期刊文献+
共找到251,390篇文章
< 1 2 250 >
每页显示 20 50 100
Predicting lymph node metastasis in colorectal cancer using caselevel multiple instance learning
1
作者 Ling-Feng Zou Xuan-Bing Wang +4 位作者 Jing-Wen Li Xin Ouyang Yi-Ying Luo Yan Luo Cheng-Long Wang 《World Journal of Gastroenterology》 2026年第1期110-125,共16页
BACKGROUND The accurate prediction of lymph node metastasis(LNM)is crucial for managing locally advanced(T3/T4)colorectal cancer(CRC).However,both traditional histopathology and standard slide-level deep learning ofte... BACKGROUND The accurate prediction of lymph node metastasis(LNM)is crucial for managing locally advanced(T3/T4)colorectal cancer(CRC).However,both traditional histopathology and standard slide-level deep learning often fail to capture the sparse and diagnostically critical features of metastatic potential.AIM To develop and validate a case-level multiple-instance learning(MIL)framework mimicking a pathologist's comprehensive review and improve T3/T4 CRC LNM prediction.METHODS The whole-slide images of 130 patients with T3/T4 CRC were retrospectively collected.A case-level MIL framework utilising the CONCH v1.5 and UNI2-h deep learning models was trained on features from all haematoxylin and eosinstained primary tumour slides for each patient.These pathological features were subsequently integrated with clinical data,and model performance was evaluated using the area under the curve(AUC).RESULTS The case-level framework demonstrated superior LNM prediction over slide-level training,with the CONCH v1.5 model achieving a mean AUC(±SD)of 0.899±0.033 vs 0.814±0.083,respectively.Integrating pathology features with clinical data further enhanced performance,yielding a top model with a mean AUC of 0.904±0.047,in sharp contrast to a clinical-only model(mean AUC 0.584±0.084).Crucially,a pathologist’s review confirmed that the model-identified high-attention regions correspond to known high-risk histopathological features.CONCLUSION A case-level MIL framework provides a superior approach for predicting LNM in advanced CRC.This method shows promise for risk stratification and therapy decisions,requiring further validation. 展开更多
关键词 Colorectal cancer Lymph node metastasis Deep learning Multiple instance learning HISTOPATHOLOGY
暂未订购
FedCW: Client Selection with Adaptive Weight in Heterogeneous Federated Learning
2
作者 Haotian Wu Jiaming Pei Jinhai Li 《Computers, Materials & Continua》 2026年第1期1551-1570,共20页
With the increasing complexity of vehicular networks and the proliferation of connected vehicles,Federated Learning(FL)has emerged as a critical framework for decentralized model training while preserving data privacy... With the increasing complexity of vehicular networks and the proliferation of connected vehicles,Federated Learning(FL)has emerged as a critical framework for decentralized model training while preserving data privacy.However,efficient client selection and adaptive weight allocation in heterogeneous and non-IID environments remain challenging.To address these issues,we propose Federated Learning with Client Selection and Adaptive Weighting(FedCW),a novel algorithm that leverages adaptive client selection and dynamic weight allocation for optimizing model convergence in real-time vehicular networks.FedCW selects clients based on their Euclidean distance from the global model and dynamically adjusts aggregation weights to optimize both data diversity and model convergence.Experimental results show that FedCW significantly outperforms existing FL algorithms such as FedAvg,FedProx,and SCAFFOLD,particularly in non-IID settings,achieving faster convergence,higher accuracy,and reduced communication overhead.These findings demonstrate that FedCW provides an effective solution for enhancing the performance of FL in heterogeneous,edge-based computing environments. 展开更多
关键词 Federated learning non-IID client selection weight allocation vehicular networks
在线阅读 下载PDF
A Novel Self-Supervised Learning Network for Binocular Disparity Estimation 被引量:1
3
作者 Jiawei Tian Yu Zhou +5 位作者 Xiaobing Chen Salman A.AlQahtani Hongrong Chen Bo Yang Siyu Lu Wenfeng Zheng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期209-229,共21页
Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This st... Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments. 展开更多
关键词 Parallax estimation parallax regression model self-supervised learning Pseudo-Siamese neural network pyramid dilated convolution binocular disparity estimation
在线阅读 下载PDF
A Rapid Adaptation Approach for Dynamic Air‑Writing Recognition Using Wearable Wristbands with Self‑Supervised Contrastive Learning
4
作者 Yunjian Guo Kunpeng Li +4 位作者 Wei Yue Nam‑Young Kim Yang Li Guozhen Shen Jong‑Chul Lee 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期417-431,共15页
