Cubic phase Li7La3Zr2O12(LLZO),a member of the Li–Garnet family,is a promising solid electrolyte and has been widely studied in recent years.However,LLZO samples prepared via conventional ambient air sintering report...Cubic phase Li7La3Zr2O12(LLZO),a member of the Li–Garnet family,is a promising solid electrolyte and has been widely studied in recent years.However,LLZO samples prepared via conventional ambient air sintering reported in the published literature often contain large grains with lower than desired(<94%)relative density.In this study,a non-contact method of co-firing with mother powder method is proposed to prepare high-quality Ta-doped LLZO–MgO composite ceramics.By sintering at 1150℃for 5 h,the ceramics can reach relative density of 98.2%,conductivity of 5.17×10^-4 S cm^-1 at 25℃and fracture strength of 150 MPa.The sintered samples have uniform fine-grained microstructure and high critical current densities of 0.75–0.95 mA cm-2 at room temperature in Li–Li symmetry cell with Au modification.In addition,systematic sintering experiments and characterizations are conducted to explore the function of MgO in inhibiting the Ta-LLZO grain growth and its existing form inside the composite ceramics.展开更多
The present work proposes a novel strategy to fabricate an integrated architecture of gel polymer electrolyte (GPE)-nanoarray cathode for lithium-O2 batteries (LOBs). As a proof-of-concept experiment, the photo-in...The present work proposes a novel strategy to fabricate an integrated architecture of gel polymer electrolyte (GPE)-nanoarray cathode for lithium-O2 batteries (LOBs). As a proof-of-concept experiment, the photo-initiated in situ polymerization of GPE was carried out via incorporating the precursor solution in advance into a self- standing binder-free oxygen electrode of Co3O4 nanosheets array grown on carbon cloth (Co3O4@CC), forming an integrated GPE-Co3O4@CC architecture. The performance of the solid-state LOBs using the GPE-Co3O4@CC assembly is greatly enhanced compared to the counterparts with a traditional cell structure, in which GPE was sandwiched by a lithium metal and a cathode. The enhanced performance is ascribed to the combination of the in situ polymerization of GPE and the versatile structure of nanoarray electrode, which results in abundant interfacial contacts between GPE and electrode. This work presents an alternative way to develop high-performance solid-state LOBs by combining the advantages of both gel polymer electrolytes and nanoarray electrodes.展开更多
The theoretical specific energy of lithium-air battery is as high as 3436 Wh.kg^-1, and the possible achieved value may reach 600-700 Wh.kg^-l, which enables this energy storage system as an important propulsion power...The theoretical specific energy of lithium-air battery is as high as 3436 Wh.kg^-1, and the possible achieved value may reach 600-700 Wh.kg^-l, which enables this energy storage system as an important propulsion power sources for electric vehicles with the driving range of 500-800 km. Currently, Li-air batteries are facing main challenges at stability, efficiency, applicability and safety. In particular, from a practical view of point, the Li-air batteries should be operated directly in ambient air. Solid-state battery system is the best avenue to eventually solve these main issues. At the heart of the solid state, Li-air technology is the solid-state Li^+-conducting ceramic material. Developing solid-state lithium-air batteries (SSLAB) can solve the problem of applicability fundamentally and circumvent the safety issues completely, and it is also an important avenue to improve the stability of the battery system. In this paper, we provide a systematical review of the progress in the cell construction, the regulation of the electrode/electrolyte interface, the cell assembly, the electrochemical performance and the mechanism for the SSLAB. In every section, the contributions of the recent research progress in the main challenges and the remained questions will be commented. Based on these reviews, we attempt to propose some alternative approaches for the next stage and suggest a development prospective for the SSLAB.展开更多
In this paper, the capacity titration technique (CT technique) was developed on basis of the RPG (ratio of potentio-charge capacity to galvano-charge capacity) method to continuously determine the solid diffusion ...In this paper, the capacity titration technique (CT technique) was developed on basis of the RPG (ratio of potentio-charge capacity to galvano-charge capacity) method to continuously determine the solid diffusion coefficient D of the intercalary species within insertion-host materials with a small voltage region. The linear equations of D vs. q (value of ratio of the potentio-charge capacity to the galvano-charge capacity) were given in different range of q. By the CT technique,the Li^+ solid diffusion coefficients D within LiMn2O4 at different voltages were determined. The results showed that the values of D varied from 3.447×10^-9 cm^2/s to 7.60×10^-11 cm^2/s in the voltage range of charge from 3.3V to 4.3V as a function of voltage with “W” shape.展开更多
