In anode free batteries(AFBs), the current collector acts as anode simultaneously and has large volume expansion which is generally considered as a negative effect decreasing the structural stability of a battery. Mor...In anode free batteries(AFBs), the current collector acts as anode simultaneously and has large volume expansion which is generally considered as a negative effect decreasing the structural stability of a battery. Moreover, despite many studies on the fast lithium diffusion in the current collector materials of AFB such as copper and aluminum, the involved Li diffusion mechanism in these materials remains poorly understood. Through first-principles calculation and stress-assisted diffusion equations, here we study the Li diffusion mechanism in several current collectors and related alloys and clarify the effect of volume expansion on Li diffusion respectively. It is suggested that due to the lower Li migration barriers in aluminum and tin, they should be more suitable to be used as AFB anodes, compared to copper, silver, and lead. The Li diffusion facilitation in copper with a certain number of vacancies is proposed to explain why the use of copper with a thickness≤100 nm as the protective coating on the anode improves the lifetime of the batteries. We show that the volume expansion has a positive effect on Li diffusion via mechanical–electrochemical coupling. Namely, the volume expansion caused by Li diffusion will further induce stress which in turn affects the diffusion. These findings not only provide in-depth insight into the operating principle of AFBs, but also open a new route toward design of improved anode through utilizing the positive effect of mechanical–electrochemical coupling.展开更多
We perform a density functional study on the adsorption and diffusion of Li atoms on silicene sheet and zigzag nanoribbons. Our results show that the diffusion energy barrier of Li adatoms on silicene sheet is 0.25 eV...We perform a density functional study on the adsorption and diffusion of Li atoms on silicene sheet and zigzag nanoribbons. Our results show that the diffusion energy barrier of Li adatoms on silicene sheet is 0.25 eV, which is much lower than on graphene and Si bulk. The diffusion barriers along the axis of zigzag silicene nanoribbon range from0. 1 to 0.25 eV due to an edge effect, while the diffusion energy barrier is about 0.5 eV for a Li adatom to enter into a silicene nanoribbon. Our calculations indicate that using silicene nanoribbons as anodes is favorable for a Li-ion battery.展开更多
Although showing huge potential in prospering the marketplace of all-solid-state lithium metal batteries(ASSLMBs),garnet-type solid electrolytes(Li6.5La3Zr1.5Ta0.6O12,LLZTO)are critically plagued by interface instabil...Although showing huge potential in prospering the marketplace of all-solid-state lithium metal batteries(ASSLMBs),garnet-type solid electrolytes(Li6.5La3Zr1.5Ta0.6O12,LLZTO)are critically plagued by interface instability with Li anode and the vulnerability to Li dendrite,which are attributed to poor Li diffusion kinetic in bulk Li metal.Herein,a LixAg solid solution alloy with high Li diffusion kinetic is reported as a mixed ionelectron conductor(MIEC)alloy anode.The high Li diffusion kinetic stemming from a low eutectic point and a high mutual solubility of LixAg could reduce the Li concentration gradient in the anode,regulate Li electrochemical potential,and change the relative local overpotential for Li stripping/plating in the anode.Notably,Li stripping/plating prefers energetically at the LixAg/current collector interface rather than the LLZTO/LixAg interface.Therefore,the contact loss is avoided at the LLZTO/LixAg interface.As a result,excellent cycling stability(~1,200 h at 0.2 mA/cm2),and dendrites tolerance(critical current density of 1.2 mA/cm2)are demonstrated by using LixAg as anode.Further research has elucidated that those alloys with low eutectic temperature and high mutual solubility with lithium should be focused on,as they would provide and maintain a soft lattice and a high lithium diffusion rate during composition change.This provides a basis for the selection of alloy phases in negative electrode materials,as well as their application in garnet-based ASSLMBs.展开更多
