Co_(3)S_(4)electrocatalysts with mixed valences of Co ions and excellent structural stability possess favorable oxygen evolution reaction(OER)activity,yet challenges remain in fabricating rechargeable lithiumoxygen ba...Co_(3)S_(4)electrocatalysts with mixed valences of Co ions and excellent structural stability possess favorable oxygen evolution reaction(OER)activity,yet challenges remain in fabricating rechargeable lithiumoxygen batteries(LOBs)due to their poor OER performance,resulting from poor electrical conductivity and overly strong intermediate adsorption.In this work,fancy double heterojunctions on 1T/2H-MoS_(2)@Co_(3)S_(4)(1T/2H-MCS)were constructed derived from the charge donation from Co to Mo ions,thus inducing the phase transformation of Mo S_(2)from 2H to 1T.The unique features of these double heterojunctions endow the1T/2H-MCS with complementary catalysis during charging and discharging processes.It is worth noting that 1T-Mo S2@Co3S4could provide fast Co-S-Mo electron transport channels to promote ORR/OER kinetics,and 2H-MoS_(2)@Co_(3)S_(4)contributed to enabling moderate egorbital occupancy when adsorbed with oxygen-containing intermediates.On the basis,the Li_(2)O_(2)nucleation route was changed to solution and surface dual pathways,improving reversible deposition and decomposition kinetics.As a result,1T/2H-MCS cathodes exhibit an improved electrocatalytic performance compared with those of Co_(3)S_(4)and Mo S2cathodes.This innovative heterostructure design provides a reliable strategy to construct efficient transition metal sulfide catalysts by improving electrical conductivity and modulating adsorption toward oxygenated intermediates for LOBs.展开更多
Micro-sized anatase TiO_(2) displays inferior capacity as cathode material for magnesium ion batteries because of the higher diffusion energy barrier of Mg^(2+)in anatase TiO_(2) lattice.Herein,we report that nanosize...Micro-sized anatase TiO_(2) displays inferior capacity as cathode material for magnesium ion batteries because of the higher diffusion energy barrier of Mg^(2+)in anatase TiO_(2) lattice.Herein,we report that nanosized anatase TiO_(2) exposed(001)facet doubles the capacity compared to the micro-sized sample ascribed to the interfacial Mg^(2+)ion storage.First-principles calculations reveal that the diffusion energy barrier of Mg^(2+)on the(001)facet is significantly lower than those in the bulk phase and on(100)facet,and the adsorption energy of Mg^(2+)on the(001)facet is also considerably lower than that on(100)facet,which guarantees superior interfacial Mg^(2+)storage of(001)facet.Moreover,anatase TiO_(2) exposed(001)facet displays a significantly higher capacity of 312.9 mAh g^(−1) in Mg-Li dual-salt electrolyte compared to 234.3 mAh g^(−1) in Li salt electrolyte.The adsorption energies of Mg^(2+)on(001)facet are much lower than the adsorption energies of Li+on(001)facet,implying that the Mg^(2+)ion interfacial storage is more favorable.These results highlight that controlling the crystal facet of the nanocrystals effectively enhances the interfacial storage of multivalent ions.This work offers valuable guidance for the rational design of high-capacity storage systems.展开更多
As promising energy storage systems,lithium-sulfur(Li-S)batteries have attracted significant attention because of their ultra-high energy densities.However,Li-S battery suffers problems related to the complex phase co...As promising energy storage systems,lithium-sulfur(Li-S)batteries have attracted significant attention because of their ultra-high energy densities.However,Li-S battery suffers problems related to the complex phase conversion that occurs during the charge-discharge process,particularly the deposition of solid Li2S from the liquid-phase polysulfides,which greatly limits its practical application.In this paper,edge-rich MoS2/C hollow microspheres(Edg-MoS2/C HMs)were designed and used to functionalize separator for Li-S battery,resulting in the uniform deposition of Li2S.The microspheres were fabricated through the facile hydrothermal treatment of MoO3-aniline nanowires and a subsequent carbonization process.The obtained Edg-MoS2/C HMs have a strong chemical absorption capability and high density of Li2S binding sites,and exhibit excellent electrocatalytic performance and can effectively hinder the polysulfide shuttle effect and guide the uniform nucleation and growth of Li2S.Furthermore,we demonstrate that the Edg-MoS2/C HMs can effectively regulate the deposition of Li2S and significantly improve the reversibility of the phase conversion of the active sulfur species,especially at high sulfur loadings and high C-rates.As a result,a cell containing a separator functionalized with Edg-MoS2/C HMs exhibited an initial discharge capacity of 935 mAh g-1 at 1.0 C and maintained a capacity of 494 mAh g-1 after 1000 cycles with a sulfur loading of 1.7 mg cm-2.Impressively,at a high sulfur loading of 6.1 mg cm-2 and high rate of 0.5 C,the cell still delivered a high reversible discharge capacity of 478 mAh g-1 after 300 cycles.This work provides fresh insights into energy storage systems related to complex phase conversions.展开更多
Layered transition metal oxides have emerged as promising cathode materials for sodium ion batteries.However,irreversible phase transitions cause structural distortion and cation rearrangement,leading to sluggish Na+d...Layered transition metal oxides have emerged as promising cathode materials for sodium ion batteries.However,irreversible phase transitions cause structural distortion and cation rearrangement,leading to sluggish Na+dynamics and rapid capacity decay.In this study,we propose a medium-entropy cathode by simultaneously introducing Fe,Mg,and Li dopants into a typical P2-type Na_(0.75)Ni_(0.25)Mn_(0.75)O_(2)cathode.The modified Na_(0.75)Ni_(0.2125)Mn_(0.6375)Fe_(0.05)Mg_(0.05)Li_(0.05)O_(2)cathode predominantly exhibits a main P2 phase(93.5%)with a minor O3 phase(6.5%).Through spectroscopy techniques and electrochemical investigations,we elucidate the redox mechanisms of Ni^(2+/3+/4+),Mn^(3+/4+),Fe^(3+/4+),and O_(2)-/O_(2)^(n-)during charging/discharging.The medium-entropy doping mitigates the detrimental P2-O_(2)phase transition at high-voltage,replacing it with a moderate and reversible structural evolution(P2-OP4),thereby enhancing structural stability.Consequently,the modified cathode exhibits a remarkable rate capacity of 108.4 mAh·g^(-1)at 10C,with a capacity retention of 99.0%after 200 cycles at 1C,82.5%after 500 cycles at 5C,and 76.7%after 600 cycles at 10C.Furthermore,it also demonstrates superior electrochemical performance at high cutoff voltage of 4.5 V and extreme temperature(55 and 0℃).This work offers solutions to critical challenges in sodium ion batteries cathode materials.展开更多
Li–CO_(2) batteries are considered promising energy storage systems in extreme environments such as Mars;however,severe performance degradation will occur at a subzero temperature owning to the sluggish reaction kine...Li–CO_(2) batteries are considered promising energy storage systems in extreme environments such as Mars;however,severe performance degradation will occur at a subzero temperature owning to the sluggish reaction kinetics.Herein,a photo-energized strategy adopting sustainable solar energy in wide working temperature range Li–CO_(2) battery was achieved with a binder-free MoS_(2)/carbon nanotube(CNT)photo-electrode as cathode.The unique layered structure and excellent photoelectric properties of MoS_(2) facilitate the abundant generation and rapid transfer of photo-excited carriers,which accelerate the CO_(2) reduction and Li_(2)CO_(3) decomposition upon illumination.The illuminated battery at room temperature exhibited high discharge voltage of 2.95 V and mitigated charge voltage of 3.27 V,attaining superior energy efficiency of 90.2%and excellent cycling stability of over 120 cycles.Even at an extremely low temperature of−30℃,the battery with same electrolyte can still deliver a small polarization of 0.45 V by the photoelectric and photothermal synergistic mechanism of MoS_(2)/CNT cathode.This work demonstrates the promising potential of the photo-energized wide working temperature range Li–CO_(2) battery in addressing the obstacle of charge overpotential and energy efficiency.展开更多
