)NiO_(2)),as a sacrificial cathode prelithiation additive,has been used to compensate for the lithium loss for improving the lifespan of lithium-ion batteries(LIBs).However,high-cost Li_(2)NiO_(2)suffers from inferior delithiation kinetics during the first cycle.Herein,we investigated the effects of the cost-effective copper substituted Li_(2)Ni_(1-x)Cu_(x)O_(2)(x=0,0.2,0.3,0.5,0.7)synthesized by a high-temperature solid-phase method on the structure,morphology,electrochemical performance of graphite‖LiFePO_(4)battery.The X-ray diffraction(XRD)refinement result demonstrated that Cu substitution strategy could be favorable for eliminating the NiO_(x)impurity phase and weakening Li-O bond.Analysis on density of states(DOS)indicates that Cu substitution is good for enhancing the electronic conductivity,as well as reducing the delithi-ation voltage polarization confirmed by electrochemical characterizations.Therefore,the optimal Li_(2)Ni_(0.7)Cu_(0.3)O_(2)delivered a high delithiation capacity of 437 mAh·g^(-1),around 8%above that of the pristine Li_(2)NiO_(2).Furthermore,a graphite‖LiFePO_(4)pouch cell with a nominal capacity of 3000 mAh demonstrated a notably improved reversible capacity,energy density and cycle life through introducing 2 wt%Li_(2)Ni_(0.7)Cu_(0.3)O_(2)additive,delivering a 6.2 mAh·g^(-1)higher initial discharge capacity and achieving around 5%improvement in capacity retentnion at 0.5P over 1000 cycles.Additionally,the post-mortem analyses testified that the Li_(2)Ni_(0.7)Cu_(0.3)O_(2)additive could suppress solid electrolyte interphase(SEI)decomposition and homogenize the Li distribution,which benefits to stabilizing interface between graphite and electrolyte,and alleviating dendritic Li plating.In conclusion,the Li_(2)Ni_(0.7)Cu_(0.3)O_(2)additive may offer advantages such as lower cost,lower delithiation voltage and higher prelithiation capacity compared with Li_(2)NiO_(2),making it a promising candidate of cathode prelithiation additive for next-generation LIBs.
基金financially supported by Jilin province science and technology department(No.20230402059GH)Changchun Science and Technology Bureau(No.23YQ11)+4 种基金Jilin Province Science and Technology Department major science and technology project(Nos.20220301004GX and 20220301005GX)Key Subject Construction of Physical Chemistry of Northeast Normal University(No.2412022XK004)the National Natural Science Foundation of China(No.22102020)the Swedish Foundation for International Cooperation in Research and Higher Education(No.KO2017-7351)Swedish Energy Agency(No.P2020-90216)。
文摘Developing effective heterostructure strategies to mitigate the shuttling effect and accelerate lithium polysulfide(Li PS)conversion remains a critical challenge in lithium–sulfur(Li–S)batteries.Here,we report the first carbon–free VO_(2)–VS_(2)heterostructure material synthesized via in situ sulfurization,applied as a modifier on a commercial polypropylene(PP)separator(denoted as VO_(2)–VS_(2)@PP).The as–prepared VO_(2)–VS_(2)nanorods synergistically combine the high absorptivity of VO_(2)with the efficient catalytic properties of VS_(2),simultaneously enhancing Li PS anchoring and promoting its conversion.We systematically investigate the influence of material composition on battery performance,leveraging these functional attributes,Li–S cells incorporating VO_(2)–VS_(2)@PP exhibit exceptional cycle stability(over 500cycles at 1C),impressive rate performance(807 m Ah.g^(–1)at 5C),desirable reversibility(49.9%capacity retention after 300 cycles at 5C)and exceptional pouch cell performance(3.65 m Ah.cm^(–2)after 50 stable cycles at 0.1C).This study underscores the potential of tailored heterostructures in realizing high–performance Li–S batteries,offering new insights for next–generation energy storage solutions.
基金supported by National Natural Science Youth Foundation of China(No.22308294)National Natural Science Foundation of China(No.22179077)+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX23_1868)Qing Lan Project of Jiangsu University and the Funding for school-level research projects of Yancheng Institute of Technology.