Wearable wristband systems leverage deep learning to revolutionize hand gesture recognition in daily activities.Unlike existing approaches that often focus on static gestures and require extensive labeled data,the pro... Wearable wristband systems leverage deep learning to revolutionize hand gesture recognition in daily activities.Unlike existing approaches that often focus on static gestures and require extensive labeled data,the proposed wearable wristband with selfsupervised contrastive learning excels at dynamic motion tracking and adapts rapidly across multiple scenarios.It features a four-channel sensing array composed of an ionic hydrogel with hierarchical microcone structures and ultrathin flexible electrodes,resulting in high-sensitivity capacitance output.Through wireless transmission from a Wi-Fi module,the proposed algorithm learns latent features from the unlabeled signals of random wrist movements.Remarkably,only few-shot labeled data are sufficient for fine-tuning the model,enabling rapid adaptation to various tasks.The system achieves a high accuracy of 94.9%in different scenarios,including the prediction of eight-direction commands,and air-writing of all numbers and letters.The proposed method facilitates smooth transitions between multiple tasks without the need for modifying the structure or undergoing extensive task-specific training.Its utility has been further extended to enhance human–machine interaction over digital platforms,such as game controls,calculators,and three-language login systems,offering users a natural and intuitive way of communication. 展开更多
关键词 Wearable wristband self-supervised contrastive learning Dynamic gesture Air-writing Human-machine interaction
在线阅读 下载PDF
Congruent Feature Selection Method to Improve the Efficacy of Machine Learning-Based Classification in Medical Image Processing
5
作者 Mohd Anjum Naoufel Kraiem +2 位作者 Hong Min Ashit Kumar Dutta Yousef Ibrahim Daradkeh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期357-384,共28页
Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify sp... Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify specific flaws/diseases for diagnosis.The primary concern of ML applications is the precise selection of flexible image features for pattern detection and region classification.Most of the extracted image features are irrelevant and lead to an increase in computation time.Therefore,this article uses an analytical learning paradigm to design a Congruent Feature Selection Method to select the most relevant image features.This process trains the learning paradigm using similarity and correlation-based features over different textural intensities and pixel distributions.The similarity between the pixels over the various distribution patterns with high indexes is recommended for disease diagnosis.Later,the correlation based on intensity and distribution is analyzed to improve the feature selection congruency.Therefore,the more congruent pixels are sorted in the descending order of the selection,which identifies better regions than the distribution.Now,the learning paradigm is trained using intensity and region-based similarity to maximize the chances of selection.Therefore,the probability of feature selection,regardless of the textures and medical image patterns,is improved.This process enhances the performance of ML applications for different medical image processing.The proposed method improves the accuracy,precision,and training rate by 13.19%,10.69%,and 11.06%,respectively,compared to other models for the selected dataset.The mean error and selection time is also reduced by 12.56%and 13.56%,respectively,compared to the same models and dataset. 展开更多
关键词 Computer vision feature selection machine learning region detection texture analysis image classification medical images
在线阅读 下载PDF
Real-Time Smart Meter Abnormality Detection Framework via End-to-End Self-Supervised Time-Series Contrastive Learning with Anomaly Synthesis
6
作者 WANG Yixin LIANG Gaoqi +1 位作者 BI Jichao ZHAO Junhua 《南方电网技术》 北大核心 2025年第7期62-71,89,共11页
The rapid integration of Internet of Things(IoT)technologies is reshaping the global energy landscape by deploying smart meters that enable high-resolution consumption monitoring,two-way communication,and advanced met... The rapid integration of Internet of Things(IoT)technologies is reshaping the global energy landscape by deploying smart meters that enable high-resolution consumption monitoring,two-way communication,and advanced metering infrastructure services.However,this digital transformation also exposes power system to evolving threats,ranging from cyber intrusions and electricity theft to device malfunctions,and the unpredictable nature of these anomalies,coupled with the scarcity of labeled fault data,makes realtime detection exceptionally challenging.To address these difficulties,a real-time decision support framework is presented for smart meter anomality detection that leverages rolling time windows and two self-supervised contrastive learning modules.The first module synthesizes diverse negative samples to overcome the lack of labeled anomalies,while the second captures intrinsic temporal patterns for enhanced contextual discrimination.The end-to-end framework continuously updates its model with rolling updated meter data to deliver timely identification of emerging abnormal behaviors in evolving grids.Extensive evaluations on eight publicly available smart meter datasets over seven diverse abnormal patterns testing demonstrate the effectiveness of the proposed full framework,achieving average recall and F1 score of more than 0.85. 展开更多
