期刊文献+
共找到664篇文章
< 1 2 34 >
每页显示 20 50 100
Database of ternary amorphous alloys based on machine learning
1
作者 Xuhe Gong Ran Li +2 位作者 Ruijuan Xiao Tao Zhang Hong Li 《Chinese Physics B》 2025年第1期129-133,共5页
The unique long-range disordered atomic arrangement inherent in amorphous materials endows them with a range of superior properties,rendering them highly promising for applications in catalysis,medicine,and battery te... The unique long-range disordered atomic arrangement inherent in amorphous materials endows them with a range of superior properties,rendering them highly promising for applications in catalysis,medicine,and battery technology,among other fields.Since not all materials can be synthesized into an amorphous structure,the composition design of amorphous materials holds significant importance.Machine learning offers a valuable alternative to traditional“trial-anderror”methods by predicting properties through experimental data,thus providing efficient guidance in material design.In this study,we develop a machine learning workflow to predict the critical casting diameter,glass transition temperature,and Young's modulus for 45 ternary reported amorphous alloy systems.The predicted results have been organized into a database,enabling direct retrieval of predicted values based on compositional information.Furthermore,the applications of high glass forming ability region screening for specified system,multi-property target system screening and high glass forming ability region search through iteration are also demonstrated.By utilizing machine learning predictions,researchers can effectively narrow the experimental scope and expedite the exploration of compositions. 展开更多
关键词 amorphous alloys machine learning database
原文传递
Corrigendum to“Meta databases of steel frame buildings for surrogate modelling and machine learning-based feature importance analysis”[Journal of Resilient Cities and Structures Volume 3 Issue 1(2024)20-43]
2
作者 Delbaz Samadian Jawad Fayaz +2 位作者 Imrose B.Muhit Annalisa Occhipinti Nashwan Dawood 《Resilient Cities and Structures》 2025年第1期124-124,共1页
The authors regret that the original publication of this paper did not include Jawad Fayaz as a co-author.After further discussions and a thorough review of the research contributions,it was agreed that his significan... The authors regret that the original publication of this paper did not include Jawad Fayaz as a co-author.After further discussions and a thorough review of the research contributions,it was agreed that his significant contributions to the foundational aspects of the research warranted recognition,and he has now been added as a co-author. 展开更多
关键词 machine learning meta databases jawad fayaz surrogate modelling feature importance analysis steel frame buildings
在线阅读 下载PDF
The Overview of Database Security Threats’ Solutions: Traditional and Machine Learning 被引量:2
3
作者 Yong Wang Jinsong Xi Tong Cheng 《Journal of Information Security》 2021年第1期34-55,共22页
As an information-rich collective, there are always some people who choose to take risks for some ulterior purpose and others are committed to finding ways to deal with database security threats. The purpose of databa... As an information-rich collective, there are always some people who choose to take risks for some ulterior purpose and others are committed to finding ways to deal with database security threats. The purpose of database security research is to prevent the database from being illegally used or destroyed. This paper introduces the main literature in the field of database security research in recent years. First of all, we classify these papers, the classification criteria </span><span style="font-size:12px;font-family:Verdana;">are</span><span style="font-size:12px;font-family:Verdana;"> the influencing factors of database security. Compared with the traditional and machine learning (ML) methods, some explanations of concepts are interspersed to make these methods easier to understand. Secondly, we find that the related research has achieved some gratifying results, but there are also some shortcomings, such as weak generalization, deviation from reality. Then, possible future work in this research is proposed. Finally, we summarize the main contribution. 展开更多
关键词 database Security Threat Agent Traditional Approaches Machine learning
在线阅读 下载PDF
High-Performance Chemical Information Database towards Accelerating Discovery of Metal-Organic Frameworks for Gas Adsorption with Machine Learning
4
作者 Zi-kai Hao Hai-feng Lv +1 位作者 Da-yong Wang Xiao-jun Wu 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2021年第4期436-442,I0003,共8页
