This paper proposes a new signal noise level estimation approach by local regions. The estimated noise variance is applied as the threshold for an improved empirical mode decomposition(EMD) based signal denoising me...This paper proposes a new signal noise level estimation approach by local regions. The estimated noise variance is applied as the threshold for an improved empirical mode decomposition(EMD) based signal denoising method. The proposed estimation method can effectively extract the candidate regions for the noise level estimation by measuring the correlation coefficient between noisy signal and a Gaussian filtered signal. For the improved EMD based method, the situation of decomposed intrinsic mode function(IMFs) which contains noise and signal simultaneously are taken into account. Experimental results from two simulated signals and an X-ray pulsar signal demonstrate that the proposed method can achieve better performance than the conventional EMD and wavelet transform(WT) based denoising methods.展开更多
The theoretical aspects of the precise velocity determination of Low Earth Orbit (LEO) satellites'on board Global Navigation Satellite Systems (GNSS) receivers are derived. It shows that the receiver's Phase L...The theoretical aspects of the precise velocity determination of Low Earth Orbit (LEO) satellites'on board Global Navigation Satellite Systems (GNSS) receivers are derived. It shows that the receiver's Phase Lock Loop (PLL) is required to feature extremely small group delay within its low frequency band, which is in contrast to existing work that proposed wide band linear phase filters. Following this theory, a Finite Impulse Response (FIR) filter is proposed. To corroborate, the proposed FIR filter and an Infinite Impulse Response (IIR) filter lately proposed in literals are implemented in a LEO satellite onboard GNSS receiver. Tests are conducted using a third party commercial GPS signal generator. The results show that the GNSS receiver with the proposed FIR achieves 11 mm/s R.M.S precision, while the GNSS receiver with the IIR filter has a filter-caused velocity error that can not be ignored for space borne GNSS receivers.展开更多
Many research results show that ocean ambient noise and wind speed are highly relevant, and the surface wind speed can be effectively inverted using ocean noise data. In most deep-sea cases, the ambient noise of mediu...Many research results show that ocean ambient noise and wind speed are highly relevant, and the surface wind speed can be effectively inverted using ocean noise data. In most deep-sea cases, the ambient noise of medium frequency is mainly determined by the surface wind, and there is a conventional relationship between them. This paper gives an equation which shows this relationship firstly, and then a surface-wind inversion method is proposed. An efficient particle filter is used to estimate the speed distribution, and the results exhibit more focused close to the actual wind speed. The method is verified by the measured noise data, and analysis results showed that this approach can accurately give the trend of sea surface wind speed.展开更多
One of the most common image processing tasks involves the removal of noise from images. Noise can be introduced during image capture, during transmission, or during storage. For design purposes, noise sources are fre...One of the most common image processing tasks involves the removal of noise from images. Noise can be introduced during image capture, during transmission, or during storage. For design purposes, noise sources are frequently approximated by random variables with a known probability distribution. One common noise model corrupts a signal by introducing impulses. And the surface of the image disturbed by impulse noise displays many peaks or vales. According to the characteristic of impulse noise, a novel algorithm is proposed to the detection of impulse noise point from images based on directional derivatives. First, the theory of calculus on directional derivatives is introduced in detail. Then it is applied to the field of image to removing noise with the discrete form derived from its continuous mathematical model. And a number of contrasting simulations illustrate that our algorithm not only can preserve the structure information while removing impulse noise but also can mostly save the gray value of the pixels undisturbed by noise. In addition, the comparisons of the filtering performance for removing impulse noise are analyzed in detail in the case of different noise densities, and also show that the algorithm suggested outperforms the conventional filter algorithms such as mean filter, median filter and so on in speed and impulse noise reduction, especially in random-valued impulse noise reduction. So it is a very good alternative to the existing schemes.展开更多
This paper proposed a simple approach to determine noise frequency of boiler drum level in order to improve control performance. Based on analysis of uncertainty of drum level, the redundant oscillation component of s...This paper proposed a simple approach to determine noise frequency of boiler drum level in order to improve control performance. Based on analysis of uncertainty of drum level, the redundant oscillation component of signal, noise is ascribed to the surface wave of drum water. According to the characteristic of surface wave, a new method was proposed to determine noise’s frequency band. By gradually removing the lowest frequency component of signal, the variance of remained component is calculated and observed. An apparent turning point was found and the corresponding critical frequcncy was determined. With this result a low-pass filter was designed to separate noise component. Finally validation is conducted by comparing the proposed method and conventional ones. Results show the accuracy and simpleness of the proposed method.展开更多
基金supported by the China Aerospace Science and Technology Corporation’s Aerospace Science and Technology Innovation Fund Project(casc2013086)CAST Innovation Fund Project(cast2012028)
文摘This paper proposes a new signal noise level estimation approach by local regions. The estimated noise variance is applied as the threshold for an improved empirical mode decomposition(EMD) based signal denoising method. The proposed estimation method can effectively extract the candidate regions for the noise level estimation by measuring the correlation coefficient between noisy signal and a Gaussian filtered signal. For the improved EMD based method, the situation of decomposed intrinsic mode function(IMFs) which contains noise and signal simultaneously are taken into account. Experimental results from two simulated signals and an X-ray pulsar signal demonstrate that the proposed method can achieve better performance than the conventional EMD and wavelet transform(WT) based denoising methods.