Aqueous aluminum ion batteries(AAIBs)have garnered extensive attention due to their environmental friendliness,high theoretical capacity,and low cost.However,the sluggish reaction kinetics and severe structural collap...Aqueous aluminum ion batteries(AAIBs)have garnered extensive attention due to their environmental friendliness,high theoretical capacity,and low cost.However,the sluggish reaction kinetics and severe structural collapse of the cathode material,especially manganese oxide,during the cycling process have hindered its further application.Herein,Cu^(2+)pre-interca la ted layeredδ-MnO_(2)was synthesized via a hydrothermal method.The pre-intercalated Cu^(2+)ions not only improve the conductivity of MnO_(2)cathode but also stabilize the structure to enhance stability.X-ray absorption fine structure(XAFS)combined with density functional theory(DFT)calculations confirm the formation of the covalent bond between Cu and O,increasing the electronegativity of O atoms and enhancing the H^(+)adsorption energy.Moreover,ex-situ measurements not only elucidate the Al^(3+)/H^(+)co-insertion energy storage mechanism but also demonstrate the high reversibility of the Cu-MnO_(2)cathode during cycling.This work provides a promising modification approach for the application of manganese oxides in AAIBs.展开更多
Aqueous Zn-ion batteries(AZIBs)have been regarded as promising alternatives to Li-ion batteries due to their advantages,such as low cost,high safety,and environmental friendliness.However,AZIBs face significant challe...Aqueous Zn-ion batteries(AZIBs)have been regarded as promising alternatives to Li-ion batteries due to their advantages,such as low cost,high safety,and environmental friendliness.However,AZIBs face significant challenges in limited stability and lifetime owing to zinc dendrite growth and serious side reactions caused by water molecules in the aqueous electrolyte during cycling.To address these issues,a new eutectic electrolyte based on Zn(ClO_(4))_(2)·6H_(2)O-N-methylacetamide(ZN)is proposed in this work.Compared with aqueous electrolyte,the ZN eutectic electrolyte containing organic N-methylacetamide could regulate the solvated structure of Zn^(2+),effectively suppressing zinc dendrite growth and side reactions.As a result,the Zn//NH4 V4 O10 full cell with the eutectic ZN-1-3 electrolyte demonstrates significantly enhanced cycling stability after 1000 cycles at 1 A g^(-1).Therefore,this study not only presents a new eutectic electrolyte for zinc-ion batteries but also provides a deep understanding of the influence of Zn^(2+)solvation structure on the cycle stability,contributing to the exploration of novel electrolytes for high-performance AZIBs.展开更多
The slow kinetics of the cathode CO_(2) reduction reaction and the decomposition reaction of Li2CO3,a widebandwidth insulating product,lead to difficult CO_(2) capture and high charging potential in Li-CO_(2) batterie...The slow kinetics of the cathode CO_(2) reduction reaction and the decomposition reaction of Li2CO3,a widebandwidth insulating product,lead to difficult CO_(2) capture and high charging potential in Li-CO_(2) batteries.To improve the reaction kinetics and decrease the reaction overpotential,we synthesized mesoporous Pt nanosheets with high tensile strain.The presence of many unsaturated coordinated Pt atoms around the pores gives rise to tensile strain in the mesoporous Pt nanosheets.This tensile strain plays a key role in regulating the interactions between the catalytic surface of Pt and the adsorbed intermediates.The two-dimensional structure provides more active sites on the surface for the catalytic reactions.These superiorities enable a low overpotential of 0.36 V at a cutoff capacity of 100μAh·cm^(−2) at a current density of 10μA·cm^(−2) over more than 2000 h.This study opens new possibilities for the rational design of metal-based materials with strain engineering for electrochemical energy storage.展开更多
Na_(3)V_(2)(PO_(4))_(3)(NVP)has garnered great attentions as a prospective cathode material for sodium-ion batteries(SIBs)by virtue of its decent theoretical capacity,superior ion conductivity and high structural stab...Na_(3)V_(2)(PO_(4))_(3)(NVP)has garnered great attentions as a prospective cathode material for sodium-ion batteries(SIBs)by virtue of its decent theoretical capacity,superior ion conductivity and high structural stability.However,the inherently poor electronic conductivity and sluggish sodium-ion diffusion kinetics of NVP material give rise to inferior rate performance and unsatisfactory energy density,which strictly confine its further application in SIBs.Thus,it is of significance to boost the sodium storage performance of NVP cathode material.Up to now,many methods have been developed to optimize the electrochemical performance of NVP cathode material.In this review,the latest advances in optimization strategies for improving the electrochemical performance of NVP cathode material are well summarized and discussed,including carbon coating or modification,foreign-ion doping or substitution and nanostructure and morphology design.The foreign-ion doping or substitution is highlighted,involving Na,V,and PO_(4)^(3−)sites,which include single-site doping,multiple-site doping,single-ion doping,multiple-ion doping and so on.Furthermore,the challenges and prospects of high-performance NVP cathode material are also put forward.It is believed that this review can provide a useful reference for designing and developing high-performance NVP cathode material toward the large-scale application in SIBs.展开更多
Aqueous sodium-ion batteries(ASIBs) offer significant advantages for energy storage on a large scale,attributed to their economical cost,secure operatio n,and eco-friend ly natu re.Among the leading cathode materials ...Aqueous sodium-ion batteries(ASIBs) offer significant advantages for energy storage on a large scale,attributed to their economical cost,secure operatio n,and eco-friend ly natu re.Among the leading cathode materials for ASIBs,Na_(3)V_(2)(PO_(4))_(3)(NVP) exhibits excellent structural stability and a high Na+diffusion coefficient,making it a promising option.However,the high solubility of vanadium-based materials in aqueous electrolytes engenders suboptimal cycling stability for Na_(3)V_(2)(PO_(4))_(3),constraining its application in ASIBs.Herein,the Cr-substituted Na_(3)V_(1.3)Cr_(0.7)(PO_(4))3@C(NV_(1.3)Cr_(0.7)P) cathode material was synthesized via a simple sol-gel method.It is found that Cr substitution reduces the cell parameters of NV_(1.3)Cr_(0.7)P,effectively reinforcing the crystal structure.Furthermore,NV_(1.3)Cr_(0.7)P alters the Na^(+)insertion/extraction mechanism,transforming the typical two-phase reaction between Na_(1)V_(2)(PO_(4))_(3)and Na_(3)V_(2)(PO_(4))3into continuous solid-solution reactions with stable intermediates.The Cr substitution diminishes the sodium-ion diffusion energy barrier in NV_(1.3)Cr_(0.7)P,leading to smoother Na+insertion and extraction processes.Consequently,NV_(1.3)Cr_(0.7)P exhibits impressive cycling stability,retaining 74.8% of its capacity after 5,000 cycles at a current density of 5 A g^(-1),along with an outstanding rate performance of 79,2% at 10 A g^(-1).This work elucidates the stable Na^(+)insertion/extraction processes in Cr-substituted NV_(1.3)Cr_(0.7)P,offering insights into the application of vanadium-based materials in aqueous sodium-ion batteries.展开更多