文摘Mn-based P2-type oxides are considered as promising cathodes for Na-ion batteries;however,they face significant challenges,including structural degradation when charged at high cutoff voltages and structural changes upon storing in a humid atmosphere.In response to these issues,we have designed an oxide with co-doping of Cu and Al which can balance both cost and structural stability.The redox reaction of Cu^(2+/3+)can provide certain charge compensation,and the introduction of Al can further suppress the Jahn-Teller effect of Mn,thereby achieving superior long-term cycling performance.The ex-situ XRD testing indicates that Cu/Al co-doping can effectively suppress the phase transition of P2-O2 at high voltage,thereby explaining the improvement in electrochemical performance.DFT calculations reveal a high chemical tolerance to moisture,with lower adsorption energy for H_(2)O compared to pure Na_(0.67)Cu_(0.25)Mn_(0.75)O_(2).A representative Na_(0.67)Cu_(0.20)Al_(0.05)Mn_(0.75)O_(2)cathode demonstrates impressive reversible capacities of 148.7 mAh/g at 0.2 C,along with a remarkable capacity retention of 79.1%(2 C,500 cycles).
基金support from the National Natural Science Foundation of China(No.52201278,No.21975260,No.22379103,No.22409074).
文摘The metal-carbon dioxide batteries,emerging as high-energy-density energy storage devices,enable direct CO_(2)utilization,offering promising prospects for CO_(2)capture and utilization,energy conversion,and storage.However,the electrochemical performance of M-CO_(2)batteries faces significant challenges,particularly at extreme temperatures.Issues such as high overpotential,poor charge reversibility,and cycling capacity decay arise from complex reaction interfaces,sluggish oxidation kinetics,inefficient catalysts,dendrite growth,and unstable electrolytes.Despite significant advancements at room temperature,limited research has focused on the performance of M-CO_(2)batteries across a wide-temperature range.This review examines the effects of low and high temperatures on M-CO_(2)battery components and their reaction mechanism,as well as the advancements made in extending operational ranges from room temperature to extremely low and high temperatures.It discusses strategies to enhance electrochemical performance at extreme temperatures and outlines opportunities,challenges,and future directions for the development of M-CO_(2)batteries.
基金supported by the Scientific Research Fund of Hunan Provincial Education Department,China(No.22B0741)。
文摘The electrochemical performance of layered O3-type NaCrO_(2)cathode material is significantly affected by the side reactions between NaCrO_(2)and electrolyte during sodium storage.A uniform Cr_(2)O_(3)coating layer was in situ constructed on the surface of NaCrO_(2)by controlling the excess ratio of sodium source.The structure,morphology,valence and electrochemical performance of the Cr_(2)O_(3)-coated NaCrO_(2)were characterized.The results indicate that the Cr_(2)O_(3)coating layer does not alter the crystal structure and morphology of NaCrO_(2),but effectively suppresses the side reactions between NaCrO_(2)and electrolyte,and improves the surface/interfacial stability of NaCrO_(2)material.The Cr_(2)O_(3)-coated NaCrO_(2)exhibits improved electrochemical performance with a capacity retention of 66.4%after 500 cycles at 10C.
基金the National Natural Science Foundation of China(Nos.22075027,52003030)Starting Grant from Beijing Institute of Technology and financial support from the State Key Laboratory of Explosion Science and Safety Protection(Nos.YBKT2106,YBKT23-05)Beijing Institute of Technology Research Fund Program for Young Scholars。
文摘Despite significant progress has been achieved regarding the shuttle-effect of lithium polysulfides,the suppressed specific capacity and retarded redox kinetics under high sulfur loading still threat the actual energy density and power density of lithium-sulfur batteries.In this study,a graham condenser-inspired carbon@WS_(2)host with coil-in-tube structure was designed and synthesized using anodic aluminum oxide(AAO)membrane with vertically aligned nanopores as template.The vertical array of carbon nanotubes with internal carbon coils not only leads to efficient charge transfer across through the thickness of the cathode,but also provides significant confinement to polysulfide diffusion towards both the lateral and longitudinal directions.Few-layer WS_(2)in the carbon coils perform a synergistic role in suppressing the shuttle-effect as well as boosting the cathodic kinetics.As a result,high specific capacity(1180 m Ah/g at 0.1 C)and long-cycling stability at 0.5 C for 500 cycles has been achieved at 3 mgS/cm^(2).Impressive areal capacity of 7.4 m Ah/cm^(2)has been demonstrated when the sulfur loading reaches 8.4 mg/cm^(2).The unique coil-in-tube structure developed in this work provides a new solution for high sulfur loading cathode towards practical lithium-sulfur batteries.
