期刊文献+
共找到183篇文章
< 1 2 10 >
每页显示 20 50 100
A STUDY OF METHODS FOR IMPROVING LEARNING VECTOR QUANTIZATION
1
作者 朱策 厉力华 +1 位作者 何振亚 王太君 《Journal of Electronics(China)》 1992年第4期312-320,共9页
Learning Vector Quantization(LVQ)originally proposed by Kohonen(1989)is aneurally-inspired classifier which pays attention to approximating the optimal Bayes decisionboundaries associated with a classification task.Wi... Learning Vector Quantization(LVQ)originally proposed by Kohonen(1989)is aneurally-inspired classifier which pays attention to approximating the optimal Bayes decisionboundaries associated with a classification task.With respect to several defects of LVQ2 algorithmstudied in this paper,some‘soft’competition schemes such as‘majority voting’scheme andcredibility calculation are proposed for improving the ability of classification as well as the learningspeed.Meanwhile,the probabilities of winning are introduced into the corrections for referencevectors in the‘soft’competition.In contrast with the conventional sequential learning technique,a novel parallel learning technique is developed to perform LVQ2 procedure.Experimental resultsof speech recognition show that these new approaches can lead to better performance as comparedwith the conventional 展开更多
关键词 learning vector quantization(lvq) Soft COMPETITION scheme CREDIBILITY Reference vector Parallel(sequential)learning technique
在线阅读 下载PDF
Learning Vector Quantization Neural Network Method for Network Intrusion Detection
2
作者 YANG Degang CHEN Guo +1 位作者 WANG Hui LIAO Xiaofeng 《Wuhan University Journal of Natural Sciences》 CAS 2007年第1期147-150,共4页
A new intrusion detection method based on learning vector quantization (LVQ) with low overhead and high efficiency is presented. The computer vision system employs LVQ neural networks as classifier to recognize intr... A new intrusion detection method based on learning vector quantization (LVQ) with low overhead and high efficiency is presented. The computer vision system employs LVQ neural networks as classifier to recognize intrusion. The recognition process includes three stages: (1) feature selection and data normalization processing;(2) learning the training data selected from the feature data set; (3) identifying the intrusion and generating the result report of machine condition classification. Experimental results show that the proposed method is promising in terms of detection accuracy, computational expense and implementation for intrusion detection. 展开更多