Lithium nickel oxide(Li_(2)NiO_(2)),as a sacrificial cathode prelithiation additive,has been used to compensate for the lithium loss for improving the lifespan of lithium-ion batteries(LIBs).However,high-cost Li_(2)Ni...Lithium nickel oxide(Li_(2)NiO_(2)),as a sacrificial cathode prelithiation additive,has been used to compensate for the lithium loss for improving the lifespan of lithium-ion batteries(LIBs).However,high-cost Li_(2)NiO_(2)suffers from inferior delithiation kinetics during the first cycle.Herein,we investigated the effects of the cost-effective copper substituted Li_(2)Ni_(1-x)Cu_(x)O_(2)(x=0,0.2,0.3,0.5,0.7)synthesized by a high-temperature solid-phase method on the structure,morphology,electrochemical performance of graphite‖LiFePO_(4)battery.The X-ray diffraction(XRD)refinement result demonstrated that Cu substitution strategy could be favorable for eliminating the NiO_(x)impurity phase and weakening Li-O bond.Analysis on density of states(DOS)indicates that Cu substitution is good for enhancing the electronic conductivity,as well as reducing the delithi-ation voltage polarization confirmed by electrochemical characterizations.Therefore,the optimal Li_(2)Ni_(0.7)Cu_(0.3)O_(2)delivered a high delithiation capacity of 437 mAh·g^(-1),around 8%above that of the pristine Li_(2)NiO_(2).Furthermore,a graphite‖LiFePO_(4)pouch cell with a nominal capacity of 3000 mAh demonstrated a notably improved reversible capacity,energy density and cycle life through introducing 2 wt%Li_(2)Ni_(0.7)Cu_(0.3)O_(2)additive,delivering a 6.2 mAh·g^(-1)higher initial discharge capacity and achieving around 5%improvement in capacity retentnion at 0.5P over 1000 cycles.Additionally,the post-mortem analyses testified that the Li_(2)Ni_(0.7)Cu_(0.3)O_(2)additive could suppress solid electrolyte interphase(SEI)decomposition and homogenize the Li distribution,which benefits to stabilizing interface between graphite and electrolyte,and alleviating dendritic Li plating.In conclusion,the Li_(2)Ni_(0.7)Cu_(0.3)O_(2)additive may offer advantages such as lower cost,lower delithiation voltage and higher prelithiation capacity compared with Li_(2)NiO_(2),making it a promising candidate of cathode prelithiation additive for next-generation LIBs.展开更多
The distinguishing feature of Fe_(3)GeTe_(2)lies in its robu st in-plane chemical bonds within layers,which are interconnected by the weak van der Waals forces between adjacent layers,offering a stable framework chara...The distinguishing feature of Fe_(3)GeTe_(2)lies in its robu st in-plane chemical bonds within layers,which are interconnected by the weak van der Waals forces between adjacent layers,offering a stable framework characterized by enhanced interlayer spacing,thereby facilitating the migration of large-sized alkali metal ions.However,to date,there have been no reported studies on the ion storage performance of Fe_(3)GeTe_(2).In this study,Fe_(3)GeTe_(2)is synthesized via the chemical vapor transport method to assess its sodium/potassium storage capabilities.Fe_(3)GeTe_(2)is characterized by its impressive conductivity,a distinctive layered architecture,and a notably wide interlayer spacing,all of these attributes collectively contributing to its superior ion storage proficiency in both sodium-ion batteries(SIBs)and potassiumion batteries(PIBs).Specifically,it demonstrates exceptional electrochemical performance,maintaining a capacity of 291.8 mA h g^(-1)at 5 A g^(-1)in SIBs and 125.0 mA h g^(-1)over 6000 cycles at 3 A g^(-1)in PIBs.A series of in/ex situ characterizations uncover the reaction mechanism of Fe_(3)GeTe_(2)in the both systems,involving a combined process of intercalation,conversion,and alloying.Theoretical calculations provide further insights into the high ion adsorption affinity and diffusion kinetics of Fe_(3)GeTe_(2)in these systems.Analytical findings reveal its superior electrochemical performance in SIBs compared to PIBs,owing to higher diffusion kinetics and reactivity.This research establishes both experimental evidence and theoretical underpinnings for the utilization of Fe_(3)GeTe_(2)in SIBs and PIBs,opening up a new avenue for the utilization of germanium-based ternary materials in the field of energy storage.展开更多
Lithium-carbon dioxide(Li-CO_(2))batteries using high ion-conductive inorganic molten salt electrolytes have recently attracted much attention due to the high energy density and potential application of carbon neutral...Lithium-carbon dioxide(Li-CO_(2))batteries using high ion-conductive inorganic molten salt electrolytes have recently attracted much attention due to the high energy density and potential application of carbon neutrality.However,the poor Li-ion conductivity of the molten-salt electrolytes at room temperature(RT)makes these batteries lose most of their capacity and power as the temperature falls below 80℃.Here,inspired by the greenhouse effect,we report an RT molten salt Li-CO_(2)battery where solar energy can be efficiently harvested and converted into heat that is further localized on the cathode consisting of plasmonic ruthenium(Ru)catalysts and Li_(2)CO_(3)-based products via a greenhouse-like phenomenon.As a result,the solar-driven molten salt Li-CO_(2)battery demonstrates a larger full discharge/charge capacity of 9.5 mA h/8.1 mA h,and a longer cycle lifespan of 250 cycles at 500 mA/g with a limited capacity of 500 mA h/g at RT than the molten salt Li-CO_(2)battery at 130℃.Notably,the average temperature of the cathode increases by 8℃ after discharge to 0.75 mA h,which indicates the infrared radiation from Ru catalysts can be effectively suppressed by discharged Li_(2)CO_(3)-based products.This battery technology paves the way for developing low-temperature molten salt energy storage devices.展开更多
Developing effective heterostructure strategies to mitigate the shuttling effect and accelerate lithium polysulfide(Li PS)conversion remains a critical challenge in lithium–sulfur(Li–S)batteries.Here,we report the f...Developing effective heterostructure strategies to mitigate the shuttling effect and accelerate lithium polysulfide(Li PS)conversion remains a critical challenge in lithium–sulfur(Li–S)batteries.Here,we report the first carbon–free VO_(2)–VS_(2)heterostructure material synthesized via in situ sulfurization,applied as a modifier on a commercial polypropylene(PP)separator(denoted as VO_(2)–VS_(2)@PP).The as–prepared VO_(2)–VS_(2)nanorods synergistically combine the high absorptivity of VO_(2)with the efficient catalytic properties of VS_(2),simultaneously enhancing Li PS anchoring and promoting its conversion.We systematically investigate the influence of material composition on battery performance,leveraging these functional attributes,Li–S cells incorporating VO_(2)–VS_(2)@PP exhibit exceptional cycle stability(over 500cycles at 1C),impressive rate performance(807 m Ah.g^(–1)at 5C),desirable reversibility(49.9%capacity retention after 300 cycles at 5C)and exceptional pouch cell performance(3.65 m Ah.cm^(–2)after 50 stable cycles at 0.1C).This study underscores the potential of tailored heterostructures in realizing high–performance Li–S batteries,offering new insights for next–generation energy storage solutions.展开更多
Solid-state batteries are attracting considerable attention for their high-energy density and improved safety over conventional lithium-ion batteries.Among solid-state electrolytes,sulfide-based options like Li_(6)PS_...Solid-state batteries are attracting considerable attention for their high-energy density and improved safety over conventional lithium-ion batteries.Among solid-state electrolytes,sulfide-based options like Li_(6)PS_(5)Cl are especially promising due to their superior ionic conductivity.However,interfacial degradation between sulfide electrolytes and high-voltage cathodes,such as LiCoO_(2),limits long-term performance.This study demonstrates that a LiBF_(4)-derived F-rich coating on LiCoO_(2),applied by immersing LiCoO_(2) particles in a LiBF_(4) solution followed by annealing,can significantly enhance performance in Li_(6)PS_(5)Cl-based solid-state batteries.This coating enables stable high-voltage(4.5 V vs Li^(+)/Li)operation,achieving an initial specific capacity of 153.82 mAh g^(−1) and 87.1%capacity retention over 300 cycles at 0.5C.The enhanced performance stems from the F-rich coating,composed of multiple phases including LiF,CoF_(2),Li_(x)BF_(y)O_(z),and Li_(x)BO_(y),which effectively suppresses side reactions at the LiCoO_(2)|Li_(6)PS_(5)Cl interface and improves lithium-ion diffusivity,thereby enabling greater Li capacity utilization.Our findings provide a practical pathway for advancing solid-state batteries with high-voltage LiCoO_(2) cathodes,offering substantial promise for next-generation energy storage systems.展开更多
Mn-based P2-type oxides are considered as promising cathodes for Na-ion batteries;however,they face significant challenges,including structural degradation when charged at high cutoff voltages and structural changes u...Mn-based P2-type oxides are considered as promising cathodes for Na-ion batteries;however,they face significant challenges,including structural degradation when charged at high cutoff voltages and structural changes upon storing in a humid atmosphere.In response to these issues,we have designed an oxide with co-doping of Cu and Al which can balance both cost and structural stability.The redox reaction of Cu^(2+/3+)can provide certain charge compensation,and the introduction of Al can further suppress the Jahn-Teller effect of Mn,thereby achieving superior long-term cycling performance.The ex-situ XRD testing indicates that Cu/Al co-doping can effectively suppress the phase transition of P2-O2 at high voltage,thereby explaining the improvement in electrochemical performance.DFT calculations reveal a high chemical tolerance to moisture,with lower adsorption energy for H_(2)O compared to pure Na_(0.67)Cu_(0.25)Mn_(0.75)O_(2).A representative Na_(0.67)Cu_(0.20)Al_(0.05)Mn_(0.75)O_(2)cathode demonstrates impressive reversible capacities of 148.7 mAh/g at 0.2 C,along with a remarkable capacity retention of 79.1%(2 C,500 cycles).展开更多