Chemical structure searching based on databases and machine learning has at-tracted great attention recently for fast screening materials with target func-tionalities.To this end,we estab-lished a high-performance che... Chemical structure searching based on databases and machine learning has at-tracted great attention recently for fast screening materials with target func-tionalities.To this end,we estab-lished a high-performance chemical struc-ture database based on MYSQL engines,named MYDB.More than 160000 metal-organic frameworks(MOFs)have been collected and stored by using new retrieval algorithms for effcient searching and recom-mendation.The evaluations results show that MYDB could realize fast and effcient key-word searching against millions of records and provide real-time recommendations for similar structures.Combining machine learning method and materials database,we developed an adsorption model to determine the adsorption capacitor of metal-organic frameworks to-ward argon and hydrogen under certain conditions.We expect that MYDB together with the developed machine learning techniques could support large-scale,low-cost,and highly convenient structural research towards accelerating discovery of materials with target func-tionalities in the eld of computational materials research. 展开更多
关键词 Chemical informatics database Search engine Machine learning Gas ab-sorption
在线阅读 下载PDF
Meta databases of steel frame buildings for surrogate modelling and machine learning-based feature importance analysis 被引量:1
5
作者 Delbaz Samadian Imrose B.Muhit +1 位作者 Annalisa Occhipinti Nashwan Dawood 《Resilient Cities and Structures》 2024年第1期20-43,共24页
Traditionally,nonlinear time history analysis(NLTHA)is used to assess the performance of structures under fu-ture hazards which is necessary to develop effective disaster risk management strategies.However,this method... Traditionally,nonlinear time history analysis(NLTHA)is used to assess the performance of structures under fu-ture hazards which is necessary to develop effective disaster risk management strategies.However,this method is computationally intensive and not suitable for analyzing a large number of structures on a city-wide scale.Surrogate models offer an efficient and reliable alternative and facilitate evaluating the performance of multiple structures under different hazard scenarios.However,creating a comprehensive database for surrogate mod-elling at the city level presents challenges.To overcome this,the present study proposes meta databases and a general framework for surrogate modelling of steel structures.The dataset includes 30,000 steel moment-resisting frame buildings,representing low-rise,mid-rise and high-rise buildings,with criteria for connections,beams,and columns.Pushover analysis is performed and structural parameters are extracted,and finally,incorporating two different machine learning algorithms,random forest and Shapley additive explanations,sensitivity and explain-ability analyses of the structural parameters are performed to identify the most significant factors in designing steel moment resisting frames.The framework and databases can be used as a validated source of surrogate modelling of steel frame structures in order for disaster risk management. 展开更多
关键词 Surrogate models Meta database Pushover analysis Steel moment resisting frames Sensitivity and explainability analyses Machine learning
在线阅读 下载PDF
Power Information System Database Cache Model Based on Deep Machine Learning
6
作者 Manjiang Xing 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期1081-1090,共10页
At present,the database cache model of power information system has problems such as slow running speed and low database hit rate.To this end,this paper proposes a database cache model for power information systems ba... At present,the database cache model of power information system has problems such as slow running speed and low database hit rate.To this end,this paper proposes a database cache model for power information systems based on deep machine learning.The caching model includes program caching,Structured Query Language(SQL)preprocessing,and core caching modules.Among them,the method to improve the efficiency of the statement is to adjust operations such as multi-table joins and replacement keywords in the SQL optimizer.Build predictive models using boosted regression trees in the core caching module.Generate a series of regression tree models using machine learning algorithms.Analyze the resource occupancy rate in the power information system to dynamically adjust the voting selection of the regression tree.At the same time,the voting threshold of the prediction model is dynamically adjusted.By analogy,the cache model is re-initialized.The experimental results show that the model has a good cache hit rate and cache efficiency,and can improve the data cache performance of the power information system.It has a high hit rate and short delay time,and always maintains a good hit rate even under different computer memory;at the same time,it only occupies less space and less CPU during actual operation,which is beneficial to power The information system operates efficiently and quickly. 展开更多