The high Li-ion conductivity of the Li7P3S11 sulfide-based solid electrolyte makes it a promising candidate for all-solid-state lithium batteries. The Li-ion transport over electrode-electrolyte and electrolyteelectro...The high Li-ion conductivity of the Li7P3S11 sulfide-based solid electrolyte makes it a promising candidate for all-solid-state lithium batteries. The Li-ion transport over electrode-electrolyte and electrolyteelectrolyte interfaces, vital for the performance of solid-state batteries, is investigated by impedance spectroscopy and solid-state NMR experiments. An all-solid-state Li-ion battery is assembled with the Li7P3S11 electrolyte, nano-Li2S cathode and Li-In foil anode, showing a relatively large initial discharge capacity of 1139.5 m Ah/g at a current density of 0.064 m A/cm^ 2 retaining 850.0 m Ah/g after 30 cycles. Electrochemical impedance spectroscopy suggests that the decrease in capacity over cycling is due to the increased interfacial resistance between the electrode and the electrolyte. 1D exchange ^7Li NMR quantifies the interfacial Li-ion transport between the uncycled electrode and the electrolyte, resulting in a diffusion coefficient of 1.70(3) ×10^-14cm^2/s at 333 K and an energy barrier of 0.132 e V for the Li-ion transport between Li2S cathode and Li7P3S11 electrolyte. This indicates that the barrier for Li-ion transport over the electrode-electrolyte interface is small. However, the small diffusion coefficient for Li-ion diffusion between the Li2S and the Li7P3S11 suggests that these contact interfaces between electrode and electrolyte are relatively scarce, challenging the performance of these solid-state batteries.展开更多
A novel transparent and soft quasi-solid-state electrolyte (QSSE) was proposed and fabricated, which consists of ionic liquid (PYR14TFSI) and nano-fumed silica. The QSSE demonstrates high ionic conductivity of 4.6...A novel transparent and soft quasi-solid-state electrolyte (QSSE) was proposed and fabricated, which consists of ionic liquid (PYR14TFSI) and nano-fumed silica. The QSSE demonstrates high ionic conductivity of 4.6× 10-4 S/cm at room temperature and wide electrochemical stability window of over 5 V. The Li-O2 battery using such quasi-solidstate electrolyte exhibits a low charge-discharge overpotential at the first cycle and excellent long-term cyclability over 500 cycles.展开更多
基金financially supported by the National Key R&D Program of China under Grant No.2018YFB0905400,Corning Incorporatedthe National Natural Science Foundation of China under Grant No.51772315,No.51432010
文摘Cubic phase Li7La3Zr2O12(LLZO),a member of the Li–Garnet family,is a promising solid electrolyte and has been widely studied in recent years.However,LLZO samples prepared via conventional ambient air sintering reported in the published literature often contain large grains with lower than desired(<94%)relative density.In this study,a non-contact method of co-firing with mother powder method is proposed to prepare high-quality Ta-doped LLZO–MgO composite ceramics.By sintering at 1150℃for 5 h,the ceramics can reach relative density of 98.2%,conductivity of 5.17×10^-4 S cm^-1 at 25℃and fracture strength of 150 MPa.The sintered samples have uniform fine-grained microstructure and high critical current densities of 0.75–0.95 mA cm-2 at room temperature in Li–Li symmetry cell with Au modification.In addition,systematic sintering experiments and characterizations are conducted to explore the function of MgO in inhibiting the Ta-LLZO grain growth and its existing form inside the composite ceramics.
基金financially supported by the National Natural Science Foundation of China(Nos.21673169 and 51672205)the National Key Research and Development Program of China(No.2016YFA0202602)+1 种基金the Research Start-Up Fund from Wuhan University of Technologythe Fundamental Research Funds for the Central Universities(Nos.2016IVA083 and 2017IB005)
文摘The present work proposes a novel strategy to fabricate an integrated architecture of gel polymer electrolyte (GPE)-nanoarray cathode for lithium-O2 batteries (LOBs). As a proof-of-concept experiment, the photo-initiated in situ polymerization of GPE was carried out via incorporating the precursor solution in advance into a self- standing binder-free oxygen electrode of Co3O4 nanosheets array grown on carbon cloth (Co3O4@CC), forming an integrated GPE-Co3O4@CC architecture. The performance of the solid-state LOBs using the GPE-Co3O4@CC assembly is greatly enhanced compared to the counterparts with a traditional cell structure, in which GPE was sandwiched by a lithium metal and a cathode. The enhanced performance is ascribed to the combination of the in situ polymerization of GPE and the versatile structure of nanoarray electrode, which results in abundant interfacial contacts between GPE and electrode. This work presents an alternative way to develop high-performance solid-state LOBs by combining the advantages of both gel polymer electrolytes and nanoarray electrodes.