Li transient concentration distribution in spherical active material particles can affect the maximum power density and the safe operating regime of the electric vehicles(EVs). On one hand, the quasiexact/exact soluti...Li transient concentration distribution in spherical active material particles can affect the maximum power density and the safe operating regime of the electric vehicles(EVs). On one hand, the quasiexact/exact solution obtained in the time/frequency domain is time-consuming and just as a reference value for approximate solutions;on the other hand, calculation errors and application range of approximate solutions not only rely on approximate algorithms but also on discharge modes. For the purpose to track the transient dynamics for Li solid-phase diffusion in spherical active particles with a tolerable error range and for a wide applicable range, it is necessary to choose optimal approximate algorithms in terms of discharge modes and the nature of active material particles. In this study, approximation methods,such as diffusion length method, polynomial profile approximation method, Padé approximation method,pseudo steady state method, eigenfunction-based Galerkin collocation method, and separation of variables method for solving Li solid-phase diffusion in spherical active particles are compared from calculation fundamentals to algorithm implementation. Furthermore, these approximate solutions are quantitatively compared to the quasi-exact/exact solution in the time/frequency domain under typical discharge modes, i.e., start-up, slow-down, and speed-up. The results obtained from the viewpoint of time-frequency analysis offer a theoretical foundation on how to track Li transient concentration profile in spherical active particles with a high precision and for a wide application range. In turn, optimal solutions of Li solid diffusion equations for spherical active particles can improve the reliability in predicting safe operating regime and estimating maximum power for automotive batteries.展开更多
The lithium-ion batteries are recognized as the most promising energy storage system,but it still does not meet the power requirements of electric vehicle batteries owing to low volumetric energy density with the trad...The lithium-ion batteries are recognized as the most promising energy storage system,but it still does not meet the power requirements of electric vehicle batteries owing to low volumetric energy density with the traditional graphite electrode system.In this study,we report the development of a novel electrode system fabricated by implantation of a solid electrolyte interphase(SEI)layer on the graphite surface.The SEI-implanted graphite electrode is made using a lithium bis(trifluoromethanesulfonyl)imide(LiTFSI)-based electrolyte and cycled with a lithium tetrafluoroborate LiBF4-based electrolyte.This new electrode system shows significantly enhanced electrochemical properties owing to the rapid and efficient diffusion of Li ions through the SEI layer between the electrolyte and electrode.This graphite electrode with its pre-formed SEI layer achieves a reversible capacity of 357 mAh g^-1 at 0.5 C after 50 cycles,which is significantly higher than that of commercial lithium-ion battery systems constructed with LiPF6(312mAh g^-1).The resulting unique electrode system could present a new avenue in SEI research for highperformance lithium-ion batteries.展开更多
Lithium(Li)metal is regarded as one of the most promising anode candidates for next-generation batteries due to its extremely high specific capacity and low redox potential.However,its application is still hindered by...Lithium(Li)metal is regarded as one of the most promising anode candidates for next-generation batteries due to its extremely high specific capacity and low redox potential.However,its application is still hindered by the uncontrolled growth of dendritic Li and huge volume fluctuation during cycles.To address these issues,flexible and self-supporting three-dimensional(3D)interlaced Ndoped carbon nanofibers(NCNFs)coated with uniformly distributed 2D ultrathin NiCo_(2)S_(4)nanosheets(denoted CNCS)were designed to eliminate the intrinsic hotspots for Li deposition.Physicochemical dual effects of CNCS arise from limited surface Li diffusivity with a higher Li affinity,leading to uniform Li nucleation and less random accumulation of Li,as confirmed by ab initio molecular dynamics simulations.Due to the unique structure,exchange current density is reduced significantly and metallic Li is further contained within the interspace between the NCNF and NiCo_(2)S_(4)nanosheets,preventing the formation of dendritic Li.The symmetric cell with a Li/CNCS composite anode shows a long-running lifespan for almost 1200 h,with an exceptionally low and stable overpotential under 1mA cm^(-2)/1 mAh cm^(-2).A full cell coupled with a LiFePO4 cathode at a low N/P ratio of 2.45 shows typical voltage profiles but more significantly enhanced performance than that of a LiFePO4 cathode coupled with a bare Li anode.展开更多