关键词 Deep machine learning power information system database cache model
在线阅读 下载PDF
Deep learning applications for diabetic retinopathy and retinopathy of prematurity diseases diagnosis:a systematic review
7
作者 Elizabeth Ndunge Mutua Bernard Shibwabo Kasamani Christoph Reich 《International Journal of Ophthalmology(English edition)》 2025年第8期1594-1602,共9页
To review the existing deep learning applications for diagnosing diabetic retinopathy and retinopathy of prematurity diseases,the available public retinal databases for the diseases and apply the International Journal... To review the existing deep learning applications for diagnosing diabetic retinopathy and retinopathy of prematurity diseases,the available public retinal databases for the diseases and apply the International Journal of Medical Informatics(IJMEDI)checklist were assessed the quality of included studies;an in-depth literature search in Scopus,Web of Science,IEEE and ACM databases targeting articles from inception up to 31st January 2023 was done by two independent reviewers.In the review,26 out of 1476 articles with a total of 36 models were included.Data size and model validation were found to be challenges for most studies.Deep learning models are gaining focus in the development of medical diagnosis tools and applications.However,there seems to be a critical issue with most of the studies being published,with some not including information about data sources and data sizes which is important for their performance verification. 展开更多
关键词 diabetic retinopathy retinopathy of prematurity retinal vessel segmentation retinal database deep learning
原文传递
A review of deep learning-based analyses of impact crater detection on different celestial bodies
8
作者 Xu Zhang Jialong Lai +2 位作者 Feifei Cui Chunyu Ding Zhicheng Zhong 《Astronomical Techniques and Instruments》 2025年第3期127-147,共21页
Planetary surfaces,shaped by billions of years of geologic evolution,display numerous impact craters whose distribution of size,density,and spatial arrangement reveals the celestial body's history.Identifying thes... Planetary surfaces,shaped by billions of years of geologic evolution,display numerous impact craters whose distribution of size,density,and spatial arrangement reveals the celestial body's history.Identifying these craters is essential for planetary science and is currently mainly achieved with deep learning-driven detection algorithms.However,because impact crater characteristics are substantially affected by the geologic environment,surface materials,and atmospheric conditions,the performance of deep learning models can be inconsistent between celestial bodies.In this paper,we first examine how the surface characteristics of the Moon,Mars,and Earth,along with the differences in their impact crater features,affect model performance.Then,we compare crater detection across celestial bodies by analyzing enhanced convolutional neural networks and U-shaped Convolutional Neural Network-based models to highlight how geology,data,and model design affect accuracy and generalization.Finally,we address current deep learning challenges,suggest directions for model improvement,such as multimodal data fusion and cross-planet learning and list available impact crater databases.This review can provide necessary technical support for deep space exploration and planetary science,as well as new ideas and directions for future research on automatic detection of impact craters on celestial body surfaces and on planetary geology. 展开更多
关键词 Crater detection algorithms Deep learning Different celestial bodies Impact crater databases
在线阅读 下载PDF
Machine Learning Speeds Up the Discovery of Efficient Porphyrinoid Electrocatalysts for Ammonia Synthesis
9
作者 Wenfeng Hu Bingyi Song Liming Yang 《Energy & Environmental Materials》 2025年第3期317-326,共10页
Two-dimensional transition metal porphyrinoid materials(2DTMPoidMats),due to their unique electronic structure and tunable metal active sites,have the potential to enhance interactions with nitrogen molecules and prom... Two-dimensional transition metal porphyrinoid materials(2DTMPoidMats),due to their unique electronic structure and tunable metal active sites,have the potential to enhance interactions with nitrogen molecules and promote the protonation process,making them promising electrochemical nitrogen reduction reaction(eNRR)electrocatalysts.Experimentally screening a large number of catalysts for eNRR catalytic performance would consume considerable time and economic resources.First-principles calculations and machine learning(ML)algorithms could greatly improve the efficiency of catalyst screening.Using this approach,we selected 86 candidates capable of catalyzing eNRR from 1290 types of 2DTMPoidMats,and verified the results with density functional theory(DFT)computations.Analysis of the full reaction pathway shows that MoPp-meso-F-β-Py,MoPp-β-Cl-meso-Diyne,MoPp-meso-Ethinyl,and WPp-β-Pz exhibit the best catalytic performance with the onset potential of-0.22,-0.19,-0.23,and-0.35 V,respectively.This work provides valuable insights into efficient design and screening of eNRR catalysts and promotes the application of ML algorithmic models in the field of catalysis. 展开更多