The metal-carbon dioxide batteries,emerging as high-energy-density energy storage devices,enable direct CO_(2)utilization,offering promising prospects for CO_(2)capture and utilization,energy conversion,and storage.Ho...The metal-carbon dioxide batteries,emerging as high-energy-density energy storage devices,enable direct CO_(2)utilization,offering promising prospects for CO_(2)capture and utilization,energy conversion,and storage.However,the electrochemical performance of M-CO_(2)batteries faces significant challenges,particularly at extreme temperatures.Issues such as high overpotential,poor charge reversibility,and cycling capacity decay arise from complex reaction interfaces,sluggish oxidation kinetics,inefficient catalysts,dendrite growth,and unstable electrolytes.Despite significant advancements at room temperature,limited research has focused on the performance of M-CO_(2)batteries across a wide-temperature range.This review examines the effects of low and high temperatures on M-CO_(2)battery components and their reaction mechanism,as well as the advancements made in extending operational ranges from room temperature to extremely low and high temperatures.It discusses strategies to enhance electrochemical performance at extreme temperatures and outlines opportunities,challenges,and future directions for the development of M-CO_(2)batteries.展开更多
The electrochemical performance of layered O3-type NaCrO_(2)cathode material is significantly affected by the side reactions between NaCrO_(2)and electrolyte during sodium storage.A uniform Cr_(2)O_(3)coating layer wa...The electrochemical performance of layered O3-type NaCrO_(2)cathode material is significantly affected by the side reactions between NaCrO_(2)and electrolyte during sodium storage.A uniform Cr_(2)O_(3)coating layer was in situ constructed on the surface of NaCrO_(2)by controlling the excess ratio of sodium source.The structure,morphology,valence and electrochemical performance of the Cr_(2)O_(3)-coated NaCrO_(2)were characterized.The results indicate that the Cr_(2)O_(3)coating layer does not alter the crystal structure and morphology of NaCrO_(2),but effectively suppresses the side reactions between NaCrO_(2)and electrolyte,and improves the surface/interfacial stability of NaCrO_(2)material.The Cr_(2)O_(3)-coated NaCrO_(2)exhibits improved electrochemical performance with a capacity retention of 66.4%after 500 cycles at 10C.展开更多
Aiming at inhibiting the irreversible P2–O2 phase transition of conventional P2-type cathode materials at high voltage and enhancing the cycling stability of sodium-ion batteries,in this article,based on a strategy o...Aiming at inhibiting the irreversible P2–O2 phase transition of conventional P2-type cathode materials at high voltage and enhancing the cycling stability of sodium-ion batteries,in this article,based on a strategy of adjusting the Na^(+)ion occupancy within the crystal structure,Na_(0.67)Ni_(0.33)Mn_(0.67–x)Fe_(x)O_(2)(NM–x Fe,x=0.10,0.15,0.20)cathode materials were synthesized by high shear mixer(HSM)-assisted co-precipitation method and evaluated the electrochemical performance at high voltage(4.35 V).The optimal sample NM–0.15Fe exhibits an initial discharge capacity of 130.8 mAh/g(0.1 C),with exceptional retention of 95.9%after 100 cycles(1 C).XRD analysis reveals that Fe intercalation promotes the more amount of Nae-similar occupation;the Nae/Naf ratio equals 1.93 for NM–0.15Fe versus 1.62 for NM,which enhances Na^(+)diffusion kinetics,as confirmed by GITT tests.Through characterizations of in situ XRD,XPS,HRTEM,CV,etc.,it is illustrated that the Fe^(3+)intercalation can effectively disrupt the Na^(+)/vacancy ordering and inhibit the harmful P2–O2 phase transition,and then improve the cycling stability of the cathode.DFT calculations disclose that intercalated Fe can reduce the electron densities of adjacent transition metallic elements,generating more repulsive forces impacted on sodium and consequently appearance of more Nae sites,leading to a lower Na^(+)diffusion energy barrier.Such strategy of modulating Na occupation sites in crystal structure is conducive to the development of low-cost and high-performance layered cathode materials for sodium-ion batteries.展开更多
The metal triazole(MTA)-based MOFs were found to preferentially adsorb O-rich species,which had enhanced electrocatalytic oxygen reduction reactions(ORR)and stabilized the O-containing species during the discharge and...The metal triazole(MTA)-based MOFs were found to preferentially adsorb O-rich species,which had enhanced electrocatalytic oxygen reduction reactions(ORR)and stabilized the O-containing species during the discharge and charge processes in Li-O_(2)battery.However,the MOFs exhibited low electron conductivity and poor electron transfer interface in the electrocatalysis,limiting the electrocatalytic activity.To address this issue,a nanocomposite with the Co-MTA-coated carbon nano tubes(Co-MTA-C)was constructed,which formed the three-dimensional conductivity network connected with the intersecting carbon nano tube(CNT).In this composite,the electron-rich Co-MTA interacted with the highly conductive CNT,resulting in a charge redistribution.Optimized the electronic structure of the Co center through compositional modifications presented a high valence compared to the pure MOFs.In situ X-ray absorption spectroscopy revealed a direct reaction of Co sites with intermediates such as LiO_(x),leading to the formation of nanosheet array discharge products.The battery based on optimized CoMTA-C demonstrated fast kinetics and superior stability,with a low overpotential of 1.13 V,high specific capacity of 9057 mAh g^(-1),and long-term durability of 600 cycles.It provides a facile and effective strategy for enhancing the electrocatalytic performance through rational tuning of high-conductivity substances.展开更多
基金financially supported by the National Natural Science Foundation of China(U21A20311,U24A2040,52171141,52272117)the Natural Science Foundation of Shandong Province(ZR2022JQ19)+3 种基金the Key Technology Research Project of Shandong Province(2023CXGC010202)the Taishan Industrial Experts Program(TSCX202306142)the Core Facility Sharing Platform of Shandong Universitythe Foundation of Key Laboratory of Advanced Energy Materials Chemistry(Ministry of Education),Nankai University。
文摘Co_(3)S_(4)electrocatalysts with mixed valences of Co ions and excellent structural stability possess favorable oxygen evolution reaction(OER)activity,yet challenges remain in fabricating rechargeable lithiumoxygen batteries(LOBs)due to their poor OER performance,resulting from poor electrical conductivity and overly strong intermediate adsorption.In this work,fancy double heterojunctions on 1T/2H-MoS_(2)@Co_(3)S_(4)(1T/2H-MCS)were constructed derived from the charge donation from Co to Mo ions,thus inducing the phase transformation of Mo S_(2)from 2H to 1T.The unique features of these double heterojunctions endow the1T/2H-MCS with complementary catalysis during charging and discharging processes.It is worth noting that 1T-Mo S2@Co3S4could provide fast Co-S-Mo electron transport channels to promote ORR/OER kinetics,and 2H-MoS_(2)@Co_(3)S_(4)contributed to enabling moderate egorbital occupancy when adsorbed with oxygen-containing intermediates.On the basis,the Li_(2)O_(2)nucleation route was changed to solution and surface dual pathways,improving reversible deposition and decomposition kinetics.As a result,1T/2H-MCS cathodes exhibit an improved electrocatalytic performance compared with those of Co_(3)S_(4)and Mo S2cathodes.This innovative heterostructure design provides a reliable strategy to construct efficient transition metal sulfide catalysts by improving electrical conductivity and modulating adsorption toward oxygenated intermediates for LOBs.