Ni-rich layered cathodes(LiNi_xCo_yMn_(2)O_(2))have recently drawn much attention due to their high specific capacities.However,the poor rate capability of LiNi_xCo_yMn_(2)O_(2),which is mainly originated from the two...Ni-rich layered cathodes(LiNi_xCo_yMn_(2)O_(2))have recently drawn much attention due to their high specific capacities.However,the poor rate capability of LiNi_xCo_yMn_(2)O_(2),which is mainly originated from the twodimensional diffusion of Li ions in the Li slab and Li^(+)/Ni^(2+)cation mixing that hinder the Li^(+)diffusion,has limited their practical application where high power density is needed.Here we integrated Li_(2)MnO_(3)nanodomains into the layered structure of a typical Ni-rich LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)material,which minimized the Li^(+)/Ni^(2+)cationic disordering,and more importantly,established grain boundaries within the NCM811 matrix,thus providing a three-dimensional diffusion channel for Li ions.Accordingly,an average Li-ion diffusion coefficient(D_(Li+))of the Li_(2)MnO_(3)-integrated LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811-I)during charge/discharge was calculated to be approximately 6*10^(-10)cm~2 S^(-1),two times of that in the bare NCM811(3*10^(-10)cm~2 S^(-1)).The capacity delivered by the NCM811-I(154.5 mAh g^(-1))was higher than that of NCM811(141.3 mAh g^(-1))at 2 C,and the capacity retention of NCM811-I increased by 13.6%after100 cycles at 0.1 C and 13.4%after 500 cycles at 1 C compared to NCM811.This work provides a valuable routine to improve the rate capability of Ni-rich cathode materials,which may be applied to other oxide cathodes with sluggish Li-ion transportation.展开更多
Li Fe PO4/C was prepared via solid state reaction and characterized with X-ray powder diffraction and charge–discharge test. As-prepared Li Fe PO4/C has a triphylite structure and exhibits an excellent rate capabilit...Li Fe PO4/C was prepared via solid state reaction and characterized with X-ray powder diffraction and charge–discharge test. As-prepared Li Fe PO4/C has a triphylite structure and exhibits an excellent rate capability and capacity retention. Electrochemical impedance spectroscopy(EIS) was applied to investigate LixFe PO4/C(0<x<1) electrode on temperature variation. The valid equivalent circuit for EIS fitting was determined which contains an intercalation capacitance for Li+ ion accumulation and consumption in the electrode reaction. The surface layer impedance needs to be included in the equivalent circuit when Li Fe PO4/C is deeply delithiated at a relatively high temperature. EIS examination indicates that a temperature rise leads to a better reversibility, lower charge transfer resistance, higher exchange current density J0 and greater Li+ ion diffusion coefficient for the LixFe PO4/C electrode process. The Li+ ion concentration in LixFe PO4/C is potential to impact the Li+ ion diffusion coefficient, and a decrease in the former results in an increase in the latter.展开更多
The shuttle effect of lithium polysulfides(UPSs)in lithium-sulfur batteries(LSBs)has been hampered their commercialization.Metal oxides as separator modifications can suppress the shuttle effect.Since there is no dire...The shuttle effect of lithium polysulfides(UPSs)in lithium-sulfur batteries(LSBs)has been hampered their commercialization.Metal oxides as separator modifications can suppress the shuttle effect.Since there is no direct electron transport between metal oxides and UPSs,absorbed UPSs should be diffused from the surface of metal oxides to the carbon matrix to go through redox reactions.If diffusivity of UPSs from metal oxides surface to carbon substrate is poor,it would hinder the redox reactions of LiPSs.Nevertheless,researchers tend to focus on the adsorption and overlook the diffusion of UPSs.Herein,same morphology and different crystal phase of TiO_(2) nanosheets grown on carbon nanotubes(CNTs@TiO_(2)-bronze and CNTs@TiO_(2)-anatase)have been designed via a simple approach.Compared with CNTs and CNTs@TiO_(2)-anatase composites,the battery with CNTs@TiO_(2)-bronze modified separator delivers higher specific capacities and stronger cycling stability,especially at high current rates(~472 mAh·g^(-1) at 2.0 C after 1,000 cycles).Adsorption tests,density functional theory calculations and electrochemical performance evaluations indicate that suitable diffusion and adsorption for LiPSs on the CNTs@TiO_(2)-B surface can effectively capture LiPSs and promote the redox reaction,leading to the superior cycling performances.展开更多