关键词 abnormality detection cyber-physical security anomaly synthesis contrastive learning time-series
在线阅读 下载PDF
Hybrid Deep Learning and Optimized Feature Selection for Oil Spill Detection in Satellite Images
7
作者 Ghada Atteia Mohammed Dabboor +1 位作者 Konstantinos Karantzalos Maali Alabdulhafith 《Computers, Materials & Continua》 2025年第7期1747-1767,共21页
This study explores the integration of Synthetic Aperture Radar(SAR)imagery with deep learning and metaheuristic feature optimization techniques for enhanced oil spill detection.This study proposes a novel hybrid appr... This study explores the integration of Synthetic Aperture Radar(SAR)imagery with deep learning and metaheuristic feature optimization techniques for enhanced oil spill detection.This study proposes a novel hybrid approach for oil spill detection.The introduced approach integrates deep transfer learning with the metaheuristic Binary Harris Hawk optimization(BHHO)and Principal Component Analysis(PCA)for improved feature extraction and selection from input SAR imagery.Feature transfer learning of the MobileNet convolutional neural network was employed to extract deep features from the SAR images.The BHHO and PCA algorithms were implemented to identify subsets of optimal features from the entire feature dataset extracted by MobileNet.A supplemented hybrid feature set was constructed from the PCA and BHHO-generated features.It was used as input for oil spill detection using the logistic regression supervised machine learning classification algorithm.Several feature set combinations were implemented to test the classification performance of the logistic regression classifier in comparison to that of the proposed hybrid feature set.Results indicate that the highest oil spill detection accuracy of 99.2%has been achieved using the logistic regression classification algorithm,with integrated feature input from subsets identified using the PCA and the BHHO feature selection techniques.The proposed method yielded a statistically significant improvement in the classification performance of the used machine learning model.The significance of our study lies in its unique integration of deep learning with optimized feature selection,unlike other published studies,to enhance oil spill detection accuracy. 展开更多
关键词 Oil spill machine learning deep learning CLASSIFICATION metaheuristic optimization
在线阅读 下载PDF
Research-Led and Project-Based Learning:A Case Study on Self-Directed Pedagogical Approach for Modern Higher Architecture Education
8
作者 Fangde Ren Qichao Ban +1 位作者 Huifei Deng Kai Wu 《教育技术与创新》 2025年第4期59-72,共14页
Contemporary higher education prioritizes cultivating students’key competencies and comprehensive problem-solving abilities,specifically fostering innovation,goal orientation,and initiative.This study investigates a ... Contemporary higher education prioritizes cultivating students’key competencies and comprehensive problem-solving abilities,specifically fostering innovation,goal orientation,and initiative.This study investigates a pedagogical framework that synergizes Research-Led Learning(RLL)and Project-Based Learning(PBL)to establish an open,exploratory learning environment.Employing a case study methodology,the research tracked architecture students engaging in a structured PBL process involving rigorous research activities—ranging from theoretical analysis to field investigations—to develop evidence-based design solutions.Evaluations from both student and faculty perspectives assessed the pedagogical effectiveness regarding learning outcomes and competency development.The findings indicate that this methodology effectively bridges the gap between research and practice,significantly bolstering students’capacity to address authentic challenges and propelling self-directed learning in architectural education. 展开更多
关键词 research-led learning(RLL) project-based learning(PBL) selfdirected learning pedagogical approach modern higher architectural education marine building
在线阅读 下载PDF
A Novel Dynamic Residual Self-Attention Transfer Adaptive Learning Fusion Approach for Brain Tumor Diagnosis
9
作者 Tawfeeq Shawly Ahmed A.Alsheikhy 《Computers, Materials & Continua》 2025年第3期4161-4179,共19页