基金financially supported by the ‘‘Hundred Talents’’ program of the Chinese Academy of Sciences(2015)‘‘The Recruitment Program of Global Experts’’ in Shanghai(2016)the National Natural Science Foundation of China(Nos.51672299 and 51772314)
文摘The theoretical specific energy of lithium-air battery is as high as 3436 Wh.kg^-1, and the possible achieved value may reach 600-700 Wh.kg^-l, which enables this energy storage system as an important propulsion power sources for electric vehicles with the driving range of 500-800 km. Currently, Li-air batteries are facing main challenges at stability, efficiency, applicability and safety. In particular, from a practical view of point, the Li-air batteries should be operated directly in ambient air. Solid-state battery system is the best avenue to eventually solve these main issues. At the heart of the solid state, Li-air technology is the solid-state Li^+-conducting ceramic material. Developing solid-state lithium-air batteries (SSLAB) can solve the problem of applicability fundamentally and circumvent the safety issues completely, and it is also an important avenue to improve the stability of the battery system. In this paper, we provide a systematical review of the progress in the cell construction, the regulation of the electrode/electrolyte interface, the cell assembly, the electrochemical performance and the mechanism for the SSLAB. In every section, the contributions of the recent research progress in the main challenges and the remained questions will be commented. Based on these reviews, we attempt to propose some alternative approaches for the next stage and suggest a development prospective for the SSLAB.
基金This work was supported by NNSF of China(No.20406024)the Postdoctoral Science Foundation of Central South University(No.76600).
文摘In this paper, the capacity titration technique (CT technique) was developed on basis of the RPG (ratio of potentio-charge capacity to galvano-charge capacity) method to continuously determine the solid diffusion coefficient D of the intercalary species within insertion-host materials with a small voltage region. The linear equations of D vs. q (value of ratio of the potentio-charge capacity to the galvano-charge capacity) were given in different range of q. By the CT technique,the Li^+ solid diffusion coefficients D within LiMn2O4 at different voltages were determined. The results showed that the values of D varied from 3.447×10^-9 cm^2/s to 7.60×10^-11 cm^2/s in the voltage range of charge from 3.3V to 4.3V as a function of voltage with “W” shape.
基金funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement no.[307161] of M.W.
文摘The high Li-ion conductivity of the Li7P3S11 sulfide-based solid electrolyte makes it a promising candidate for all-solid-state lithium batteries. The Li-ion transport over electrode-electrolyte and electrolyteelectrolyte interfaces, vital for the performance of solid-state batteries, is investigated by impedance spectroscopy and solid-state NMR experiments. An all-solid-state Li-ion battery is assembled with the Li7P3S11 electrolyte, nano-Li2S cathode and Li-In foil anode, showing a relatively large initial discharge capacity of 1139.5 m Ah/g at a current density of 0.064 m A/cm^ 2 retaining 850.0 m Ah/g after 30 cycles. Electrochemical impedance spectroscopy suggests that the decrease in capacity over cycling is due to the increased interfacial resistance between the electrode and the electrolyte. 1D exchange ^7Li NMR quantifies the interfacial Li-ion transport between the uncycled electrode and the electrolyte, resulting in a diffusion coefficient of 1.70(3) ×10^-14cm^2/s at 333 K and an energy barrier of 0.132 e V for the Li-ion transport between Li2S cathode and Li7P3S11 electrolyte. This indicates that the barrier for Li-ion transport over the electrode-electrolyte interface is small. However, the small diffusion coefficient for Li-ion diffusion between the Li2S and the Li7P3S11 suggests that these contact interfaces between electrode and electrolyte are relatively scarce, challenging the performance of these solid-state batteries.
基金Project supported by the National Key R&D Program of China(Grant Nos.2016YFB0100300 and 2016YFB0100100)the National Basic Research Program of China(Grant No.2014CB932300)+2 种基金the Beijing Municipal Science&Technology Commission,China(Grant No.D171100005517001)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA09010000)the National Natural Science Foundation of China(Grant No.51502334)
文摘A novel transparent and soft quasi-solid-state electrolyte (QSSE) was proposed and fabricated, which consists of ionic liquid (PYR14TFSI) and nano-fumed silica. The QSSE demonstrates high ionic conductivity of 4.6× 10-4 S/cm at room temperature and wide electrochemical stability window of over 5 V. The Li-O2 battery using such quasi-solidstate electrolyte exhibits a low charge-discharge overpotential at the first cycle and excellent long-term cyclability over 500 cycles.
文摘以Li_2CO_3、ZrO_2、Er_2O_3、(NH_4)_2HPO_4为初始原料,采用传统的固相法合成了Li Zr_2(PO_4)_3基NASICON型固态电解质材料Li_(1+x)Er_xZr_(2-x)(PO_4)_3(x=0~0.2)。通过无压烧结和放电等离子烧结法(SPS)烧结得到致密的电解质片,采用无压烧结过程中在样品中加入少许的PVA使得样品烧结致密。利用XRD、SEM、EIS分别测得样品的结构、形貌以及电性能。结果表明:通过SPS烧结的样品致密度可以达到92.6%。使用SPS烧结后的样品Li1.15Er0.15Zr1.85(PO_4)_3在常温下的晶粒和总电导率分别为2.2×10^(-4)和8.8×10^(-6) S·cm^(-1)。样品的激活能为0.36 e V。