关键词 intrusion detection learning vector quantization neural network feature extraction
在线阅读 下载PDF
Learning Vector Quantization-Based Fuzzy Rules Oversampling Method
3
作者 Jiqiang Chen Ranran Han +1 位作者 Dongqing Zhang Litao Ma 《Computers, Materials & Continua》 SCIE EI 2024年第6期5067-5082,共16页
Imbalanced datasets are common in practical applications,and oversampling methods using fuzzy rules have been shown to enhance the classification performance of imbalanced data by taking into account the relationship ... Imbalanced datasets are common in practical applications,and oversampling methods using fuzzy rules have been shown to enhance the classification performance of imbalanced data by taking into account the relationship between data attributes.However,the creation of fuzzy rules typically depends on expert knowledge,which may not fully leverage the label information in training data and may be subjective.To address this issue,a novel fuzzy rule oversampling approach is developed based on the learning vector quantization(LVQ)algorithm.In this method,the label information of the training data is utilized to determine the antecedent part of If-Then fuzzy rules by dynamically dividing attribute intervals using LVQ.Subsequently,fuzzy rules are generated and adjusted to calculate rule weights.The number of new samples to be synthesized for each rule is then computed,and samples from the minority class are synthesized based on the newly generated fuzzy rules.This results in the establishment of a fuzzy rule oversampling method based on LVQ.To evaluate the effectiveness of this method,comparative experiments are conducted on 12 publicly available imbalance datasets with five other sampling techniques in combination with the support function machine.The experimental results demonstrate that the proposed method can significantly enhance the classification algorithm across seven performance indicators,including a boost of 2.15%to 12.34%in Accuracy,6.11%to 27.06%in G-mean,and 4.69%to 18.78%in AUC.These show that the proposed method is capable of more efficiently improving the classification performance of imbalanced data. 展开更多