A healthy brain is vital to every person since the brain controls every movement and emotion.Sometimes,some brain cells grow unexpectedly to be uncontrollable and cancerous.These cancerous cells are called brain tumor... A healthy brain is vital to every person since the brain controls every movement and emotion.Sometimes,some brain cells grow unexpectedly to be uncontrollable and cancerous.These cancerous cells are called brain tumors.For diagnosed patients,their lives depend mainly on the early diagnosis of these tumors to provide suitable treatment plans.Nowadays,Physicians and radiologists rely on Magnetic Resonance Imaging(MRI)pictures for their clinical evaluations of brain tumors.These evaluations are time-consuming,expensive,and require expertise with high skills to provide an accurate diagnosis.Scholars and industrials have recently partnered to implement automatic solutions to diagnose the disease with high accuracy.Due to their accuracy,some of these solutions depend on deep-learning(DL)methodologies.These techniques have become important due to their roles in the diagnosis process,which includes identification and classification.Therefore,there is a need for a solid and robust approach based on a deep-learning method to diagnose brain tumors.The purpose of this study is to develop an intelligent automatic framework for brain tumor diagnosis.The proposed solution is based on a novel dense dynamic residual self-attention transfer adaptive learning fusion approach(NDDRSATALFA),carried over two implemented deep-learning networks:VGG19 and UNET to identify and classify brain tumors.In addition,this solution applies a transfer learning approach to exchange extracted features and data within the two neural networks.The presented framework is trained,validated,and tested on six public datasets of MRIs to detect brain tumors and categorize these tumors into three suitable classes,which are glioma,meningioma,and pituitary.The proposed framework yielded remarkable findings on variously evaluated performance indicators:99.32%accuracy,98.74%sensitivity,98.89%specificity,99.01%Dice,98.93%Area Under the Curve(AUC),and 99.81%F1-score.In addition,a comparative analysis with recent state-of-the-art methods was performed and according to the comparative analysis,NDDRSATALFA shows an admirable level of reliability in simplifying the timely identification of diverse brain tumors.Moreover,this framework can be applied by healthcare providers to assist radiologists,pathologists,and physicians in their evaluations.The attained outcomes open doors for advanced automatic solutions that improve clinical evaluations and provide reasonable treatment plans. 展开更多
关键词 Brain tumor deep learning transfer learning RESIDUAL self-attention VGG19 UNET
在线阅读 下载PDF
Academic self-efficacy and self-directed learning ability among nursing students:The moderating role of learning engagement
10
作者 Huan Ma Jinmei Zou Ying Zhong 《Journal of Psychology in Africa》 2025年第4期481-487,共7页
This study explored the role of learning engagement in the relationship between academic self-efficacy and self-directed learning ability among nursing students.Participants were 328 Chinese nursing students(male=11.3... This study explored the role of learning engagement in the relationship between academic self-efficacy and self-directed learning ability among nursing students.Participants were 328 Chinese nursing students(male=11.3%,female=88.7%;mean age=20.86 years;SD=1.75 years).The participants completed surveys on academic self-efficacy(Academic Self-efficacy Scale),learning engagement(Learning Engagement Scale),and self-directed learning ability(Self-directed Learning Instrument).Hayes regression-based PROCESS macro analysis revealed that learning engagement mediated the relationship between academic self-efficacy and self-directed learning ability.The hierarchical regression analysis showed higher academic self-efficacy to be associated with self-directed learning ability.Additionally learning engagement was associated with higher self-directed learning ability.Based on thesefindings,there is a need for interventions to improve students’self-directed learning ability through increasing their academic self-efficacy and enhancing learning engagement. 展开更多
关键词 academic self-efficacy learning engagement self-directed learning ability nursing students
在线阅读 下载PDF
Construction of a Self-Directed Learning Model in a Blended Learning Environment
11
作者 Jiafeng Xu Dawei Jia +1 位作者 Jianxin Hao Zhimao Lai 《Journal of Contemporary Educational Research》 2025年第9期316-321,共6页
With blended learning emerging as a mainstream paradigm in higher education,the Document Security Technology course faces persistent challenges,including vague instructional objectives and low learning efficiency.Simu... With blended learning emerging as a mainstream paradigm in higher education,the Document Security Technology course faces persistent challenges,including vague instructional objectives and low learning efficiency.Simultaneously,the profession demands stronger self-directed learning capabilities from practitioners.To address these issues,this study develops a“Five-in-One”self-directed learning model comprising five interrelated dimensions:goal orientation,instructional regulation,cognitive development,technological resources,and process monitoring.The application of this model has significantly improved course evaluation outcomes,enhanced faculty teaching and research capacity,strengthened students’practical and innovative skills,and expanded the course’s reach and social impact.The model thus provides both a theoretical framework and a practical pathway for the reform of similar applied courses. 展开更多