基金supported by the National Key R&D Program of China(No.2023YFB3809500)the Fundamental Research Funds for the Central Universities(No.2024CDJXY003)+1 种基金the Venture&Innovation Support Program for Chongqing Overseas Returnees(cx2023087)The Chongqing Technology Innovation and Application Development Project(No.2024TIAD-KPX0003).
文摘Micro-sized anatase TiO_(2) displays inferior capacity as cathode material for magnesium ion batteries because of the higher diffusion energy barrier of Mg^(2+)in anatase TiO_(2) lattice.Herein,we report that nanosized anatase TiO_(2) exposed(001)facet doubles the capacity compared to the micro-sized sample ascribed to the interfacial Mg^(2+)ion storage.First-principles calculations reveal that the diffusion energy barrier of Mg^(2+)on the(001)facet is significantly lower than those in the bulk phase and on(100)facet,and the adsorption energy of Mg^(2+)on the(001)facet is also considerably lower than that on(100)facet,which guarantees superior interfacial Mg^(2+)storage of(001)facet.Moreover,anatase TiO_(2) exposed(001)facet displays a significantly higher capacity of 312.9 mAh g^(−1) in Mg-Li dual-salt electrolyte compared to 234.3 mAh g^(−1) in Li salt electrolyte.The adsorption energies of Mg^(2+)on(001)facet are much lower than the adsorption energies of Li+on(001)facet,implying that the Mg^(2+)ion interfacial storage is more favorable.These results highlight that controlling the crystal facet of the nanocrystals effectively enhances the interfacial storage of multivalent ions.This work offers valuable guidance for the rational design of high-capacity storage systems.
基金financially supported by National Natural Science Foundation of China (No. 51672083)Program of Shanghai Academic/Technology Research Leader (18XD1401400)+3 种基金Basic Research Program of Shanghai (17JC1404702)Leading talents in Shanghai in 2018The 111 project (B14018)the Fundamental Research Funds for the Central Universities (222201718002)
文摘As promising energy storage systems,lithium-sulfur(Li-S)batteries have attracted significant attention because of their ultra-high energy densities.However,Li-S battery suffers problems related to the complex phase conversion that occurs during the charge-discharge process,particularly the deposition of solid Li2S from the liquid-phase polysulfides,which greatly limits its practical application.In this paper,edge-rich MoS2/C hollow microspheres(Edg-MoS2/C HMs)were designed and used to functionalize separator for Li-S battery,resulting in the uniform deposition of Li2S.The microspheres were fabricated through the facile hydrothermal treatment of MoO3-aniline nanowires and a subsequent carbonization process.The obtained Edg-MoS2/C HMs have a strong chemical absorption capability and high density of Li2S binding sites,and exhibit excellent electrocatalytic performance and can effectively hinder the polysulfide shuttle effect and guide the uniform nucleation and growth of Li2S.Furthermore,we demonstrate that the Edg-MoS2/C HMs can effectively regulate the deposition of Li2S and significantly improve the reversibility of the phase conversion of the active sulfur species,especially at high sulfur loadings and high C-rates.As a result,a cell containing a separator functionalized with Edg-MoS2/C HMs exhibited an initial discharge capacity of 935 mAh g-1 at 1.0 C and maintained a capacity of 494 mAh g-1 after 1000 cycles with a sulfur loading of 1.7 mg cm-2.Impressively,at a high sulfur loading of 6.1 mg cm-2 and high rate of 0.5 C,the cell still delivered a high reversible discharge capacity of 478 mAh g-1 after 300 cycles.This work provides fresh insights into energy storage systems related to complex phase conversions.
基金supported by the National Natural Science Foundation of China(No.21805018)by Sichuan Science and Technology Program(Nos.2022ZHCG0018,2023NSFSC0117 and 2023ZHCG0060)Yibin Science and Technology Program(No.2022JB005)and China Postdoctoral Science Foundation(No.2022M722704).
文摘Layered transition metal oxides have emerged as promising cathode materials for sodium ion batteries.However,irreversible phase transitions cause structural distortion and cation rearrangement,leading to sluggish Na+dynamics and rapid capacity decay.In this study,we propose a medium-entropy cathode by simultaneously introducing Fe,Mg,and Li dopants into a typical P2-type Na_(0.75)Ni_(0.25)Mn_(0.75)O_(2)cathode.The modified Na_(0.75)Ni_(0.2125)Mn_(0.6375)Fe_(0.05)Mg_(0.05)Li_(0.05)O_(2)cathode predominantly exhibits a main P2 phase(93.5%)with a minor O3 phase(6.5%).Through spectroscopy techniques and electrochemical investigations,we elucidate the redox mechanisms of Ni^(2+/3+/4+),Mn^(3+/4+),Fe^(3+/4+),and O_(2)-/O_(2)^(n-)during charging/discharging.The medium-entropy doping mitigates the detrimental P2-O_(2)phase transition at high-voltage,replacing it with a moderate and reversible structural evolution(P2-OP4),thereby enhancing structural stability.Consequently,the modified cathode exhibits a remarkable rate capacity of 108.4 mAh·g^(-1)at 10C,with a capacity retention of 99.0%after 200 cycles at 1C,82.5%after 500 cycles at 5C,and 76.7%after 600 cycles at 10C.Furthermore,it also demonstrates superior electrochemical performance at high cutoff voltage of 4.5 V and extreme temperature(55 and 0℃).This work offers solutions to critical challenges in sodium ion batteries cathode materials.
基金supported by the National Natural Science Foundation of China(52072173)the International Science and Technology Cooperation Program of Jiangsu Province(SBZ2022000084).
文摘Li–CO_(2) batteries are considered promising energy storage systems in extreme environments such as Mars;however,severe performance degradation will occur at a subzero temperature owning to the sluggish reaction kinetics.Herein,a photo-energized strategy adopting sustainable solar energy in wide working temperature range Li–CO_(2) battery was achieved with a binder-free MoS_(2)/carbon nanotube(CNT)photo-electrode as cathode.The unique layered structure and excellent photoelectric properties of MoS_(2) facilitate the abundant generation and rapid transfer of photo-excited carriers,which accelerate the CO_(2) reduction and Li_(2)CO_(3) decomposition upon illumination.The illuminated battery at room temperature exhibited high discharge voltage of 2.95 V and mitigated charge voltage of 3.27 V,attaining superior energy efficiency of 90.2%and excellent cycling stability of over 120 cycles.Even at an extremely low temperature of−30℃,the battery with same electrolyte can still deliver a small polarization of 0.45 V by the photoelectric and photothermal synergistic mechanism of MoS_(2)/CNT cathode.This work demonstrates the promising potential of the photo-energized wide working temperature range Li–CO_(2) battery in addressing the obstacle of charge overpotential and energy efficiency.
