基于LiDAR和SLAM(simultaneous localization and mapping)的LeGO-LOAM算法在低分辨率的LiDAR设备上,由于LiDAR数据的运动畸变、采样的地面数据稀疏等问题,存在重力矢量漂移现象和严重的高程估计误差。为了改善这一点,LeGO-LOAM改进算...基于LiDAR和SLAM(simultaneous localization and mapping)的LeGO-LOAM算法在低分辨率的LiDAR设备上,由于LiDAR数据的运动畸变、采样的地面数据稀疏等问题,存在重力矢量漂移现象和严重的高程估计误差。为了改善这一点,LeGO-LOAM改进算法引入了一种LiDAR和IMU(inertial measurement unit)紧耦合的方式。通过IMU估计运动状态,消除LiDAR数据的运动畸变,并使用IMU数据构建联合优化函数,约束位置姿态估计的重力方向。实验结果表明,这种方法有效抑制了LeGO-LOAM算法的重力矢量漂移,高程估计精度和高速状态下的定位精度均有显著提升。展开更多
In recent years, most developed societies have realized that it is very important for students to acquire the skill of algorithmic thinking and the basic knowledge of computer programming. Nowadays we have numerous wa...In recent years, most developed societies have realized that it is very important for students to acquire the skill of algorithmic thinking and the basic knowledge of computer programming. Nowadays we have numerous ways that allow us to teach programming with appropriate first steps. The paper will present one of the possibilities which we have to introduce basic programming concepts to younger children--with Lego robots and a topic, who lives in a meadow?展开更多
煤矿智能化是煤炭行业高质量发展的技术支撑,关键岗位的机器人替代是实现煤炭少人化、无人化的高效开采的发展趋势。即时定位与地图构建(Simultaneous Localization and Mapping,SLAM)是煤矿机器人自主移动与导航的关键技术之一。煤矿...煤矿智能化是煤炭行业高质量发展的技术支撑,关键岗位的机器人替代是实现煤炭少人化、无人化的高效开采的发展趋势。即时定位与地图构建(Simultaneous Localization and Mapping,SLAM)是煤矿机器人自主移动与导航的关键技术之一。煤矿井下为典型非结构化环境,空间狭长局促,结构复杂多变,照明情况不均匀,对煤矿井下SLAM提出了严峻挑战。总结了煤矿井下地图构建研究现状,针对LeGO-LOAM算法的回环检测仍存在的不足,利用SegMatch算法改进LeGO-LOAM的回环检测模块,且使用ICP算法进行全局图优化,提出了一种融合LeGO-LOAM和SegMatch的改进算法,阐述了该算法的原理和实现步骤;开展了煤矿井下模拟场景试验,对比分析改进前后SLAM算法的建图效果以及精度,试验结果表明改进算法构建的地图回环效果更好,估计轨迹更平滑、精确;结合导航需求研究了二维占据栅格地图的构建方法,试验验证了该方法所构建的栅格地图精度,结果表明有效滤除动态障碍物等离群噪点后的栅格地图具有0.01 m的建图精度,且所需存储空间较点云地图降低了3个数量级。研究成果有助于煤矿井下非结构环境下SLAM和煤矿机器人实时定位和自主移动。展开更多
针对激光雷达SLAM(Simultaneous Localization and Mapping)算法定位精确度不高且鲁棒性较差的问题,文中提出了一种融合IMU(Inertial Measurement Unit)数据到三维点云配准过程的SLAM方法。在LeGO-LOAM(Lightweight and Ground-Optimize...针对激光雷达SLAM(Simultaneous Localization and Mapping)算法定位精确度不高且鲁棒性较差的问题,文中提出了一种融合IMU(Inertial Measurement Unit)数据到三维点云配准过程的SLAM方法。在LeGO-LOAM(Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain)算法的研究基础上,在地面点提取环节引入IMU数据,将点云映射到世界坐标系下,减小载体抖动对地面点提取的影响。利用IMU输出信息消除点云由于载体运动产生的畸变,增强算法的鲁棒性。使用三点聚类法对一帧点云进行聚类分析,减少杂点的干扰,加快点云配准过程,提高了算法定位精度;同时引入闭环检测,减小匹配过程中的累积误差,得到全局最优解。结果表明,在大型户外干扰较多的环境中,改进SLAM算法减少了求解得到的轨迹波动,提升了点云配准精度,增强了算法的鲁棒性。展开更多
文摘In recent years, most developed societies have realized that it is very important for students to acquire the skill of algorithmic thinking and the basic knowledge of computer programming. Nowadays we have numerous ways that allow us to teach programming with appropriate first steps. The paper will present one of the possibilities which we have to introduce basic programming concepts to younger children--with Lego robots and a topic, who lives in a meadow?
文摘煤矿智能化是煤炭行业高质量发展的技术支撑,关键岗位的机器人替代是实现煤炭少人化、无人化的高效开采的发展趋势。即时定位与地图构建(Simultaneous Localization and Mapping,SLAM)是煤矿机器人自主移动与导航的关键技术之一。煤矿井下为典型非结构化环境,空间狭长局促,结构复杂多变,照明情况不均匀,对煤矿井下SLAM提出了严峻挑战。总结了煤矿井下地图构建研究现状,针对LeGO-LOAM算法的回环检测仍存在的不足,利用SegMatch算法改进LeGO-LOAM的回环检测模块,且使用ICP算法进行全局图优化,提出了一种融合LeGO-LOAM和SegMatch的改进算法,阐述了该算法的原理和实现步骤;开展了煤矿井下模拟场景试验,对比分析改进前后SLAM算法的建图效果以及精度,试验结果表明改进算法构建的地图回环效果更好,估计轨迹更平滑、精确;结合导航需求研究了二维占据栅格地图的构建方法,试验验证了该方法所构建的栅格地图精度,结果表明有效滤除动态障碍物等离群噪点后的栅格地图具有0.01 m的建图精度,且所需存储空间较点云地图降低了3个数量级。研究成果有助于煤矿井下非结构环境下SLAM和煤矿机器人实时定位和自主移动。
文摘针对激光雷达SLAM(Simultaneous Localization and Mapping)算法定位精确度不高且鲁棒性较差的问题,文中提出了一种融合IMU(Inertial Measurement Unit)数据到三维点云配准过程的SLAM方法。在LeGO-LOAM(Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain)算法的研究基础上,在地面点提取环节引入IMU数据,将点云映射到世界坐标系下,减小载体抖动对地面点提取的影响。利用IMU输出信息消除点云由于载体运动产生的畸变,增强算法的鲁棒性。使用三点聚类法对一帧点云进行聚类分析,减少杂点的干扰,加快点云配准过程,提高了算法定位精度;同时引入闭环检测,减小匹配过程中的累积误差,得到全局最优解。结果表明,在大型户外干扰较多的环境中,改进SLAM算法减少了求解得到的轨迹波动,提升了点云配准精度,增强了算法的鲁棒性。