关键词 database electrocatalytic nitrogen reduction reaction first-principles calculations machine learning two-dimensional transition metal porphyrinoid materials
在线阅读 下载PDF
基于E-Learning的教学参考信息数据库的建设 被引量:6
10
作者 喻丽 《现代情报》 北大核心 2008年第6期145-148,共4页
互联网络的发展使得网络学习成为一种日益普及的学习途径。高等院校可以凭借自身的资源优势建立教学参考信息数据库,实现网络学习与专业教学的有机结合。本文提出了网络学习环境下建设教学参考信息数据库的基本模式。
关键词 网络学习 教学参考 信息数据库 信息资源共享
在线阅读 下载PDF
Machine learning in materials genome initiative:A review 被引量:30
11
作者 Yingli Liu Chen Niu +4 位作者 Zhuo Wang Yong Gan Yan Zhu Shuhong Sun Tao Shen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第22期113-122,共10页
Discovering new materials with excellent performance is a hot issue in the materials genome initiative.Traditional experiments and calculations often waste large amounts of time and money and are also limited by vario... Discovering new materials with excellent performance is a hot issue in the materials genome initiative.Traditional experiments and calculations often waste large amounts of time and money and are also limited by various conditions. Therefore, it is imperative to develop a new method to accelerate the discovery and design of new materials. In recent years, material discovery and design methods using machine learning have attracted much attention from material experts and have made some progress. This review first outlines available materials database and material data analytics tools and then elaborates on the machine learning algorithms used in materials science. Next, the field of application of machine learning in materials science is summarized, focusing on the aspects of structure determination, performance prediction, fingerprint prediction, and new material discovery. Finally, the review points out the problems of data and machine learning in materials science and points to future research. Using machine learning algorithms, the authors hope to achieve amazing results in material discovery and design. 展开更多
关键词 Materials genome initiative(MGI) Materials database Machine learning Materials properties prediction Materials design and discovery
原文传递
Identification of XLPE cable insulation defects based on deep learning 被引量:6
12
作者 Tao Zhou Xiaozhong Zhu +3 位作者 Haifei Yang Xuyang Yan Xuejun Jin Qingzhu Wan 《Global Energy Interconnection》 EI CAS CSCD 2023年第1期36-49,共14页
The insulation aging of cross-linked polyethylene(XLPE)cables is the main reason for the reduction in cable life.There is currently a lack of rapid and effective methods for detecting cable insulation defects in power... The insulation aging of cross-linked polyethylene(XLPE)cables is the main reason for the reduction in cable life.There is currently a lack of rapid and effective methods for detecting cable insulation defects in power-related sectors.To this end,this paper presents a method for identifying insulation defects in XLPE cables based on deep learning algorithms.First,the principle of the harmonic method for detecting cable insulation defects is introduced.Second,the ANSYS software is used to simulate the cable insulation layer containing bubbles,protrusions,and water tree defects,and the effects of each type of defect on the magnetic field strength and eddy loss current of the cable insulation layer are analyzed.Then,a total of 10 characteristic quantities of the total harmonic content and 2nd to 10th harmonic currents are constructed to establish a database of cable insulation defects.Finally,the deep learning algorithm,long short-term memory(LSTM),is used to accurately identify the types of insulation defects in cables.The results indicate that the LSTM algorithm can effectively diagnose and identify insulation defects in cables with an accuracy of 95.83%. 展开更多
关键词 Insulation defects Deep learning database Eddy loss current
在线阅读 下载PDF
Accurate machine learning models based on small dataset of energetic materials through spatial matrix featurization methods 被引量:8
13
作者 Chao Chen Danyang Liu +4 位作者 Siyan Deng Lixiang Zhong Serene Hay Yee Chan Shuzhou Li Huey Hoon Hng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第12期364-375,I0009,共13页