Solid-state lithium-metal batteries based on poly(vinylidene fluoride-co-hexafluoropropylene)(PVH)are frequently proposed to address the detrimental safety issue of conventional lithium-ion batteries by eliminating th...Solid-state lithium-metal batteries based on poly(vinylidene fluoride-co-hexafluoropropylene)(PVH)are frequently proposed to address the detrimental safety issue of conventional lithium-ion batteries by eliminating the use of flammable solvents,but still face a key challenge:low capacity and sluggish charge/discharge rate due to the intrinsic large-gradient Li^(+)distribution across the ionically-inert PVH matrix.Herein,Te vacancies in form of Bi_(2)Te_(3-x) are proposed to polarize the PVH unit to realize efficient decoupling of lithium salts at the atomic level in PVH-based solid polymeric electrolyte.Te vacancies in the PVH electrolyte doped with Bi_(2)Te_(3-x)(PVBT)induce a high-throughput and homogenous Li^(+)flow within the PVH matrices and near the Li metal.Theoretical calculations show that Te vacancies own high adsorption energy with bis(trifluoromethanesulfonyl)imide anions(TFSI^(-)),repulsive effect on Li^(+),and localized electron distribution,giving rise to a lithium-ion concentration gradient of 30 mol m^(-3),the smallest among the PVH-based inorganic/organic composite electrolytes.Consequently,the polarized electrolyte owns an unprecedented high-rate battery capacity of 114 mAh g^(-1)at~700 mA g^(-1)and also superior capacity performances with a cathode loading of 12 mg cm^(-2),outperforming the state-of-art PVH-based inorganic/organic composite electrolytes in Li||LiFePO_(4)battery.The work demonstrates an efficient strategy for achieving fast Liþdiffusion dynamics across polymeric matrices of classic solid-state electrolytes.展开更多
基金National Natural Science Foundation of China(Grant Nos.11874254,51802187,and 51622207)Shanghai Sailing Program,China(Grant No.18YF1408700)+3 种基金Shanghai Pujiang Program,China(Grant No.2019PJD016)Open Project of the State Key Laboratory of Advanced Special Steel,Shanghai University,China(Grant No.SKLASS2018-01)the Project of the State Key Laboratory of Advanced Special Steel,Shanghai University,China(Grant No.SKLASS2019-Z023)the Science and Technology Commission of Shanghai Municipality,China(Grant No.19DZ2270200).
文摘In anode free batteries(AFBs), the current collector acts as anode simultaneously and has large volume expansion which is generally considered as a negative effect decreasing the structural stability of a battery. Moreover, despite many studies on the fast lithium diffusion in the current collector materials of AFB such as copper and aluminum, the involved Li diffusion mechanism in these materials remains poorly understood. Through first-principles calculation and stress-assisted diffusion equations, here we study the Li diffusion mechanism in several current collectors and related alloys and clarify the effect of volume expansion on Li diffusion respectively. It is suggested that due to the lower Li migration barriers in aluminum and tin, they should be more suitable to be used as AFB anodes, compared to copper, silver, and lead. The Li diffusion facilitation in copper with a certain number of vacancies is proposed to explain why the use of copper with a thickness≤100 nm as the protective coating on the anode improves the lifetime of the batteries. We show that the volume expansion has a positive effect on Li diffusion via mechanical–electrochemical coupling. Namely, the volume expansion caused by Li diffusion will further induce stress which in turn affects the diffusion. These findings not only provide in-depth insight into the operating principle of AFBs, but also open a new route toward design of improved anode through utilizing the positive effect of mechanical–electrochemical coupling.
基金supported by the National Natural Science Foundation of China(Grant Nos.11074212 and 11204123)the Natural Science Foundation of Jiangsu province,China(Grant No.BK20130945)
文摘We perform a density functional study on the adsorption and diffusion of Li atoms on silicene sheet and zigzag nanoribbons. Our results show that the diffusion energy barrier of Li adatoms on silicene sheet is 0.25 eV, which is much lower than on graphene and Si bulk. The diffusion barriers along the axis of zigzag silicene nanoribbon range from0. 1 to 0.25 eV due to an edge effect, while the diffusion energy barrier is about 0.5 eV for a Li adatom to enter into a silicene nanoribbon. Our calculations indicate that using silicene nanoribbons as anodes is favorable for a Li-ion battery.