关键词 Blended learning Document security technology Immigration management Police education self-directed learning
在线阅读 下载PDF
Ordered Clustering-Based Semantic Music Recommender System Using Deep Learning Selection
12
作者 Weitao Ha Sheng Gang +2 位作者 Yahya D.Navaei Abubakar S.Gezawa Yaser A.Nanehkaran 《Computers, Materials & Continua》 2025年第5期3025-3057,共33页
Music recommendation systems are essential due to the vast amount of music available on streaming platforms,which can overwhelm users trying to find new tracks that match their preferences.These systems analyze users... Music recommendation systems are essential due to the vast amount of music available on streaming platforms,which can overwhelm users trying to find new tracks that match their preferences.These systems analyze users’emotional responses,listening habits,and personal preferences to provide personalized suggestions.A significant challenge they face is the“cold start”problem,where new users have no past interactions to guide recommendations.To improve user experience,these systems aimto effectively recommendmusic even to such users by considering their listening behavior and music popularity.This paper introduces a novel music recommendation system that combines order clustering and a convolutional neural network,utilizing user comments and rankings as input.Initially,the system organizes users into clusters based on semantic similarity,followed by the utilization of their rating similarities as input for the convolutional neural network.This network then predicts ratings for unreviewed music by users.Additionally,the system analyses user music listening behaviour and music popularity.Music popularity can help to address cold start users as well.Finally,the proposed method recommends unreviewed music based on predicted high rankings and popularity,taking into account each user’s music listening habits.The proposed method combines predicted high rankings and popularity by first selecting popular unreviewedmusic that themodel predicts to have the highest ratings for each user.Among these,the most popular tracks are prioritized,defined by metrics such as frequency of listening across users.The number of recommended tracks is aligned with each user’s typical listening rate.The experimental findings demonstrate that the new method outperformed other classification techniques and prior recommendation systems,yielding a mean absolute error(MAE)rate and rootmean square error(RMSE)rate of approximately 0.0017,a hit rate of 82.45%,an average normalized discounted cumulative gain(nDCG)of 82.3%,and a prediction accuracy of new ratings at 99.388%. 展开更多
关键词 Music recommender system order clustering deep learning
在线阅读 下载PDF
Machine Learning-based Battery Life Detection and Photoelectrode Materials Selection for Lithium Batteries
13
作者 Jianwei Lu Tong Liu +5 位作者 Yimin Chen Yuxi Ma Junlun Cao Kun Luo Weiwei Lei Dan Liu 《Transactions of Tianjin University》 2025年第3期270-277,共8页
Herein,we developed three-dimensional pristine titanium dioxide(TiO_(2))photo-electrocatalyst material(PEM)with homogeneous distribution of oxygen vacancies(OV)for lithium-oxygen(Li-O_(2))battery system(denoted as LOB... Herein,we developed three-dimensional pristine titanium dioxide(TiO_(2))photo-electrocatalyst material(PEM)with homogeneous distribution of oxygen vacancies(OV)for lithium-oxygen(Li-O_(2))battery system(denoted as LOBs)under illumination.This rationally designed OV-TiO_(2)photoelectrode-catalyst has exhibited excellent capacity,small overpotential,long-term cycle stability,and higher rate capability performance according to our electrochemical experiment study.In short,OV as photoinduced charge separation centers(inert surface atomic modification method)fascinate the effective separation of electrons(e^(−))and holes(h^(+)).In turn,induced e−and h+are beneficial to the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)process.More importantly,machine learning(ML)algorithms to analyze and optimize battery performance are innovative in the photoelectrical field.The utility of ML analysis is extensively shown to be effective in learning the in/output connection of interest.Based on ML analysis results,the OV-TiO_(2)cathode is indeed the key point to extend the LOB life span.More importantly,our brilliant anatase OV-TiO_(2)revealed the optimization of electrode material for high performance and reversibility in LOBs.We expect that it will bring special OV-TiO_(2)and some other hierarchical hollow nanomaterials,a big step toward battery technology no matter in cost-effectiveness and environmentally friendly aspects. 展开更多
关键词 Machine learning Oxygen vacancies Lithium batteries
在线阅读 下载PDF