A large database is desired for machine learning(ML) technology to make accurate predictions of materials physicochemical properties based on their molecular structure.When a large database is not available,the develo... A large database is desired for machine learning(ML) technology to make accurate predictions of materials physicochemical properties based on their molecular structure.When a large database is not available,the development of proper featurization method based on physicochemical nature of target proprieties can improve the predictive power of ML models with a smaller database.In this work,we show that two new featurization methods,volume occupation spatial matrix and heat contribution spatial matrix,can improve the accuracy in predicting energetic materials' crystal density(ρ_(crystal)) and solid phase enthalpy of formation(H_(f,solid)) using a database containing 451 energetic molecules.Their mean absolute errors are reduced from 0.048 g/cm~3 and 24.67 kcal/mol to 0.035 g/cm~3 and 9.66 kcal/mol,respectively.By leave-one-out-cross-validation,the newly developed ML models can be used to determine the performance of most kinds of energetic materials except cubanes.Our ML models are applied to predict ρ_(crystal) and H_(f,solid) of CHON-based molecules of the 150 million sized PubChem database,and screened out 56 candidates with competitive detonation performance and reasonable chemical structures.With further improvement in future,spatial matrices have the potential of becoming multifunctional ML simulation tools that could provide even better predictions in wider fields of materials science. 展开更多
关键词 Small database machine learning Energetic materials screening Spatial matrix featurization method Crystal density Formation enthalpy n-Body interactions
在线阅读 下载PDF
Accomplishment and challenge of materials database toward big data 被引量:2
14
作者 Yibin Xu 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第11期130-135,共6页
The history and current status of materials data activities from handbook to database are reviewed, with introduction to some important products. Through an example of prediction of interfacial thermal resistance base... The history and current status of materials data activities from handbook to database are reviewed, with introduction to some important products. Through an example of prediction of interfacial thermal resistance based on data and data science methods, we show the advantages and potential of material informatics to study material issues which are too complicated or time consuming for conventional theoretical and experimental methods. Materials big data is the fundamental of material informatics. The challenges and strategy to construct materials big data are discussed, and some solutions are proposed as the results of our experiences to construct National Institute for Materials Science(NIMS) materials databases. 展开更多
关键词 material database big data material informatics machine learning interfacial thermal resistance material identification
原文传递
A machine learning approach to tracking crustal thickness variations in the eastern North China Craton 被引量:4
15
作者 Shaohao Zou Xilian Chen +5 位作者 Deru Xu Matthew JBrzozowski Feng Lai Yubing Bian Zhilin Wang Teng Deng 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第5期215-223,共9页
The variation of crustal thickness is a critical index to reveal how the continental crust evolved over its four billion years.Generally,ratios of whole-rock trace elements,such as Sr/Y,(La/Yb)n and Ce/Y,are used to c... The variation of crustal thickness is a critical index to reveal how the continental crust evolved over its four billion years.Generally,ratios of whole-rock trace elements,such as Sr/Y,(La/Yb)n and Ce/Y,are used to characterize crustal thicknesses.However,sometimes confusing results are obtained since there is no enough filtered data.Here,a state-of-the-art approach,based on a machine-learning algorithm,is proposed to predict crustal thickness using global major-and trace-element geochemical data of intermediate arc rocks and intraplate basalts,and their corresponding crustal thicknesses.After the validation processes,the root-mean-square error(RMSE)and the coefficient of determination(R2)score were used to evaluate the performance of the machine learning algorithm based on the learning dataset which has never been used during the training phase.The results demonstrate that the machine learning algorithm is more reliable in predicting crustal thickness than the conventional methods.The trained model predicts that the crustal thickness of the eastern North China Craton(ENCC)was-45 km from the Late Triassic to the Early Cretaceous,but-35 km from the Early Cretaceous,which corresponds to the paleo-elevation of 3.0±1.5 km at Early Mesozoic,and decease to the present-day elevation in the ENCC.The estimates are generally consistent with the previous studies on xenoliths from the lower crust and on the paleoenvironment of the coastal mountain of the ENCC,which indicates that the lower crust of the ENCC was delaminated abruptly at the Early Cretaceous. 展开更多