基金supported by National Natural Science Foundation of China(No.52172218).
文摘Manganese dioxide(MnO_(2))electrode material possesses the advantages of high energy density,structural diversity and high modification potential.This allows it become one of the important cathodes for aqueous zinc ion battery.However,the applications are limited by the poor electrical conductivity,narrow layer spacing and the ease of dissolution.Herein,we prepare MnO_(2)-PVP@0.03GO composites by the co-modification of polyvinylpyrrolidone(PVP)pre-insertion layer and graphene oxide(GO)self-assembly layer.The Zn//MnO_(2)-PVP@0.03GO cells deliver a discharge specific capacity of 442 mAh/g at a current density of 0.2 A/g.It also maintains 100%capacity for 1000 times cycling at 1 A/g.The assembled soft package batteries demonstrate superior flexibility and adaptability under different bending conditions.
基金Project(23JCYBJC01870)supported by the Natural Science Foundation of Tianjin,ChinaProject(U22A20119)supported by the National Natural Science Foundation of China。
文摘As a cathode material for thermal batteries,NiS_(2)has a high theoretical capacity but low thermal stability.Besides,the poor formability of NiS_(2)powders also restricts the cathode performance of thermal batteries.In this paper,the novel NiS_(2)/SiO_(2)composite material was developed by high temperature vulcanization to improve the thermal stability formability of NiS_(2).The good filling and lubrication of spherical SiO_(2)can improve the thermal conductivity of NiS_(2)electrode.The discharge test shows that the NiS_(2)/SiO_(2)cathode has a stable discharge voltage at a current density of 200 mA/cm^(2),and the activation time is shortened by nearly 20%compared with the NiS_(2)cathode.In addition,due to the favorable thermal insulation protection of SiO_(2),the initial decomposition temperature of NiS_(2)is increased by 30℃after the addition of SiO_(2).The incorporation of SiO_(2)not only effectively improves the thermal stability and electrochemical properties of NiS_(2),but also improves the cold pressing forming performance of the NiS_(2)powder.Therefore,the novel NiS_(2)/SiO_(2)composite material is more suitable for thermal batteries with high stability and fast response,which is of great significance for improving the maneuverability and quality reliability of weapons and equipment.
基金financially supported by the National Natural Science Foundation of China(52201254,52234001,52074177)the National Key Research and Development Program(2022YFC3900905)+3 种基金the Natural Science Foundation of Shandong Province(ZR2020QE012,ZR2020MB090,ZR2023ME155,ZR2023ME085)the Scientific Research Foundation for New Talents in University of Jinan(XRC2406)the project of “20 Items of University”of Jinan(202228046)the Introducing Major Universities and Research Institutions to Jointly Build Innovative Carrier Project of Jining City(2023DYDS022)。
文摘The Li-CO_(2)battery has been highly rated as an intriguing technique for balancing the carbon cycle for years,but it is still significantly challenged by the obstacles such as limited reversibility,sluggish kinetics,and poor energy efficiency.Hence,the design and development of advance catalysts that can enhance the kinetics and reversibility of the CO_(2)electrochemical cycling reactions are considered the imperative tasks.Transition metal-based catalysts are widely considered appealing owing to their unfilled dorbitals,rich and adjustable valences,as well as processibility.In this review,the working mechanism and the key issues of the CO_(2)electrochemical cycling reaction are discussed first.Then the strategies for composition and structure design of different type of transition metal-based catalysts are highlighted,including their benefits,limitations,and the ways to implement these strategies.Finally,based on the pioneering research,the perspectives on the challenges and key points for the future development of cathode catalyst are proposed.