Explainable machine learning framework for gene expression-based biomarker identification and cancer classification using feature selection
14
作者 Nivetha Shanmugam Anandakumar Krishnan +1 位作者 HHannah Inbarani Mudassir Khan 《Medical Data Mining》 2025年第3期59-72,共14页
Background:Gene expression profiling plays a key role in cancer research,but its high dimensionality and redundancy pose challenges for effective analysis.Feature selection and robust classification are critical for i... Background:Gene expression profiling plays a key role in cancer research,but its high dimensionality and redundancy pose challenges for effective analysis.Feature selection and robust classification are critical for improving predictive performance,while explainable machine learning techniques support transparency and biomarker discovery.Methods:To propose a hybrid explainable machine learning framework that combines stability-guided multi-source(SGMS)feature selection with classification models for gene expression-based cancer prediction and biomarker identification.SGMS integrates Mutual Information,F-statistic,and random forest(RF)importance to select informative genes.These features are used to train classifiers,including novel elasticnet logistic regression(NEN-LR),RF,and Support Vector Machine(SVM).Performance is evaluated using accuracy,precision,recall,F1-score,and Matthews correlation coefficient(MCC).SHapley Additive exPlanations(SHAP)values are used to interpret gene-level contributions,and co-expression networks help identify functional gene modules.Results:The proposed NEN-LR classifier achieved the highest performance with 99.8%accuracy,99.9%precision,and 0.997 MCC using the top 200 SGMS-selected genes.Biomarker discovery identified both class-specific and shared genes across five cancer types,with top genes like gene_230,gene_5380,and gene_18570 consistently appearing across multiple classes.Visualization tools,including heatmaps,Venn diagrams,and co-expression networks,were used to interpret expression dynamics and regulatory patterns,enhancing the biological relevance of findings.SHAP analysis revealed top biomarkers with strong predictive influence,while co-expression clustering uncovered biologically meaningful gene modules.Other models also showed marked improvement using SGMS-selected features.Conclusion:The proposed framework successfully integrates feature selection,interpretable classification,and biomarker discovery,providing a powerful tool for precision oncology and molecular diagnostics. 展开更多
关键词 RNA-SEQ cancer classification feature stability machine learning biomarkers
暂未订购
Ground-Glass Lung Nodules Recognition Based on CatBoost Feature Selection and Stacking Ensemble Learning
15
作者 MIAO Jun CHANG Yiru +5 位作者 CHEN Chen ZHANG Maoxuan LIU Yan QI Honggang GUO Zhijun XU Qian 《Journal of Shanghai Jiaotong university(Science)》 2025年第4期790-799,共10页
Aimed at the issues of high feature dimensionality,excessive data redundancy,and low recognition accuracy of using single classifiers on ground-glass lung nodule recognition,a recognition method was proposed based on ... Aimed at the issues of high feature dimensionality,excessive data redundancy,and low recognition accuracy of using single classifiers on ground-glass lung nodule recognition,a recognition method was proposed based on CatBoost feature selection and Stacking ensemble learning.First,the method uses a feature selection algorithm to filter important features and remove features with less impact,achieving the effect of data dimensionality reduction.Second,random forests classifier,decision trees,K-nearest neighbor classifier,and light gradient boosting machine were used as base classifiers,and support vector machine was used as meta classifier to fuse and construct the ensemble learning model.This measure increases the accuracy of the classification model while maintaining the diversity of the base classifiers.The experimental results show that the recognition accuracy of the proposed method reaches 94.375%.Compared to the random forest algorithm with the best performance among single classifiers,the accuracy of the proposed method is increased by 1.875%.Compared to the recent deep learning methods(ResNet+GBM+Attention and MVCSNet)on ground-glass pulmonary nodule recognition,the proposed method’s performance is also better or comparative.Experiments show that the proposed model can effectively select features and make recognition on ground-glass pulmonary nodules. 展开更多
关键词 ground-glass pulmonary nodule feature selection ensemble learning
原文传递
Intentional self-regulation and peer relationship in the teacher-student relationship for learning engagement: A moderation–mediation analysis
16
作者 Mengjun Zhu Xing’an Yao Mansor Bin Abu Talib 《Journal of Psychology in Africa》 2025年第1期83-90,共8页