基金supported by the Natural Science Foundation of China(Grant 51977097,52207234)the Science and Technology Project of State Grid Corporation of China(Grant No.5419-202199552A-0-5-ZN).
文摘Although showing huge potential in prospering the marketplace of all-solid-state lithium metal batteries(ASSLMBs),garnet-type solid electrolytes(Li6.5La3Zr1.5Ta0.6O12,LLZTO)are critically plagued by interface instability with Li anode and the vulnerability to Li dendrite,which are attributed to poor Li diffusion kinetic in bulk Li metal.Herein,a LixAg solid solution alloy with high Li diffusion kinetic is reported as a mixed ionelectron conductor(MIEC)alloy anode.The high Li diffusion kinetic stemming from a low eutectic point and a high mutual solubility of LixAg could reduce the Li concentration gradient in the anode,regulate Li electrochemical potential,and change the relative local overpotential for Li stripping/plating in the anode.Notably,Li stripping/plating prefers energetically at the LixAg/current collector interface rather than the LLZTO/LixAg interface.Therefore,the contact loss is avoided at the LLZTO/LixAg interface.As a result,excellent cycling stability(~1,200 h at 0.2 mA/cm2),and dendrites tolerance(critical current density of 1.2 mA/cm2)are demonstrated by using LixAg as anode.Further research has elucidated that those alloys with low eutectic temperature and high mutual solubility with lithium should be focused on,as they would provide and maintain a soft lattice and a high lithium diffusion rate during composition change.This provides a basis for the selection of alloy phases in negative electrode materials,as well as their application in garnet-based ASSLMBs.
基金the financial support from the National Science Foundation of China(22078190 and 12002196)the National Key Research and Development Program of China(2020YFB1505802)。
文摘Li transient concentration distribution in spherical active material particles can affect the maximum power density and the safe operating regime of the electric vehicles(EVs). On one hand, the quasiexact/exact solution obtained in the time/frequency domain is time-consuming and just as a reference value for approximate solutions;on the other hand, calculation errors and application range of approximate solutions not only rely on approximate algorithms but also on discharge modes. For the purpose to track the transient dynamics for Li solid-phase diffusion in spherical active particles with a tolerable error range and for a wide applicable range, it is necessary to choose optimal approximate algorithms in terms of discharge modes and the nature of active material particles. In this study, approximation methods,such as diffusion length method, polynomial profile approximation method, Padé approximation method,pseudo steady state method, eigenfunction-based Galerkin collocation method, and separation of variables method for solving Li solid-phase diffusion in spherical active particles are compared from calculation fundamentals to algorithm implementation. Furthermore, these approximate solutions are quantitatively compared to the quasi-exact/exact solution in the time/frequency domain under typical discharge modes, i.e., start-up, slow-down, and speed-up. The results obtained from the viewpoint of time-frequency analysis offer a theoretical foundation on how to track Li transient concentration profile in spherical active particles with a high precision and for a wide application range. In turn, optimal solutions of Li solid diffusion equations for spherical active particles can improve the reliability in predicting safe operating regime and estimating maximum power for automotive batteries.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(NRF-2019R1A2C2088174)。
文摘The lithium-ion batteries are recognized as the most promising energy storage system,but it still does not meet the power requirements of electric vehicle batteries owing to low volumetric energy density with the traditional graphite electrode system.In this study,we report the development of a novel electrode system fabricated by implantation of a solid electrolyte interphase(SEI)layer on the graphite surface.The SEI-implanted graphite electrode is made using a lithium bis(trifluoromethanesulfonyl)imide(LiTFSI)-based electrolyte and cycled with a lithium tetrafluoroborate LiBF4-based electrolyte.This new electrode system shows significantly enhanced electrochemical properties owing to the rapid and efficient diffusion of Li ions through the SEI layer between the electrolyte and electrode.This graphite electrode with its pre-formed SEI layer achieves a reversible capacity of 357 mAh g^-1 at 0.5 C after 50 cycles,which is significantly higher than that of commercial lithium-ion battery systems constructed with LiPF6(312mAh g^-1).The resulting unique electrode system could present a new avenue in SEI research for highperformance lithium-ion batteries.