关键词 Machine learning Geochemical database Crustal thickness Eastern North China Craton
在线阅读 下载PDF
A machine learning approach for accelerated design of magnesium alloys. Part A:Alloy data and property space 被引量:4
16
作者 M.Ghorbani M.Boley +1 位作者 P.N.H.Nakashima N.Birbilis 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第10期3620-3633,共14页
Typically, magnesium alloys have been designed using a so-called hill-climbing approach, with rather incremental advances over the past century. Iterative and incremental alloy design is slow and expensive, but more i... Typically, magnesium alloys have been designed using a so-called hill-climbing approach, with rather incremental advances over the past century. Iterative and incremental alloy design is slow and expensive, but more importantly it does not harness all the data that exists in the field. In this work, a new approach is proposed that utilises data science and provides a detailed understanding of the data that exists in the field of Mg-alloy design to date. In this approach, first a consolidated alloy database that incorporates 916 datapoints was developed from the literature and experimental work. To analyse the characteristics of the database, alloying and thermomechanical processing effects on mechanical properties were explored via composition-process-property matrices. An unsupervised machine learning(ML) method of clustering was also implemented, using unlabelled data, with the aim of revealing potentially useful information for an alloy representation space of low dimensionality. In addition, the alloy database was correlated to thermodynamically stable secondary phases to further understand the relationships between microstructure and mechanical properties. This work not only introduces an invaluable open-source database, but it also provides, for the first-time data, insights that enable future accelerated digital Mg-alloy design. 展开更多
关键词 MAGNESIUM Alloy design Mg-alloy database Data analysis Data visualisation Unsupervised machine learning
在线阅读 下载PDF
Data mining in clinical big data:the frequently used databases,steps,and methodological models 被引量:43
17
作者 Wen-Tao Wu Yuan-Jie Li +4 位作者 Ao-Zi Feng Li Li Tao Huang An-Ding Xu Jun Lv 《Military Medical Research》 SCIE CSCD 2021年第4期552-563,共12页
Many high quality studies have emerged from public databases,such as Surveillance,Epidemiology,and End Results(SEER),National Health and Nutrition Examination Survey(NHANES),The Cancer Genome Atlas(TCGA),and Medical I... Many high quality studies have emerged from public databases,such as Surveillance,Epidemiology,and End Results(SEER),National Health and Nutrition Examination Survey(NHANES),The Cancer Genome Atlas(TCGA),and Medical Information Mart for Intensive Care(MIMIC);however,these data are often characterized by a high degree of dimensional heterogeneity,timeliness,scarcity,irregularity,and other characteristics,resulting in the value of these data not being fully utilized.Data-mining technology has been a frontier field in medical research,as it demonstrates excellent performance in evaluating patient risks and assisting clinical decision-making in building disease-prediction models.Therefore,data mining has unique advantages in clinical big-data research,especially in large-scale medical public databases.This article introduced the main medical public database and described the steps,tasks,and models of data mining in simple language.Additionally,we described data-mining methods along with their practical applications.The goal of this work was to aid clinical researchers in gaining a clear and intuitive understanding of the application of data-mining technology on clinical big-data in order to promote the production of research results that are beneficial to doctors and patients. 展开更多
关键词 Clinical big data Data mining Machine learning Medical public database Surveillance Epidemiology and End Results National Health and Nutrition Examination Survey The Cancer Genome Atlas Medical Information Mart for Intensive Care
原文传递
A dynamic database of solid-state electrolyte(DDSE)picturing all-solid-state batteries 被引量:5
18
作者 Fangling Yang Egon Campos dos Santos +5 位作者 Xue Jia Ryuhei Sato Kazuaki Kisu Yusuke Hashimoto Shin-ichi Orimo Hao Li 《Nano Materials Science》 EI CAS CSCD 2024年第2期256-262,共7页