This study investigated the role of intentional self-regulation and the moderating role of peer relationship in the relationship between teacher-student relationship and learning engagement.The study sample comprised ... This study investigated the role of intentional self-regulation and the moderating role of peer relationship in the relationship between teacher-student relationship and learning engagement.The study sample comprised 540 Chinese senior secondary school students between the ages of 15–18(51.67%boys;Mage=16.56 years;SDage=0.90).They completed surveys on the Teacher-Student Relationship Scale,the Selection,Optimization,and Compensation(SOC)Scale,the Peer Relationship Scale for Children and Adolescents,and the Learning Engagement Scale.The results following regression analysis showed that teacher-student relationship predicted higher learning engagement among senior secondary school students.Intentional self-regulation partially mediated the link between teacher-student relationship and learning engagement for higher learning engagement.Peer relationship moderated the relationships between teacher-student relationship and learning engagement and moderated the relationship between teacher-student relationship and intentional self-regulation for higher learning engagement.Thesefindings imply learning engagement can be enhanced by optimizing teacher-student relationship and strengthening intentional self-regulation interventions. 展开更多
关键词 teacher-student relationship intentional self-regulation peer relationship learning engagement
在线阅读 下载PDF
Heart Disease Prediction Model Using Feature Selection and Ensemble Deep Learning with Optimized Weight
17
作者 Iman S.Al-Mahdi Saad M.Darwish Magda M.Madbouly 《Computer Modeling in Engineering & Sciences》 2025年第4期875-909,共35页
Heart disease prediction is a critical issue in healthcare,where accurate early diagnosis can save lives and reduce healthcare costs.The problem is inherently complex due to the high dimensionality of medical data,irr... Heart disease prediction is a critical issue in healthcare,where accurate early diagnosis can save lives and reduce healthcare costs.The problem is inherently complex due to the high dimensionality of medical data,irrelevant or redundant features,and the variability in risk factors such as age,lifestyle,andmedical history.These challenges often lead to inefficient and less accuratemodels.Traditional predictionmethodologies face limitations in effectively handling large feature sets and optimizing classification performance,which can result in overfitting poor generalization,and high computational cost.This work proposes a novel classification model for heart disease prediction that addresses these challenges by integrating feature selection through a Genetic Algorithm(GA)with an ensemble deep learning approach optimized using the Tunicate Swarm Algorithm(TSA).GA selects the most relevant features,reducing dimensionality and improvingmodel efficiency.Theselected features are then used to train an ensemble of deep learning models,where the TSA optimizes the weight of each model in the ensemble to enhance prediction accuracy.This hybrid approach addresses key challenges in the field,such as high dimensionality,redundant features,and classification performance,by introducing an efficient feature selection mechanism and optimizing the weighting of deep learning models in the ensemble.These enhancements result in a model that achieves superior accuracy,generalization,and efficiency compared to traditional methods.The proposed model demonstrated notable advancements in both prediction accuracy and computational efficiency over traditionalmodels.Specifically,it achieved an accuracy of 97.5%,a sensitivity of 97.2%,and a specificity of 97.8%.Additionally,with a 60-40 data split and 5-fold cross-validation,the model showed a significant reduction in training time(90 s),memory consumption(950 MB),and CPU usage(80%),highlighting its effectiveness in processing large,complex medical datasets for heart disease prediction. 展开更多
关键词 Heart disease prediction feature selection ensemble deep learning optimization genetic algorithm(GA) ensemble deep learning tunicate swarm algorithm(TSA) feature selection
在线阅读 下载PDF
An explainable feature selection framework for web phishing detection with machine learning
18
作者 Sakib Shahriar Shafin 《Data Science and Management》 2025年第2期127-136,共10页
In the evolving landscape of cyber threats,phishing attacks pose significant challenges,particularly through deceptive webpages designed to extract sensitive information under the guise of legitimacy.Conventional and ... In the evolving landscape of cyber threats,phishing attacks pose significant challenges,particularly through deceptive webpages designed to extract sensitive information under the guise of legitimacy.Conventional and machine learning(ML)-based detection systems struggle to detect phishing websites owing to their constantly changing tactics.Furthermore,newer phishing websites exhibit subtle and expertly concealed indicators that are not readily detectable.Hence,effective detection depends on identifying the most critical features.Traditional feature selection(FS)methods often