关键词 OVERSAMPLING fuzzy rules learning vector quantization imbalanced data support function machine
在线阅读 下载PDF
Neural Network Algorithm Based on LVQ for Myocardial Infarction Detection and Localization Using Multi-Lead ECG Data
4
作者 Kassymbek Ozhikenov Zhadyra Alimbayeva +2 位作者 Chingiz Alimbayev Aiman Ozhikenova Yeldos Altay 《Computers, Materials & Continua》 2025年第3期5257-5284,共28页
Myocardial infarction(MI)is one of the leading causes of death globally among cardiovascular diseases,necessitating modern and accurate diagnostics for cardiac patient conditions.Among the available functional diagnos... Myocardial infarction(MI)is one of the leading causes of death globally among cardiovascular diseases,necessitating modern and accurate diagnostics for cardiac patient conditions.Among the available functional diagnostic methods,electrocardiography(ECG)is particularly well-known for its ability to detect MI.However,confirming its accuracy—particularly in identifying the localization of myocardial damage—often presents challenges in practice.This study,therefore,proposes a new approach based on machine learning models for the analysis of 12-lead ECG data to accurately identify the localization of MI.In particular,the learning vector quantization(LVQ)algorithm was applied,considering the contribution of each ECG lead in the 12-channel system,which obtained an accuracy of 87%in localizing damaged myocardium.The developed model was tested on verified data from the PTB database,including 445 ECG recordings from both healthy individuals and MI-diagnosed patients.The results demonstrated that the 12-lead ECG system allows for a comprehensive understanding of cardiac activities in myocardial infarction patients,serving as an essential tool for the diagnosis of myocardial conditions and localizing their damage.A comprehensive comparison was performed,including CNN,SVM,and Logistic Regression,to evaluate the proposed LVQ model.The results demonstrate that the LVQ model achieves competitive performance in diagnostic tasks while maintaining computational efficiency,making it suitable for resource-constrained environments.This study also applies a carefully designed data pre-processing flow,including class balancing and noise removal,which improves the reliability and reproducibility of the results.These aspects highlight the potential application of the LVQ model in cardiac diagnostics,opening up prospects for its use along with more complex neural network architectures. 展开更多