基金Supported by the National Natural Science Foundation of China(No.61132002,61231011)
文摘The theoretical aspects of the precise velocity determination of Low Earth Orbit (LEO) satellites'on board Global Navigation Satellite Systems (GNSS) receivers are derived. It shows that the receiver's Phase Lock Loop (PLL) is required to feature extremely small group delay within its low frequency band, which is in contrast to existing work that proposed wide band linear phase filters. Following this theory, a Finite Impulse Response (FIR) filter is proposed. To corroborate, the proposed FIR filter and an Infinite Impulse Response (IIR) filter lately proposed in literals are implemented in a LEO satellite onboard GNSS receiver. Tests are conducted using a third party commercial GPS signal generator. The results show that the GNSS receiver with the proposed FIR achieves 11 mm/s R.M.S precision, while the GNSS receiver with the IIR filter has a filter-caused velocity error that can not be ignored for space borne GNSS receivers.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.11174235 and 61101192)
文摘Many research results show that ocean ambient noise and wind speed are highly relevant, and the surface wind speed can be effectively inverted using ocean noise data. In most deep-sea cases, the ambient noise of medium frequency is mainly determined by the surface wind, and there is a conventional relationship between them. This paper gives an equation which shows this relationship firstly, and then a surface-wind inversion method is proposed. An efficient particle filter is used to estimate the speed distribution, and the results exhibit more focused close to the actual wind speed. The method is verified by the measured noise data, and analysis results showed that this approach can accurately give the trend of sea surface wind speed.
基金Supported by National Natural Science Foundation of China( 60672072 60832003)Zhejiang Provincial Natural Science Foundation of China(Y106505)
文摘One of the most common image processing tasks involves the removal of noise from images. Noise can be introduced during image capture, during transmission, or during storage. For design purposes, noise sources are frequently approximated by random variables with a known probability distribution. One common noise model corrupts a signal by introducing impulses. And the surface of the image disturbed by impulse noise displays many peaks or vales. According to the characteristic of impulse noise, a novel algorithm is proposed to the detection of impulse noise point from images based on directional derivatives. First, the theory of calculus on directional derivatives is introduced in detail. Then it is applied to the field of image to removing noise with the discrete form derived from its continuous mathematical model. And a number of contrasting simulations illustrate that our algorithm not only can preserve the structure information while removing impulse noise but also can mostly save the gray value of the pixels undisturbed by noise. In addition, the comparisons of the filtering performance for removing impulse noise are analyzed in detail in the case of different noise densities, and also show that the algorithm suggested outperforms the conventional filter algorithms such as mean filter, median filter and so on in speed and impulse noise reduction, especially in random-valued impulse noise reduction. So it is a very good alternative to the existing schemes.
文摘This paper proposed a simple approach to determine noise frequency of boiler drum level in order to improve control performance. Based on analysis of uncertainty of drum level, the redundant oscillation component of signal, noise is ascribed to the surface wave of drum water. According to the characteristic of surface wave, a new method was proposed to determine noise’s frequency band. By gradually removing the lowest frequency component of signal, the variance of remained component is calculated and observed. An apparent turning point was found and the corresponding critical frequcncy was determined. With this result a low-pass filter was designed to separate noise component. Finally validation is conducted by comparing the proposed method and conventional ones. Results show the accuracy and simpleness of the proposed method.