基金financially supported by the National Natural Science Foundation of China(52102233)Science and Technology Project of Hebei Education Department(QN2023019)。
文摘Aqueous aluminum ion batteries(AAIBs)have garnered extensive attention due to their environmental friendliness,high theoretical capacity,and low cost.However,the sluggish reaction kinetics and severe structural collapse of the cathode material,especially manganese oxide,during the cycling process have hindered its further application.Herein,Cu^(2+)pre-interca la ted layeredδ-MnO_(2)was synthesized via a hydrothermal method.The pre-intercalated Cu^(2+)ions not only improve the conductivity of MnO_(2)cathode but also stabilize the structure to enhance stability.X-ray absorption fine structure(XAFS)combined with density functional theory(DFT)calculations confirm the formation of the covalent bond between Cu and O,increasing the electronegativity of O atoms and enhancing the H^(+)adsorption energy.Moreover,ex-situ measurements not only elucidate the Al^(3+)/H^(+)co-insertion energy storage mechanism but also demonstrate the high reversibility of the Cu-MnO_(2)cathode during cycling.This work provides a promising modification approach for the application of manganese oxides in AAIBs.
基金supported by the Natural Science Foundation of Henan Province(No.242300420021)the Major Science and Technology Projects of Henan Province(No.221100230200)+4 种基金the Open Fund of State Key Laboratory of Advanced Refractories(No.SKLAR202210)the Key Science and Technology Program of Henan Province(No.232102241020)the Undergraduate Innovation and Entrepreneurship Training Program of Henan Province(No.S202310464012)the Ph.D.Research Startup Foundation of Henan University of Science and Technology(No.400613480015)the Postdoctoral Research Startup Foundation of Henan University of Science and Technology(No.400613554001).
文摘Aqueous Zn-ion batteries(AZIBs)have been regarded as promising alternatives to Li-ion batteries due to their advantages,such as low cost,high safety,and environmental friendliness.However,AZIBs face significant challenges in limited stability and lifetime owing to zinc dendrite growth and serious side reactions caused by water molecules in the aqueous electrolyte during cycling.To address these issues,a new eutectic electrolyte based on Zn(ClO_(4))_(2)·6H_(2)O-N-methylacetamide(ZN)is proposed in this work.Compared with aqueous electrolyte,the ZN eutectic electrolyte containing organic N-methylacetamide could regulate the solvated structure of Zn^(2+),effectively suppressing zinc dendrite growth and side reactions.As a result,the Zn//NH4 V4 O10 full cell with the eutectic ZN-1-3 electrolyte demonstrates significantly enhanced cycling stability after 1000 cycles at 1 A g^(-1).Therefore,this study not only presents a new eutectic electrolyte for zinc-ion batteries but also provides a deep understanding of the influence of Zn^(2+)solvation structure on the cycle stability,contributing to the exploration of novel electrolytes for high-performance AZIBs.
基金supported by the National Natural Science Foundation of China(52002366,22075263,22571288)the Fundamental Research Funds for the Central Universities(WK2060000091,WK2060250115,WK2060000039)the Students’Innovation and Entrepreneurship Foundation of USTC(CY2023C021).
文摘The slow kinetics of the cathode CO_(2) reduction reaction and the decomposition reaction of Li2CO3,a widebandwidth insulating product,lead to difficult CO_(2) capture and high charging potential in Li-CO_(2) batteries.To improve the reaction kinetics and decrease the reaction overpotential,we synthesized mesoporous Pt nanosheets with high tensile strain.The presence of many unsaturated coordinated Pt atoms around the pores gives rise to tensile strain in the mesoporous Pt nanosheets.This tensile strain plays a key role in regulating the interactions between the catalytic surface of Pt and the adsorbed intermediates.The two-dimensional structure provides more active sites on the surface for the catalytic reactions.These superiorities enable a low overpotential of 0.36 V at a cutoff capacity of 100μAh·cm^(−2) at a current density of 10μA·cm^(−2) over more than 2000 h.This study opens new possibilities for the rational design of metal-based materials with strain engineering for electrochemical energy storage.
基金partly supported by the National Natural Science Foundation of China(Grant No.52272225).
文摘Na_(3)V_(2)(PO_(4))_(3)(NVP)has garnered great attentions as a prospective cathode material for sodium-ion batteries(SIBs)by virtue of its decent theoretical capacity,superior ion conductivity and high structural stability.However,the inherently poor electronic conductivity and sluggish sodium-ion diffusion kinetics of NVP material give rise to inferior rate performance and unsatisfactory energy density,which strictly confine its further application in SIBs.Thus,it is of significance to boost the sodium storage performance of NVP cathode material.Up to now,many methods have been developed to optimize the electrochemical performance of NVP cathode material.In this review,the latest advances in optimization strategies for improving the electrochemical performance of NVP cathode material are well summarized and discussed,including carbon coating or modification,foreign-ion doping or substitution and nanostructure and morphology design.The foreign-ion doping or substitution is highlighted,involving Na,V,and PO_(4)^(3−)sites,which include single-site doping,multiple-site doping,single-ion doping,multiple-ion doping and so on.Furthermore,the challenges and prospects of high-performance NVP cathode material are also put forward.It is believed that this review can provide a useful reference for designing and developing high-performance NVP cathode material toward the large-scale application in SIBs.
基金financially supported by the Scientific and Technological Plan Project of Guizhou Province ([2024]054)Additional support came from the Industry and Education Combination Innovation Platform of Intelligent Manufacturing and Graduate Joint Training Base at Guizhou University (2020-520000-83-01324061)the Guizhou Engineering Research Center for Smart Services (2203-520102-04-04-298868)。
文摘Aqueous sodium-ion batteries(ASIBs) offer significant advantages for energy storage on a large scale,attributed to their economical cost,secure operatio n,and eco-friend ly natu re.Among the leading cathode materials for ASIBs,Na_(3)V_(2)(PO_(4))_(3)(NVP) exhibits excellent structural stability and a high Na+diffusion coefficient,making it a promising option.However,the high solubility of vanadium-based materials in aqueous electrolytes engenders suboptimal cycling stability for Na_(3)V_(2)(PO_(4))_(3),constraining its application in ASIBs.Herein,the Cr-substituted Na_(3)V_(1.3)Cr_(0.7)(PO_(4))3@C(NV_(1.3)Cr_(0.7)P) cathode material was synthesized via a simple sol-gel method.It is found that Cr substitution reduces the cell parameters of NV_(1.3)Cr_(0.7)P,effectively reinforcing the crystal structure.Furthermore,NV_(1.3)Cr_(0.7)P alters the Na^(+)insertion/extraction mechanism,transforming the typical two-phase reaction between Na_(1)V_(2)(PO_(4))_(3)and Na_(3)V_(2)(PO_(4))3into continuous solid-solution reactions with stable intermediates.The Cr substitution diminishes the sodium-ion diffusion energy barrier in NV_(1.3)Cr_(0.7)P,leading to smoother Na+insertion and extraction processes.Consequently,NV_(1.3)Cr_(0.7)P exhibits impressive cycling stability,retaining 74.8% of its capacity after 5,000 cycles at a current density of 5 A g^(-1),along with an outstanding rate performance of 79,2% at 10 A g^(-1).This work elucidates the stable Na^(+)insertion/extraction processes in Cr-substituted NV_(1.3)Cr_(0.7)P,offering insights into the application of vanadium-based materials in aqueous sodium-ion batteries.
基金supported by the Significant Science and Technology Project in Xiamen(Future Industry Field)(Grant No.3502Z20231057).