关键词 ELECTROCARDIOGRAPHY 12-lead electrocardiogram myocardial infarction heart disease learning vector quantization algorithm machine learning
在线阅读 下载PDF
结合遗传算法的LVQ神经网络在声学底质分类中的应用 被引量:27
5
作者 唐秋华 刘保华 +2 位作者 陈永奇 周兴华 丁继胜 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2007年第1期313-319,共7页
学习向量量化(Learning Vector Quantization,LVQ)神经网络在声学底质分类中具有广泛应用.常用的LVQ神经网络存在神经元未被充分利用以及算法对初值敏感的问题,影响底质分类精度.本文提出采用遗传算法(Genetic Algorithms,GA)优化神经... 学习向量量化(Learning Vector Quantization,LVQ)神经网络在声学底质分类中具有广泛应用.常用的LVQ神经网络存在神经元未被充分利用以及算法对初值敏感的问题,影响底质分类精度.本文提出采用遗传算法(Genetic Algorithms,GA)优化神经网络的初始值,将GA与LVQ神经网络结合起来,迅速得到最佳的神经网络初始权值向量,实现对海底基岩、砾石、砂、细砂以及泥等底质类型的快速、准确识别.将其应用于青岛胶州湾海区底质分类识别研究中,通过与标准的LVQ神经网络的分类结果进行比较表明,该方法在分类速度以及精度上都有了较大提高. 展开更多
关键词 学习向量量化 遗传算法 多波束测深系统 底质分类
在线阅读 下载PDF
GA优化LVQ网络的配电网接地故障选线方法 被引量:11
6
作者 彭湃 周羽生 +3 位作者 高云龙 刘让姣 安正洲 熊杰 《电力系统及其自动化学报》 CSCD 北大核心 2015年第12期64-69,共6页
针对配电网故障相电压过零点且高阻接地故障选线困难的问题,文中提出了应用遗传算法优化学习量量化神经网络的配电网单相接地故障选线方法。首先利用小波分析方法提取线路零序电流信号的模极大值,以此作为学习量量化神经网络的输入向量... 针对配电网故障相电压过零点且高阻接地故障选线困难的问题,文中提出了应用遗传算法优化学习量量化神经网络的配电网单相接地故障选线方法。首先利用小波分析方法提取线路零序电流信号的模极大值,以此作为学习量量化神经网络的输入向量,采用局部搜索算子改进的遗传算法去优化神经网络的初始权值向量,解决了网络对初始权值的敏感性问题。加速网络的收敛过程,提高网络的聚类精度,实现对不同故障类型进行故障线路的快速、准确识别。仿真结果表明,该方法有效地减少了传统学习量量化神经网络选线的误判几率,提高了选线速度和精确度。 展开更多
关键词 配电网 遗传算法 学习量量化 小波分析 故障选线
在线阅读 下载PDF
基于EMD和LVQ的信号特征提取及分类方法 被引量:8
7
作者 余炜 周娅 +3 位作者 马晶晶 万代立 刘伦 张灿斌 《数据采集与处理》 CSCD 北大核心 2014年第5期683-687,共5页
针对非平稳、非线性、微弱信号难以分析和处理的特点,本文提出了一种基于经验模式分解和学习向量量化神经网络的信号处理和分类方法,并在生物信号处理领域(左、右手运动想象的脑电信号)进行了研究和应用。首先通过经验模式分解算法对脑... 针对非平稳、非线性、微弱信号难以分析和处理的特点,本文提出了一种基于经验模式分解和学习向量量化神经网络的信号处理和分类方法,并在生物信号处理领域(左、右手运动想象的脑电信号)进行了研究和应用。首先通过经验模式分解算法对脑电信号分解,然后选取主要固有模态函数分量并计算其绝对均值作为特征值,最后使用学习向量量化网络进行分类,并分别与支持向量机和误差反向传播神经网络分类算法进行了对比研究。实验结果表明,所提出的算法分类正确率达到了87%,相比于其余两种对比算法在特定的信号处理领域优越,具有一定的参考和研究价值。 展开更多
关键词 经验模式分解 学习向量量化神经网络 脑-机接口 脑电信号
在线阅读 下载PDF
一种基于LVQ神经网络与图像处理的火焰识别算法 被引量:14
8
作者 包晗 康泉胜 周明 《中国安全科学学报》 CAS CSCD 北大核心 2011年第6期60-64,共5页
