期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
马克思主义信仰的体验式学习——基于高校思想政治理论课的教学改革 被引量:5
1
作者 李军松 《河北工业大学学报(社会科学版)》 2012年第1期28-33,共6页
高校思想政治理论课,是大学生马克思主义信仰教育的主渠道。由于长期以来囿于强力灌输和被动接受式的传统学习,当前高校思想政治理论课陷入困境,马克思主义信仰教育效果欠佳。体验式学习强调学习者的参与性和实践性,通过实践来认识周围... 高校思想政治理论课,是大学生马克思主义信仰教育的主渠道。由于长期以来囿于强力灌输和被动接受式的传统学习,当前高校思想政治理论课陷入困境,马克思主义信仰教育效果欠佳。体验式学习强调学习者的参与性和实践性,通过实践来认识周围事物,或者说,通过能使学习者完完全全地参与学习过程,使学习者化被动为主动,真正成为学习的主人。它能更好地引导学生由"知"到"信"到"行",实现高校马克思主义信仰教育的目的。 展开更多
关键词 马克思主义信仰 体验式学习 高校思想政治理论课 传统学习方式
在线阅读 下载PDF
合作学习法在高中化学课堂中的践行探研 被引量:7
2
作者 经江红 《科教文汇》 2013年第36期157-158,共2页
合作学习法的诞生至今已经有几十年,在新课程改革的大背景下,合作学习法如今在我国的教育领域被运用得越来越多,且取得了一定的教学成效。受到了广大师生的普遍欢迎。本文主要针对如何在高中化学课堂中有效践行合作学习法展开论述,希望... 合作学习法的诞生至今已经有几十年,在新课程改革的大背景下,合作学习法如今在我国的教育领域被运用得越来越多,且取得了一定的教学成效。受到了广大师生的普遍欢迎。本文主要针对如何在高中化学课堂中有效践行合作学习法展开论述,希望能进一步提高我们的课堂教学质量,激发高中生在合作学习中的团结合作意识,为他们将来的生活和学习打下坚实的基础。 展开更多
关键词 高中化学 合作学习法 新课程
在线阅读 下载PDF
Identification of Question and Non-Question Segments in Arabic Monologues Using Prosodic Features: Novel Type-2 Fuzzy Logic and Sensitivity-Based Linear Learning Approaches
3
作者 Sunday Olusanya Olatunji Lahouari Cheded +1 位作者 Wasfi G. Al-Khatib Omair Khan 《Journal of Intelligent Learning Systems and Applications》 2013年第3期165-175,共11页
In this paper, we extend our previous study of addressing the important problem of automatically identifying question and non-question segments in Arabic monologues using prosodic features. We propose here two novel c... In this paper, we extend our previous study of addressing the important problem of automatically identifying question and non-question segments in Arabic monologues using prosodic features. We propose here two novel classification approaches to this problem: one based on the use of the powerful type-2 fuzzy logic systems (type-2 FLS) and the other on the use of the discriminative sensitivity-based linear learning method (SBLLM). The use of prosodic features has been used in a plethora of practical applications, including speech-related applications, such as speaker and word recognition, emotion and accent identification, topic and sentence segmentation, and text-to-speech applications. In this paper, we continue to specifically focus on the Arabic language, as other languages have received a lot of attention in this regard. Moreover, we aim to improve the performance of our previously-used techniques, of which the support vector machine (SVM) method was the best performing, by applying the two above-mentioned powerful classification approaches. The recorded continuous speech is first segmented into sentences using both energy and time duration parameters. The prosodic features are then extracted from each sentence and fed into each of the two proposed classifiers so as to classify each sentence as a Question or a Non-Question sentence. Our extensive simulation work, based on a moderately-sized database, showed the two proposed classifiers outperform SVM in all of the experiments carried out, with the type-2 FLS classifier consistently exhibiting the best performance, because of its ability to handle all forms of uncertainties. 展开更多
关键词 ARABIC Monologues Prosodic Features Type-2 FUZZY LOGIC Systems Sensitivity Based LINEAR learningmethod Support Vector Machines
暂未订购
新型建构主义理论——中国学者对西方建构主义的批判吸收与创新发展 被引量:127
4
作者 何克抗 《中国教育科学(中英文)》 CSSCI 2021年第1期14-29,共16页
为了对建构主义进行反思,至少应考虑四个方面的问题:建构主义的教育思想到底是以学生为中心还是主导—主体相结合;建构主义的教学观念是单纯倡导自主、合作、探究还是有其他内涵;建构主义的认识论到底是主观主义的还是客观相统一的;当... 为了对建构主义进行反思,至少应考虑四个方面的问题:建构主义的教育思想到底是以学生为中心还是主导—主体相结合;建构主义的教学观念是单纯倡导自主、合作、探究还是有其他内涵;建构主义的认识论到底是主观主义的还是客观相统一的;当前是否还应该将建构主义作为指导教育深化改革的主要理论基础。我们应该倡导的是建立在主客观统一的认识论和主导—主体相结合教育思想基础上的新型建构主义。 展开更多