文摘Lithium nickel oxide(Li_(2)NiO_(2)),as a sacrificial cathode prelithiation additive,has been used to compensate for the lithium loss for improving the lifespan of lithium-ion batteries(LIBs).However,high-cost Li_(2)NiO_(2)suffers from inferior delithiation kinetics during the first cycle.Herein,we investigated the effects of the cost-effective copper substituted Li_(2)Ni_(1-x)Cu_(x)O_(2)(x=0,0.2,0.3,0.5,0.7)synthesized by a high-temperature solid-phase method on the structure,morphology,electrochemical performance of graphite‖LiFePO_(4)battery.The X-ray diffraction(XRD)refinement result demonstrated that Cu substitution strategy could be favorable for eliminating the NiO_(x)impurity phase and weakening Li-O bond.Analysis on density of states(DOS)indicates that Cu substitution is good for enhancing the electronic conductivity,as well as reducing the delithi-ation voltage polarization confirmed by electrochemical characterizations.Therefore,the optimal Li_(2)Ni_(0.7)Cu_(0.3)O_(2)delivered a high delithiation capacity of 437 mAh·g^(-1),around 8%above that of the pristine Li_(2)NiO_(2).Furthermore,a graphite‖LiFePO_(4)pouch cell with a nominal capacity of 3000 mAh demonstrated a notably improved reversible capacity,energy density and cycle life through introducing 2 wt%Li_(2)Ni_(0.7)Cu_(0.3)O_(2)additive,delivering a 6.2 mAh·g^(-1)higher initial discharge capacity and achieving around 5%improvement in capacity retentnion at 0.5P over 1000 cycles.Additionally,the post-mortem analyses testified that the Li_(2)Ni_(0.7)Cu_(0.3)O_(2)additive could suppress solid electrolyte interphase(SEI)decomposition and homogenize the Li distribution,which benefits to stabilizing interface between graphite and electrolyte,and alleviating dendritic Li plating.In conclusion,the Li_(2)Ni_(0.7)Cu_(0.3)O_(2)additive may offer advantages such as lower cost,lower delithiation voltage and higher prelithiation capacity compared with Li_(2)NiO_(2),making it a promising candidate of cathode prelithiation additive for next-generation LIBs.
基金supported by the Natural Science Foundation of Henan Province(222300420083)the Opening Foundation of State Key Laboratory of Chemistry and Utilization of Carbonbased Energy Resource of Xinjiang University(KFKT2021004)supported by the National Supercomputing Center in Zhengzhou and the Shanxi Supercomputing Center。
文摘The distinguishing feature of Fe_(3)GeTe_(2)lies in its robu st in-plane chemical bonds within layers,which are interconnected by the weak van der Waals forces between adjacent layers,offering a stable framework characterized by enhanced interlayer spacing,thereby facilitating the migration of large-sized alkali metal ions.However,to date,there have been no reported studies on the ion storage performance of Fe_(3)GeTe_(2).In this study,Fe_(3)GeTe_(2)is synthesized via the chemical vapor transport method to assess its sodium/potassium storage capabilities.Fe_(3)GeTe_(2)is characterized by its impressive conductivity,a distinctive layered architecture,and a notably wide interlayer spacing,all of these attributes collectively contributing to its superior ion storage proficiency in both sodium-ion batteries(SIBs)and potassiumion batteries(PIBs).Specifically,it demonstrates exceptional electrochemical performance,maintaining a capacity of 291.8 mA h g^(-1)at 5 A g^(-1)in SIBs and 125.0 mA h g^(-1)over 6000 cycles at 3 A g^(-1)in PIBs.A series of in/ex situ characterizations uncover the reaction mechanism of Fe_(3)GeTe_(2)in the both systems,involving a combined process of intercalation,conversion,and alloying.Theoretical calculations provide further insights into the high ion adsorption affinity and diffusion kinetics of Fe_(3)GeTe_(2)in these systems.Analytical findings reveal its superior electrochemical performance in SIBs compared to PIBs,owing to higher diffusion kinetics and reactivity.This research establishes both experimental evidence and theoretical underpinnings for the utilization of Fe_(3)GeTe_(2)in SIBs and PIBs,opening up a new avenue for the utilization of germanium-based ternary materials in the field of energy storage.
基金supported by the National Natural Science Foundation of China(NSFC,62104099,61921005,62105048,62204117 and 62073299)the Science and Technology Research Program of Chongqing Education Commission(KJQN202100633)+5 种基金the Postdoctoral Science Foundation of China(2021M693768 and 2021M701057)the Key Scientific Research Project in Colleges and Universities of Henan Province,China(21A416001)the Key Laboratory for Special Functional Materials(KEKT2022-06)the Natural Science Foundation of Jiangsu Province(BK20210275 and BK20230498)the support from Jiangsu Province Science Foundation for Youths(BK20210275)National Natural Science Foundation of China(NSFC,62204117)。
文摘Lithium-carbon dioxide(Li-CO_(2))batteries using high ion-conductive inorganic molten salt electrolytes have recently attracted much attention due to the high energy density and potential application of carbon neutrality.However,the poor Li-ion conductivity of the molten-salt electrolytes at room temperature(RT)makes these batteries lose most of their capacity and power as the temperature falls below 80℃.Here,inspired by the greenhouse effect,we report an RT molten salt Li-CO_(2)battery where solar energy can be efficiently harvested and converted into heat that is further localized on the cathode consisting of plasmonic ruthenium(Ru)catalysts and Li_(2)CO_(3)-based products via a greenhouse-like phenomenon.As a result,the solar-driven molten salt Li-CO_(2)battery demonstrates a larger full discharge/charge capacity of 9.5 mA h/8.1 mA h,and a longer cycle lifespan of 250 cycles at 500 mA/g with a limited capacity of 500 mA h/g at RT than the molten salt Li-CO_(2)battery at 130℃.Notably,the average temperature of the cathode increases by 8℃ after discharge to 0.75 mA h,which indicates the infrared radiation from Ru catalysts can be effectively suppressed by discharged Li_(2)CO_(3)-based products.This battery technology paves the way for developing low-temperature molten salt energy storage devices.
基金financially supported by Jilin province science and technology department(No.20230402059GH)Changchun Science and Technology Bureau(No.23YQ11)+4 种基金Jilin Province Science and Technology Department major science and technology project(Nos.20220301004GX and 20220301005GX)Key Subject Construction of Physical Chemistry of Northeast Normal University(No.2412022XK004)the National Natural Science Foundation of China(No.22102020)the Swedish Foundation for International Cooperation in Research and Higher Education(No.KO2017-7351)Swedish Energy Agency(No.P2020-90216)。
文摘Developing effective heterostructure strategies to mitigate the shuttling effect and accelerate lithium polysulfide(Li PS)conversion remains a critical challenge in lithium–sulfur(Li–S)batteries.Here,we report the first carbon–free VO_(2)–VS_(2)heterostructure material synthesized via in situ sulfurization,applied as a modifier on a commercial polypropylene(PP)separator(denoted as VO_(2)–VS_(2)@PP).The as–prepared VO_(2)–VS_(2)nanorods synergistically combine the high absorptivity of VO_(2)with the efficient catalytic properties of VS_(2),simultaneously enhancing Li PS anchoring and promoting its conversion.We systematically investigate the influence of material composition on battery performance,leveraging these functional attributes,Li–S cells incorporating VO_(2)–VS_(2)@PP exhibit exceptional cycle stability(over 500cycles at 1C),impressive rate performance(807 m Ah.g^(–1)at 5C),desirable reversibility(49.9%capacity retention after 300 cycles at 5C)and exceptional pouch cell performance(3.65 m Ah.cm^(–2)after 50 stable cycles at 0.1C).This study underscores the potential of tailored heterostructures in realizing high–performance Li–S batteries,offering new insights for next–generation energy storage solutions.
基金financial support under the scope of the COMET program within the K2 Center“Integrated Computational Material,Process and Product Engineering(IC-MPPE)”(Project ASSESS P1.10)financial support by the Austrian Federal Ministry for Digital and Economic Affairs,the National Foundation for Research,Technology and Development and the Christian Doppler Research Association(Christian Doppler Laboratory for Solid-State Batteries).