基金Natural Sciences and Engineering Research Council of Canada,Grant/Award Numbers:Alliance‐Alberta Innovates Program/ALLRP‐561137‐20,Discovery Grant Program/RGPIN‐2020‐05184University of Alberta Future Energy Systems。
文摘Lithium(Li)metal is regarded as one of the most promising anode candidates for next-generation batteries due to its extremely high specific capacity and low redox potential.However,its application is still hindered by the uncontrolled growth of dendritic Li and huge volume fluctuation during cycles.To address these issues,flexible and self-supporting three-dimensional(3D)interlaced Ndoped carbon nanofibers(NCNFs)coated with uniformly distributed 2D ultrathin NiCo_(2)S_(4)nanosheets(denoted CNCS)were designed to eliminate the intrinsic hotspots for Li deposition.Physicochemical dual effects of CNCS arise from limited surface Li diffusivity with a higher Li affinity,leading to uniform Li nucleation and less random accumulation of Li,as confirmed by ab initio molecular dynamics simulations.Due to the unique structure,exchange current density is reduced significantly and metallic Li is further contained within the interspace between the NCNF and NiCo_(2)S_(4)nanosheets,preventing the formation of dendritic Li.The symmetric cell with a Li/CNCS composite anode shows a long-running lifespan for almost 1200 h,with an exceptionally low and stable overpotential under 1mA cm^(-2)/1 mAh cm^(-2).A full cell coupled with a LiFePO4 cathode at a low N/P ratio of 2.45 shows typical voltage profiles but more significantly enhanced performance than that of a LiFePO4 cathode coupled with a bare Li anode.
基金supported by the Ministry of Science and Technology of the People’s Republic of China(2016YFA0202500)the National Natural Science Foundation of China(52072185)+1 种基金the 111 project(B12015)the National Natural Science Foundation of China(21703147 and U1401248)。
文摘Ni-rich layered cathodes(LiNi_xCo_yMn_(2)O_(2))have recently drawn much attention due to their high specific capacities.However,the poor rate capability of LiNi_xCo_yMn_(2)O_(2),which is mainly originated from the twodimensional diffusion of Li ions in the Li slab and Li^(+)/Ni^(2+)cation mixing that hinder the Li^(+)diffusion,has limited their practical application where high power density is needed.Here we integrated Li_(2)MnO_(3)nanodomains into the layered structure of a typical Ni-rich LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)material,which minimized the Li^(+)/Ni^(2+)cationic disordering,and more importantly,established grain boundaries within the NCM811 matrix,thus providing a three-dimensional diffusion channel for Li ions.Accordingly,an average Li-ion diffusion coefficient(D_(Li+))of the Li_(2)MnO_(3)-integrated LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811-I)during charge/discharge was calculated to be approximately 6*10^(-10)cm~2 S^(-1),two times of that in the bare NCM811(3*10^(-10)cm~2 S^(-1)).The capacity delivered by the NCM811-I(154.5 mAh g^(-1))was higher than that of NCM811(141.3 mAh g^(-1))at 2 C,and the capacity retention of NCM811-I increased by 13.6%after100 cycles at 0.1 C and 13.4%after 500 cycles at 1 C compared to NCM811.This work provides a valuable routine to improve the rate capability of Ni-rich cathode materials,which may be applied to other oxide cathodes with sluggish Li-ion transportation.
基金Project(2010ZC051)supported by the Natural Science Foundation of Yunnan Province,ChinaProject(20140439)supported by Analysis and Testing Foundation from Kunming University of Science and Technology,ChinaProject(14118245)supported by Starting Research Fund from Kunming University of Science and Technology,China
文摘Li Fe PO4/C was prepared via solid state reaction and characterized with X-ray powder diffraction and charge–discharge test. As-prepared Li Fe PO4/C has a triphylite structure and exhibits an excellent rate capability and capacity retention. Electrochemical impedance spectroscopy(EIS) was applied to investigate LixFe PO4/C(0<x<1) electrode on temperature variation. The valid equivalent circuit for EIS fitting was determined which contains an intercalation capacitance for Li+ ion accumulation and consumption in the electrode reaction. The surface layer impedance needs to be included in the equivalent circuit when Li Fe PO4/C is deeply delithiated at a relatively high temperature. EIS examination indicates that a temperature rise leads to a better reversibility, lower charge transfer resistance, higher exchange current density J0 and greater Li+ ion diffusion coefficient for the LixFe PO4/C electrode process. The Li+ ion concentration in LixFe PO4/C is potential to impact the Li+ ion diffusion coefficient, and a decrease in the former results in an increase in the latter.