关键词 教育思想 教学观念 认识论 教与学方式 教学模式
在线阅读 下载PDF
数据库原理课程的教与学
5
作者 苏艳 《科教文汇》 2015年第18期74-75,共2页
"数据库原理"在计算机专业课程体系中处于十分重要的地位。针对这门课程现有教学方式中存在的不足,本文从教学内容、教学方法、实验教学等方面阐述了该课程在教学改革方面的经验,并分享一些能够帮助学生学习的方法。
关键词 数据库 教学内容 教学方法 学习方法
在线阅读 下载PDF
Assessment of gully erosion susceptibility using different DEM-derived topographic factors in the black soil region of Northeast China 被引量:4
6
作者 Donghao Huang Lin Su +2 位作者 Lili Zhou Yulu Tian Haoming Fan 《International Soil and Water Conservation Research》 SCIE CSCD 2023年第1期97-111,共15页
As a primary sediment source,gully erosion leads to severe land degradation and poses a threat to food and ecological security.Therefore,identification of susceptible areas is critical to the prevention and control of... As a primary sediment source,gully erosion leads to severe land degradation and poses a threat to food and ecological security.Therefore,identification of susceptible areas is critical to the prevention and control of gully erosion.This study aimed to identify areas prone to gully erosion using four machine learning methods with derived topographic attributes.Eight topographic attributes(elevation,slope aspect,slope degree,catchment area,plan curvature,profile curvature,stream power index,and topo-graphic wetness index)were derived as feature variables controlling gully occurrence from digital elevation models with four different pixel sizes(5.0 m,12.5 m,20.0 m,and 30.0 m).A gully inventory map of a small agricultural catchment in Heilongjiang,China,was prepared through a combination of field surveys and satellite imagery.Each topographic attribute dataset was randomly divided into two portions of 70%and 30%for calibrating and validating four machine learning methods,namely random forest(RF),support vector machines(SVM),artificial neural network(ANN),and generalized linear models(GLM).Accuracy(ACC),area under the receiver operating characteristic curve(AUC),root mean square error(RMSE),and mean absolute error(MAE)were calculated to assess the performance of the four machine learning methods in predicting spatial distribution of gully erosion susceptibility(GES).The results suggested that the selected topographic attributes were capable of predicting GES in the study catchment area.A pixel size of 20.0 m was optimal for all four machine learning methods.The RF method described the spatial relationship between the feature variables and gully occurrence with the greatest accuracy,as it returned the highest values of ACC(0.917)and AUC(0.905)at a 20.0 m resolution.The RF was also the least sensitive to resolutions,followed by SVM(ACC=0.781-0.891,AUC=0.724-0.861)and ANN(ACC=0.744-0.808,AUC=0.649-0.847).GLM performed poorly in this study(ACC=0.693-0.757,AUC=0.608-0.703).Based on the spatial distribution of GES determined using the optimal method(RF+pixel size of 20.0 m),16%of the study area has very high level susceptibility classes,whereas areas with high,moderate,and low levels of susceptibility make up approximately 24%,30%,and 31%of the study area,respectively.Our results demonstrate that GES assessment with machine learning methods can successfuly identify areas prone to gully erosion,providing reference information for future soil conservation plans and land management.In addition,pixel size(resolution)is the key consideration when preparing suitable datasets of feature variables for GES assessment. 展开更多
关键词 Gully erosion Machine learningmethods Topographicattribute Pixel size Northeast China
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部