文摘Solid-state batteries are attracting considerable attention for their high-energy density and improved safety over conventional lithium-ion batteries.Among solid-state electrolytes,sulfide-based options like Li_(6)PS_(5)Cl are especially promising due to their superior ionic conductivity.However,interfacial degradation between sulfide electrolytes and high-voltage cathodes,such as LiCoO_(2),limits long-term performance.This study demonstrates that a LiBF_(4)-derived F-rich coating on LiCoO_(2),applied by immersing LiCoO_(2) particles in a LiBF_(4) solution followed by annealing,can significantly enhance performance in Li_(6)PS_(5)Cl-based solid-state batteries.This coating enables stable high-voltage(4.5 V vs Li^(+)/Li)operation,achieving an initial specific capacity of 153.82 mAh g^(−1) and 87.1%capacity retention over 300 cycles at 0.5C.The enhanced performance stems from the F-rich coating,composed of multiple phases including LiF,CoF_(2),Li_(x)BF_(y)O_(z),and Li_(x)BO_(y),which effectively suppresses side reactions at the LiCoO_(2)|Li_(6)PS_(5)Cl interface and improves lithium-ion diffusivity,thereby enabling greater Li capacity utilization.Our findings provide a practical pathway for advancing solid-state batteries with high-voltage LiCoO_(2) cathodes,offering substantial promise for next-generation energy storage systems.
基金supported by National Natural Science Youth Foundation of China(No.22308294)National Natural Science Foundation of China(No.22179077)+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX23_1868)Qing Lan Project of Jiangsu University and the Funding for school-level research projects of Yancheng Institute of Technology.
文摘Mn-based P2-type oxides are considered as promising cathodes for Na-ion batteries;however,they face significant challenges,including structural degradation when charged at high cutoff voltages and structural changes upon storing in a humid atmosphere.In response to these issues,we have designed an oxide with co-doping of Cu and Al which can balance both cost and structural stability.The redox reaction of Cu^(2+/3+)can provide certain charge compensation,and the introduction of Al can further suppress the Jahn-Teller effect of Mn,thereby achieving superior long-term cycling performance.The ex-situ XRD testing indicates that Cu/Al co-doping can effectively suppress the phase transition of P2-O2 at high voltage,thereby explaining the improvement in electrochemical performance.DFT calculations reveal a high chemical tolerance to moisture,with lower adsorption energy for H_(2)O compared to pure Na_(0.67)Cu_(0.25)Mn_(0.75)O_(2).A representative Na_(0.67)Cu_(0.20)Al_(0.05)Mn_(0.75)O_(2)cathode demonstrates impressive reversible capacities of 148.7 mAh/g at 0.2 C,along with a remarkable capacity retention of 79.1%(2 C,500 cycles).
基金support from the National Natural Science Foundation of China(No.52201278,No.21975260,No.22379103,No.22409074).
文摘The metal-carbon dioxide batteries,emerging as high-energy-density energy storage devices,enable direct CO_(2)utilization,offering promising prospects for CO_(2)capture and utilization,energy conversion,and storage.However,the electrochemical performance of M-CO_(2)batteries faces significant challenges,particularly at extreme temperatures.Issues such as high overpotential,poor charge reversibility,and cycling capacity decay arise from complex reaction interfaces,sluggish oxidation kinetics,inefficient catalysts,dendrite growth,and unstable electrolytes.Despite significant advancements at room temperature,limited research has focused on the performance of M-CO_(2)batteries across a wide-temperature range.This review examines the effects of low and high temperatures on M-CO_(2)battery components and their reaction mechanism,as well as the advancements made in extending operational ranges from room temperature to extremely low and high temperatures.It discusses strategies to enhance electrochemical performance at extreme temperatures and outlines opportunities,challenges,and future directions for the development of M-CO_(2)batteries.
基金supported by the Scientific Research Fund of Hunan Provincial Education Department,China(No.22B0741)。
文摘The electrochemical performance of layered O3-type NaCrO_(2)cathode material is significantly affected by the side reactions between NaCrO_(2)and electrolyte during sodium storage.A uniform Cr_(2)O_(3)coating layer was in situ constructed on the surface of NaCrO_(2)by controlling the excess ratio of sodium source.The structure,morphology,valence and electrochemical performance of the Cr_(2)O_(3)-coated NaCrO_(2)were characterized.The results indicate that the Cr_(2)O_(3)coating layer does not alter the crystal structure and morphology of NaCrO_(2),but effectively suppresses the side reactions between NaCrO_(2)and electrolyte,and improves the surface/interfacial stability of NaCrO_(2)material.The Cr_(2)O_(3)-coated NaCrO_(2)exhibits improved electrochemical performance with a capacity retention of 66.4%after 500 cycles at 10C.
基金supported by Jing-Jin-Ji Regional Integrated Environmental Improvement,National Science and Technology Major Project(Nos.2024ZD1200303).
文摘Aiming at inhibiting the irreversible P2–O2 phase transition of conventional P2-type cathode materials at high voltage and enhancing the cycling stability of sodium-ion batteries,in this article,based on a strategy of adjusting the Na^(+)ion occupancy within the crystal structure,Na_(0.67)Ni_(0.33)Mn_(0.67–x)Fe_(x)O_(2)(NM–x Fe,x=0.10,0.15,0.20)cathode materials were synthesized by high shear mixer(HSM)-assisted co-precipitation method and evaluated the electrochemical performance at high voltage(4.35 V).The optimal sample NM–0.15Fe exhibits an initial discharge capacity of 130.8 mAh/g(0.1 C),with exceptional retention of 95.9%after 100 cycles(1 C).XRD analysis reveals that Fe intercalation promotes the more amount of Nae-similar occupation;the Nae/Naf ratio equals 1.93 for NM–0.15Fe versus 1.62 for NM,which enhances Na^(+)diffusion kinetics,as confirmed by GITT tests.Through characterizations of in situ XRD,XPS,HRTEM,CV,etc.,it is illustrated that the Fe^(3+)intercalation can effectively disrupt the Na^(+)/vacancy ordering and inhibit the harmful P2–O2 phase transition,and then improve the cycling stability of the cathode.DFT calculations disclose that intercalated Fe can reduce the electron densities of adjacent transition metallic elements,generating more repulsive forces impacted on sodium and consequently appearance of more Nae sites,leading to a lower Na^(+)diffusion energy barrier.Such strategy of modulating Na occupation sites in crystal structure is conducive to the development of low-cost and high-performance layered cathode materials for sodium-ion batteries.
基金financially supported by the National Natural Science Foundations of China(No.12304037)the Interdisciplinary Intelligence Super Computer Center of BNUZH
文摘The metal triazole(MTA)-based MOFs were found to preferentially adsorb O-rich species,which had enhanced electrocatalytic oxygen reduction reactions(ORR)and stabilized the O-containing species during the discharge and charge processes in Li-O_(2)battery.However,the MOFs exhibited low electron conductivity and poor electron transfer interface in the electrocatalysis,limiting the electrocatalytic activity.To address this issue,a nanocomposite with the Co-MTA-coated carbon nano tubes(Co-MTA-C)was constructed,which formed the three-dimensional conductivity network connected with the intersecting carbon nano tube(CNT).In this composite,the electron-rich Co-MTA interacted with the highly conductive CNT,resulting in a charge redistribution.Optimized the electronic structure of the Co center through compositional modifications presented a high valence compared to the pure MOFs.In situ X-ray absorption spectroscopy revealed a direct reaction of Co sites with intermediates such as LiO_(x),leading to the formation of nanosheet array discharge products.The battery based on optimized CoMTA-C demonstrated fast kinetics and superior stability,with a low overpotential of 1.13 V,high specific capacity of 9057 mAh g^(-1),and long-term durability of 600 cycles.It provides a facile and effective strategy for enhancing the electrocatalytic performance through rational tuning of high-conductivity substances.