基金supported by Shenzhen Fundamental Research Program(No.GXWD20201231165807007-20200802205241003).
文摘Aqueous iron-ion batteries are regarded as one of the most promising candidates for grid applications owing to their low cost,high theoretical capacity,and excellent stability of iron in aqueous electrolytes.However,the slow Fe(de)insertion caused by the high polarity of Fe^(2+)makes it difficult to match suitable cathode materials.Herein,defect-rich MoS_(2)with abundant 1T phase is synthesized and successfully applied in aqueous iron-ion batteries.Benefit from abundant active sites generated by the heteroatom incorporation and S vacancy,as well as the highly conductive 1T phase,it can deliver a specific capacity of 123 mAh/g at a current density of 100mA/g,and demonstrates an impressive capacity retention of 88%after 600 cycles at 200mA/g.This work presents a novel pathway for the advancement of cathode materials for aqueous iron-ion batteries.
基金financially supported by the National Natural Science Foundation of China(52102233)Science and Technology Project of Hebei Education Department(QN2023019)。
文摘Aqueous aluminum ion batteries(AAIBs)have garnered extensive attention due to their environmental friendliness,high theoretical capacity,and low cost.However,the sluggish reaction kinetics and severe structural collapse of the cathode material,especially manganese oxide,during the cycling process have hindered its further application.Herein,Cu^(2+)pre-interca la ted layeredδ-MnO_(2)was synthesized via a hydrothermal method.The pre-intercalated Cu^(2+)ions not only improve the conductivity of MnO_(2)cathode but also stabilize the structure to enhance stability.X-ray absorption fine structure(XAFS)combined with density functional theory(DFT)calculations confirm the formation of the covalent bond between Cu and O,increasing the electronegativity of O atoms and enhancing the H^(+)adsorption energy.Moreover,ex-situ measurements not only elucidate the Al^(3+)/H^(+)co-insertion energy storage mechanism but also demonstrate the high reversibility of the Cu-MnO_(2)cathode during cycling.This work provides a promising modification approach for the application of manganese oxides in AAIBs.
基金supported by China Postdoctoral Science Foundation(2020M673615XB)Special Projects on Regional Collaborative innovation-SCO Science and Technology Partnership Program,International Science and Technology Cooperation Program(2022E01056)+1 种基金Scientific Research Program Funded by Shaanxi Provincial Education Department(21JK0797)Natural Science Basic Research Program of Shaanxi(2021JM-322,2023-JC-QN-0131,2023-JC-YB-388)。
文摘δ-MnO_(2)has received constantly growing attention due to its stable tunnel-type crystalline structures for Zn^(2+)or Zn^(2+)/H^(+)intercalation,however,only partial Mn active sites exhibit electrochemical reactions,and most Mn atoms would stay the same to maintain the structure frame,indicative of low capacity and long cycling life theoretically.By comparison,for Cu-based conversion-typed materials,all Cu sites can perform electrochemical reactions if fully utilized,resulting in high rate capacity,however,short cycling life due to fracture,and even pulverization induced by volume changes during cycling.In this work,a hybrid cathode with intercalation and conversion behaviors is devised,in which intertwinedδ-MnO_(2)nanosheets shell wrap conversion-typed Cu_(2)O core firmly for stable conversion reaction during cycling.As a result,the optimized Cu_(2)O/MnO_(2)(denoted as MCO)cathode demonstrates the hybrid properties of long cycling life and high rate capacity,inheriting fromδ-MnO_(2)and Cu_(2)O,respectively.MCO cathodes with carbon cloth current collectors in full batteries deliver reversible capacities of 291.9 mA h g^(−1)at 1 A g^(−1),and retain 95%capacity at 20.0 A g^(−1)after 4300 cycles.Additionally,the energy density of 513.94 Wh kg^(−1)and power density of 7.2 kW kg^(−1)based on the MCO mass are exhibited,verifying its practical application.This work demonstrates the combination of intercalation and conversion in one electrochemical system and may provide new perspectives for the optimizing application of hybrid mechanisms.