针对传统火灾探测技术存在的不稳定、误判率高等缺点,通过分析室内火灾图像与常见干扰光源图像的特点,提出一种基于人工神经网络的火焰图像检测技术。对火焰图像的基本特性进行分析,利用火焰图像序列的面积重叠率和中心相对移动率以及... 针对传统火灾探测技术存在的不稳定、误判率高等缺点,通过分析室内火灾图像与常见干扰光源图像的特点,提出一种基于人工神经网络的火焰图像检测技术。对火焰图像的基本特性进行分析,利用火焰图像序列的面积重叠率和中心相对移动率以及颜色等信息,结合实现学习向量量化(LVQ)神经网络融合技术,对视频序列图像中火焰的自动检测。仿真试验结果表明,基于LVQ神经网络的信息融合算法的网络收敛速度较快,有较高的火灾火焰识别准确率。 展开更多
关键词 学习向量量化(lvq)神经网络 图像处理 火焰识别 目标检测 火灾火焰
原文传递
基于LVQ-CPSO-BP算法的煤体瓦斯渗透率预测方法研究 被引量:10
9
作者 谢丽蓉 路朋 +2 位作者 范文慧 叶武 王晋瑞 《采矿与安全工程学报》 EI CSCD 北大核心 2017年第2期398-404,共7页
针对BP神经网络算法对煤体瓦斯渗透率预测精度低问题,筛选出影响预测精度的5个主要因素——1个宏观因素(煤层埋深)和4个微观因素(有效应力、温度、瓦斯压力、抗压强度),提出一种基于学习向量量化神经网络(LVQ)分类、混沌粒子群算法(CPSO... 针对BP神经网络算法对煤体瓦斯渗透率预测精度低问题,筛选出影响预测精度的5个主要因素——1个宏观因素(煤层埋深)和4个微观因素(有效应力、温度、瓦斯压力、抗压强度),提出一种基于学习向量量化神经网络(LVQ)分类、混沌粒子群算法(CPSO)优化、BP神经网络预测的LVQ-CPSO-BP煤体瓦斯渗透率预测方法。从宏观上确定临界值将煤层埋深划分为2层;基于有效应力与瓦斯渗透率之间存在拐点关系,从微观上确定拐点值将有效应力划分为2段;采用LVQ将4个微观样本参数依据拐点特征进行分类识别,采用BP神经网络进行学习训练并输出预测结果,并用CPSO对BP神经网络的权值和阈值进行优化;基于样本案例对本文构建的LVQ-CPSO-BP算法进行预测结果验证,并与BP算法、GA-BP算法及PSO-BP算法预测的结果进行对比分析。结果表明:LVQ分类正确识别率较高,CPSO-BP算法预测精度较好,且优于其他3种算法。LVQ-CPSO-BP算法总体预测值与实测值吻合度高,尤其当有效应力减小时,预测精度更高。 展开更多
关键词 瓦斯渗透率 学习向量量化神经网络(lvq) 混沌粒子群优化算法(CPSO) BP神经网络
原文传递
基于LVQ工况识别的混合动力汽车自适应能量管理控制策略 被引量:18
10
作者 邓涛 卢任之 +1 位作者 李亚南 林椿松 《中国机械工程》 EI CAS CSCD 北大核心 2016年第3期420-425,共6页
为提高混合动力汽车的燃油经济性,选取6种典型行驶工况代表"市区"、"郊区"和"高速公路"3类主要工况,采用基于规则的模糊能量管理控制策略,以整车燃油经济性为目标,在3类主要工况下用改进型粒子群优化算... 为提高混合动力汽车的燃油经济性,选取6种典型行驶工况代表"市区"、"郊区"和"高速公路"3类主要工况,采用基于规则的模糊能量管理控制策略,以整车燃油经济性为目标,在3类主要工况下用改进型粒子群优化算法优化发动机联合工作曲线与发动机关闭曲线系数,得到相应的优化后的隶属度函数的参数;运用学习向量量化(LVQ)算法识别车辆运行工况,动态选择相应的模糊控制策略,使混合动力汽车控制策略对选定的几种代表性工况具有自适应性,从而提高整车的燃油经济性。仿真对比结果表明,相比于传统混合动力汽车,燃油经济性提高了3.4%。 展开更多
关键词 混合动力汽车 工况识别 燃油经济性 粒子群优化算法 学习向量量化(lvq)算法
在线阅读 下载PDF
ELVQ算法实现宽参数偏移的多故障电路诊断 被引量:3
11
作者 徐崇斌 赵志文 郑慧芳 《电子与信息学报》 EI CSCD 北大核心 2011年第6期1520-1524,共5页
该文提出了一种强化自适应策略的学习矢量量化(Enhanced Learning Vector Quantization,ELVQ)算法,并设计了基于SOM(Self-Organizing Map)-LVQ模型的故障分类方法,用于实现宽参数偏移的模拟电路多故障诊断。该文算法具有两方面的优势:... 该文提出了一种强化自适应策略的学习矢量量化(Enhanced Learning Vector Quantization,ELVQ)算法,并设计了基于SOM(Self-Organizing Map)-LVQ模型的故障分类方法,用于实现宽参数偏移的模拟电路多故障诊断。该文算法具有两方面的优势:一方面利用获胜神经元数目的自适应,均衡了神经元的获胜概率;另一方面根据样本分类结果计算作用因子修正神经元的权值,增强了类别边界决策性能。仿真结果表明,所提出的算法具有收敛速度快,分类误差小等特点。 展开更多
关键词 模拟电路 多故障诊断 学习矢量量化 宽参数偏移 Elvq算法
在线阅读 下载PDF
基于局部化原理和概率模型的LVQ改进算法 被引量:6
12
作者 叶少珍 吴鸣锐 +2 位作者 张钹 郑文波 马少平 《计算机学报》 EI CSCD 北大核心 2003年第5期626-629,共4页