All-solid-state batteries(ASSBs)are a class of safer and higher-energy-density materials compared to conventional devices,from which solid-state electrolytes(SSEs)are their essential components.To date,investigations ... All-solid-state batteries(ASSBs)are a class of safer and higher-energy-density materials compared to conventional devices,from which solid-state electrolytes(SSEs)are their essential components.To date,investigations to search for high ion-conducting solid-state electrolytes have attracted broad concern.However,obtaining SSEs with high ionic conductivity is challenging due to the complex structural information and the less-explored structure-performance relationship.To provide a solution to these challenges,developing a database containing typical SSEs from available experimental reports would be a new avenue to understand the structureperformance relationships and find out new design guidelines for reasonable SSEs.Herein,a dynamic experimental database containing>600 materials was developed in a wide range of temperatures(132.40–1261.60 K),including mono-and divalent cations(e.g.,Li^(+),Na^(+),K^(+),Ag^(+),Ca^(2+),Mg^(2+),and Zn^(2+))and various types of anions(e.g.,halide,hydride,sulfide,and oxide).Data-mining was conducted to explore the relationships among different variates(e.g.,transport ion,composition,activation energy,and conductivity).Overall,we expect that this database can provide essential guidelines for the design and development of high-performance SSEs in ASSB applications.This database is dynamically updated,which can be accessed via our open-source online system. 展开更多
关键词 Solid-state electrolyte(SSE) All-solid-state battery(ASSB) Ionic conductivity Dynamic database Machine learning
在线阅读 下载PDF
Intelligent Information Management and Knowledge Discovery in Large Numeric and Scientific Databases 被引量:1
19
作者 Patrick Perrin Frederick E. Petry & William Thomason(Center for Intelligent and Knowledge-Based Systems)(Computer Science Department, Tulane University, New Orleans LA) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1996年第2期73-86,共14页
The present article outlines progress made in designing an intelligent information system for automatic management and knowledge discovery in large numeric and scientific databases, with a validating application to th... The present article outlines progress made in designing an intelligent information system for automatic management and knowledge discovery in large numeric and scientific databases, with a validating application to the CAST-NEONS environmental databases used for ocean modeling and prediction. We describe a discovery-learning process (Automatic Data Analysis System) which combines the features of two machine learning techniques to generate sets of production rules that efficiently describe the observational raw data contained in the database. Data clustering allows the system to classify the raw data into meaningful conceptual clusters, which the system learns by induction to build decision trees, from which are automatically deduced the production rules. 展开更多
关键词 Knowledge discovery in databases Machine learning Decision tree inducers
在线阅读 下载PDF
Supervised local and non-local structure preserving projections with application to just-in-time learning for adaptive soft sensor 被引量:4
20
作者 邵伟明 田学民 王平 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期1925-1934,共10页
In soft sensor field, just-in-time learning(JITL) is an effective approach to model nonlinear and time varying processes. However, most similarity criterions in JITL are computed in the input space only while ignoring... In soft sensor field, just-in-time learning(JITL) is an effective approach to model nonlinear and time varying processes. However, most similarity criterions in JITL are computed in the input space only while ignoring important output information, which may lead to inaccurate construction of relevant sample set. To solve this problem, we propose a novel supervised feature extraction method suitable for the regression problem called supervised local and non-local structure preserving projections(SLNSPP), in which both input and output information can be easily and effectively incorporated through a newly defined similarity index. The SLNSPP can not only retain the virtue of locality preserving projections but also prevent faraway points from nearing after projection,which endues SLNSPP with powerful discriminating ability. Such two good properties of SLNSPP are desirable for JITL as they are expected to enhance the accuracy of similar sample selection. Consequently, we present a SLNSPP-JITL framework for developing adaptive soft sensor, including a sparse learning strategy to limit the scale and update the frequency of database. Finally, two case studies are conducted with benchmark datasets to evaluate the performance of the proposed schemes. The results demonstrate the effectiveness of LNSPP and SLNSPP. 展开更多
关键词 Adaptive soft sensor Just-in-time learning Supervised local and non-local structure preserving projections Locality preserving projections database monitoring
在线阅读 下载PDF
上一页 1 2 34 下一页 到第
使用帮助 返回顶部