struggle to enhance ML model performance and instead decrease it.To combat these issues,we propose an innovative method using explainable AI(XAI)to enhance FS in ML models and improve the identification of phishing websites.Specifically,we employ SHapley Additive exPlanations(SHAP)for global perspective and aggregated local interpretable model-agnostic explanations(LIME)to deter-mine specific localized patterns.The proposed SHAP and LIME-aggregated FS(SLA-FS)framework pinpoints the most informative features,enabling more precise,swift,and adaptable phishing detection.Applying this approach to an up-to-date web phishing dataset,we evaluate the performance of three ML models before and after FS to assess their effectiveness.Our findings reveal that random forest(RF),with an accuracy of 97.41%and XGBoost(XGB)at 97.21%significantly benefit from the SLA-FS framework,while k-nearest neighbors lags.Our framework increases the accuracy of RF and XGB by 0.65%and 0.41%,respectively,outperforming traditional filter or wrapper methods and any prior methods evaluated on this dataset,showcasing its potential. 展开更多
关键词 Webpage phishing Explainable AI Feature selection Machine learning
在线阅读 下载PDF
Self-supervised multi-stage deep learning network for seismic data denoising
19
作者 Omar M.Saad Matteo Ravasi Tariq Alkhalifah 《Artificial Intelligence in Geosciences》 2025年第1期240-249,共10页
Seismic data denoising is a critical process usually applied at various stages of the seismic processing workflow,as our ability to mitigate noise in seismic data affects the quality of our subsequent analyses.However... Seismic data denoising is a critical process usually applied at various stages of the seismic processing workflow,as our ability to mitigate noise in seismic data affects the quality of our subsequent analyses.However,finding an optimal balance between preserving seismic signals and effectively reducing seismic noise presents a substantial challenge.In this study,we introduce a multi-stage deep learning model,trained in a self-supervised manner,designed specifically to suppress seismic noise while minimizing signal leakage.This model operates as a patch-based approach,extracting overlapping patches from the noisy data and converting them into 1D vectors for input.It consists of two identical sub-networks,each configured differently.Inspired by the transformer architecture,each sub-network features an embedded block that comprises two fully connected layers,which are utilized for feature extraction from the input patches.After reshaping,a multi-head attention module enhances the model’s focus on significant features by assigning higher attention weights to them.The key difference between the two sub-networks lies in the number of neurons within their fully connected layers.The first sub-network serves as a strong denoiser with a small number of neurons,effectively attenuating seismic noise;in contrast,the second sub-network functions as a signal-add-back model,using a larger number of neurons to retrieve some of the signal that was not preserved in the output of the first sub-network.The proposed model produces two outputs,each corresponding to one of the sub-networks,and both sub-networks are optimized simultaneously using the noisy data as the label for both outputs.Evaluations conducted on both synthetic and field data demonstrate the model’s effectiveness in suppressing seismic noise with minimal signal leakage,outperforming some benchmark methods. 展开更多
关键词 Seismic data denoising self-supervised Multi-stage deep learning
在线阅读 下载PDF
Deep learning-enabled inverse design of polarization-selective structural color based on coding metasurface
20
作者 Haolin Yang Bo Ni +2 位作者 Junhong Guo Hua Zhou Jianhua Chang 《Chinese Physics B》 2025年第5期311-318,共8页
Structural colors based on metasurfaces have very promising applications in areas such as optical image encryption and color printing.Herein,we propose a deep learning-enabled reverse design of polarization-selective ... Structural colors based on metasurfaces have very promising applications in areas such as optical image encryption and color printing.Herein,we propose a deep learning-enabled reverse design of polarization-selective structural color based on coding metasurface.In this study,the long short-term memory(LSTM)neural network is presented to enable the forward and inverse mapping between coding metasurface structure and corresponding color.The results show that the method can achieve 98%accuracy for the forward prediction of color and 93%accuracy for the inverse design of the structure.Moreover,a cascaded architecture is adopted to train the inverse neural network model,which can solve the nonuniqueness problem of the polarization-selective color reverse design.This study provides a new path for the application and development of structural colors. 展开更多
关键词 deep learning inverse design coding metasurface structural color polarization-selective
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部