利用局部化原理和概率模型的优化方法 ,提出一种LVQ改进算法———基于局部化原理和概率模型的LVQ算法 (LocalizationprincipleandProbabilitybasedLVQ ,LoPLVQ) .与传统LVQ算法相比 ,不仅缩短训练时间 ,而且具有较高的识别率 .实验结... 利用局部化原理和概率模型的优化方法 ,提出一种LVQ改进算法———基于局部化原理和概率模型的LVQ算法 (LocalizationprincipleandProbabilitybasedLVQ ,LoPLVQ) .与传统LVQ算法相比 ,不仅缩短训练时间 ,而且具有较高的识别率 .实验结果表明改进算法可用来解决大规模的模式识别问题 . 展开更多
关键词 模式识别 局部化原理 概率模型 lvq改进算法 学习矢量量化算法 计算机
在线阅读 下载PDF
基于PCA-LVQ的模拟电路故障诊断 被引量:12
13
作者 孙健 王成华 +1 位作者 洪峰 王蕾 《电路与系统学报》 北大核心 2013年第2期310-313,共4页
为了解决模拟电路故障难于识别的问题,提出一种基于主成分分析(PCA)和学习矢量量化神经网络(LVQ)的模拟电路故障诊断新方法。该方法用PCA提取模拟电路故障特征,然后将降维后的故障特征信息输入LVQ网络训练和故障模式的分类识别。通过对S... 为了解决模拟电路故障难于识别的问题,提出一种基于主成分分析(PCA)和学习矢量量化神经网络(LVQ)的模拟电路故障诊断新方法。该方法用PCA提取模拟电路故障特征,然后将降维后的故障特征信息输入LVQ网络训练和故障模式的分类识别。通过对Sallen-Key带通滤波器电路的故障诊断实例表明,该方法是有效的,具有较高的故障诊断率。 展开更多
关键词 模拟电路 故障诊断 主成分分析 学习矢量量化神经网络
在线阅读 下载PDF
面向特征数据范围的泛化LVQ算法 被引量:3
14
作者 胡耀民 刘伟铭 《模式识别与人工智能》 EI CSCD 北大核心 2013年第8期761-768,共8页
欧氏距离度量向量相似性时忽视向量各特征取值范围的差异性,从而影响学习向量量化(LVQ)算法及其变种的分类精确度.针对此问题,文中提出一种面向特征取值范围的向量相似性度量函数,并基于该度量函数与泛化学习向量量化算法得出一种面向... 欧氏距离度量向量相似性时忽视向量各特征取值范围的差异性,从而影响学习向量量化(LVQ)算法及其变种的分类精确度.针对此问题,文中提出一种面向特征取值范围的向量相似性度量函数,并基于该度量函数与泛化学习向量量化算法得出一种面向特征数据范围的泛化学习向量量化算法(GLVQ-Range).使用UCI机器学习库中8组数据对比GLVQ-Range和传统其它LVQ变种算法,验证文中算法的分类准确性更高和运算速度更快.使用视频车型分类数据,验证GLVQ-Range在真实生产环境中的可用性. 展开更多
关键词 模式识别 学习向量量化(lvq) 相似性度量 机器学习
在线阅读 下载PDF
基于LVQ神经网络的城市快速路事件自动检测算法 被引量:2
15
作者 魏丽英 夏明 田春林 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2010年第2期412-416,共5页
基于具有自组织功能的学习矢量量化(LVQ)神经网络设计了城市快速路异常事件的自动检测算法,提出分车道检测的构想。研究了原始数据筛选、输入向量模式、神经元个数及检测时段等参数的选择。基于小波分析技术对原始数据的高频噪声进行滤... 基于具有自组织功能的学习矢量量化(LVQ)神经网络设计了城市快速路异常事件的自动检测算法,提出分车道检测的构想。研究了原始数据筛选、输入向量模式、神经元个数及检测时段等参数的选择。基于小波分析技术对原始数据的高频噪声进行滤波,引入长车流量作为输入参数,并对比了引入前后的检测效果。选用加利福尼亚算法作为评价的参考依据,对其执行过程和门限值的选择进行了研究。 展开更多
关键词 交通运输工程 城市快速路 事件检测 加利福尼亚算法 lvq神经网络
在线阅读 下载PDF
基于LVQ的软件项目风险评估模型的研究 被引量:7
16
作者 潘梅森 颜君颜 《计算机工程与应用》 CSCD 北大核心 2006年第12期126-130,共5页
以16种风险为基础,建立了一个新的软件项目风险评估模型,把以往每个软件项目的16种风险看做一个16×1维列矢量,并做为LVQ神经网络的训练矢量,对其进行聚类分析,最终把项目风险水平分为:风险水平很低、风险水平中等、风险水平很高等... 以16种风险为基础,建立了一个新的软件项目风险评估模型,把以往每个软件项目的16种风险看做一个16×1维列矢量,并做为LVQ神经网络的训练矢量,对其进行聚类分析,最终把项目风险水平分为:风险水平很低、风险水平中等、风险水平很高等三个类别,并对项目风险水平做出预测。 展开更多
关键词 软件项目 风险评估模型 学习矢量量化 lvq
在线阅读 下载PDF
基于MA及LVQ神经网络的智能NIPS模型与实现 被引量:3
17
作者 贾铁军 刘泓漫 《小型微型计算机系统》 CSCD 北大核心 2012年第8期1836-1840,共5页