基金supported by funding from the National Natural Science Foundation of China(NSFC)(No.51702236)Tianjin Municipal Science and Technology Commission(No.17JCZDJC38000).
文摘The shuttle effect of lithium polysulfides(UPSs)in lithium-sulfur batteries(LSBs)has been hampered their commercialization.Metal oxides as separator modifications can suppress the shuttle effect.Since there is no direct electron transport between metal oxides and UPSs,absorbed UPSs should be diffused from the surface of metal oxides to the carbon matrix to go through redox reactions.If diffusivity of UPSs from metal oxides surface to carbon substrate is poor,it would hinder the redox reactions of LiPSs.Nevertheless,researchers tend to focus on the adsorption and overlook the diffusion of UPSs.Herein,same morphology and different crystal phase of TiO_(2) nanosheets grown on carbon nanotubes(CNTs@TiO_(2)-bronze and CNTs@TiO_(2)-anatase)have been designed via a simple approach.Compared with CNTs and CNTs@TiO_(2)-anatase composites,the battery with CNTs@TiO_(2)-bronze modified separator delivers higher specific capacities and stronger cycling stability,especially at high current rates(~472 mAh·g^(-1) at 2.0 C after 1,000 cycles).Adsorption tests,density functional theory calculations and electrochemical performance evaluations indicate that suitable diffusion and adsorption for LiPSs on the CNTs@TiO_(2)-B surface can effectively capture LiPSs and promote the redox reaction,leading to the superior cycling performances.
基金supported by Chongqing Technology Innovation and Application Development Special Key Project,CSTB2023TIAD-KPX0010Chongqing Technology Innovation and Application Development Special Major Project,CSTB2023TIAD-STX0033+1 种基金Natural Science Foundation of Chongqing,China(CSTB2022NSCQ-MSX0246,CSTB2022NSCQ-MSX1572,CSTB2022NSCQ-MSX0310)the Science Foundation of National Key Laboratory of Science and Technology on Advanced Composites in Special Environments.
文摘Solid-state lithium-metal batteries based on poly(vinylidene fluoride-co-hexafluoropropylene)(PVH)are frequently proposed to address the detrimental safety issue of conventional lithium-ion batteries by eliminating the use of flammable solvents,but still face a key challenge:low capacity and sluggish charge/discharge rate due to the intrinsic large-gradient Li^(+)distribution across the ionically-inert PVH matrix.Herein,Te vacancies in form of Bi_(2)Te_(3-x) are proposed to polarize the PVH unit to realize efficient decoupling of lithium salts at the atomic level in PVH-based solid polymeric electrolyte.Te vacancies in the PVH electrolyte doped with Bi_(2)Te_(3-x)(PVBT)induce a high-throughput and homogenous Li^(+)flow within the PVH matrices and near the Li metal.Theoretical calculations show that Te vacancies own high adsorption energy with bis(trifluoromethanesulfonyl)imide anions(TFSI^(-)),repulsive effect on Li^(+),and localized electron distribution,giving rise to a lithium-ion concentration gradient of 30 mol m^(-3),the smallest among the PVH-based inorganic/organic composite electrolytes.Consequently,the polarized electrolyte owns an unprecedented high-rate battery capacity of 114 mAh g^(-1)at~700 mA g^(-1)and also superior capacity performances with a cathode loading of 12 mg cm^(-2),outperforming the state-of-art PVH-based inorganic/organic composite electrolytes in Li||LiFePO_(4)battery.The work demonstrates an efficient strategy for achieving fast Liþdiffusion dynamics across polymeric matrices of classic solid-state electrolytes.