为了提高入侵防御系统的智能性和准确率,在讨论入侵防御技术特性和关键技术的基础上,分析了利用MA(MobileAgent)及LVQ(Learning Vector Quantization)神经网络构建入侵防御系统的优势,以及LVQ神经网络的结构特性和学习算法,提出基于MA及... 为了提高入侵防御系统的智能性和准确率,在讨论入侵防御技术特性和关键技术的基础上,分析了利用MA(MobileAgent)及LVQ(Learning Vector Quantization)神经网络构建入侵防御系统的优势,以及LVQ神经网络的结构特性和学习算法,提出基于MA及LVQ神经网络的新智能入侵防御系统模型结构,概述了新模型的实现方法,并用Matlab算法进行了仿真实验.结果表明,基于MA及LVQ神经网络的新智能入侵防御系统模型整体防御准确率与检测辨识性能都有较大提高. 展开更多
关键词 移动代理MA 学习向量量化lvq lvq神经网络 基于网络的入侵防御系统NIPS 模型构建与实现
在线阅读 下载PDF
基于GMAPM和SOM-LVQ-ANN的输电线路故障综合识别方法 被引量:5
18
作者 孙晓明 秦亮 刘涤尘 《武汉大学学报(工学版)》 CAS CSCD 北大核心 2019年第12期1079-1090,1105,共13页
现有输电线路故障识别方法大多不能同时识别输电线路的低/高阻抗故障和发展性故障以及电力系统的异常工况(包括低频振荡、铁磁谐振和PT/CT饱和等)和此工况下的故障,故不能满足除继电保护领域外的继电保护测试领域及大电网事故分析和预... 现有输电线路故障识别方法大多不能同时识别输电线路的低/高阻抗故障和发展性故障以及电力系统的异常工况(包括低频振荡、铁磁谐振和PT/CT饱和等)和此工况下的故障,故不能满足除继电保护领域外的继电保护测试领域及大电网事故分析和预警防御领域的新的应用需求.因此,提出一种基于广义改进自适应Prony方法(generalized modified adaptive Prony method,GMAPM)和自组织映射-学习向量量化-人工神经网络(self-organizing mapping-learning vector quantization-artificial neural network,SOM-LVQ-ANN)的输电线路故障综合识别方法,以期能同时识别以上输电线路故障和电力系统异常工况及异常工况下的故障.其中,作为信息提取环节的GMAPM实现了多路信号的并行处理和同时分析,作为特征识别环节的SOM-LVQ-ANN继承了SOM-ANN的强自主学习能力和泛化能力以及LVQ-ANN可预先指定故障类型且便于类型编码和拓展的优点.仿真实验结果初步验证了本方法的优良性能. 展开更多
关键词 输电线路故障综合识别方法 广义改进自适应Prony方法 自组织映射-学习向量量化-人工神经网络
原文传递
基于LVQ的煤矿城市生态风险评价指标时间尺度特征 被引量:12
19
作者 彭建 陶静娴 刘焱序 《应用生态学报》 CAS CSCD 北大核心 2015年第3期867-874,共8页
生态风险评价指标在时间尺度上的表征效果是不一致的,因而有必要基于生态风险评价指标的时间尺度特征分析,探索生态风险动态评价方法.本文以辽宁省5个典型煤矿城市为研究对象,采用学习向量量化神经网络(learning vector quantization,L... 生态风险评价指标在时间尺度上的表征效果是不一致的,因而有必要基于生态风险评价指标的时间尺度特征分析,探索生态风险动态评价方法.本文以辽宁省5个典型煤矿城市为研究对象,采用学习向量量化神经网络(learning vector quantization,LVQ)定量分析生态风险评价指标的重要性,进而明晰其时间尺度特征,并提出煤矿城市风险"长期-短期"时间二维动态表征方法.结果表明:单位产值工业SO2去除量、单位产值工业粉尘去除量、城市园林绿地面积覆盖率、降水量、子系统协调度、矿业从业人数百分比、污染治理项目本年度完成投资等为长时间尺度指标,其余指标偏向反映生态风险的短期特征;长、短时间尺度指标相结合,能够反映煤矿城市两个时间维度上的生态风险动态水平.其中,阜新市现状风险值最大,抚顺市短期风险上升幅度最高,朝阳市长期风险上升幅度最高.基于LVQ的评价指标时间尺度特征分析,对于煤矿城市生态风险的动态防范与综合管理具有重要指示意义. 展开更多
关键词 生态风险动态评价 “长期-短期”时间二维尺度 学习向量量化神经网络 煤矿城市
原文传递
基于DTW和LVQ网络混合模型的语音识别方法 被引量:4
20
作者 林遂芳 张海英 潘永湘 《系统仿真学报》 CAS CSCD 北大核心 2005年第8期1959-1961,1965,共4页
提出一种基于动态时间规整(DTW)和学习矢量量化(LVQ)神经网络的语音识别方法。该方法用动态时间规整算法先对语音信号进行时间规整,然后通过学习矢量量化神经网络进行语音的分类识别。首先介绍利用动态时间规整和学习矢量量化进行语音... 提出一种基于动态时间规整(DTW)和学习矢量量化(LVQ)神经网络的语音识别方法。该方法用动态时间规整算法先对语音信号进行时间规整,然后通过学习矢量量化神经网络进行语音的分类识别。首先介绍利用动态时间规整和学习矢量量化进行语音识别的基本方法,然后给出DTW/LVQ混合模型的系统结构和学习算法,最后给出三种语音识别算法的实验结果。大量实验表明,混合模型的识别率,皆明显高于单一的动态时间规整和学习矢量量化的识别率。 展开更多
关键词 语音识别 动态时间规整 学习矢量量化 混合模型
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部