To better understand the migration behavior of plastic fragments in the environment,development of rapid non-destructive methods for in-situ identification and characterization of plastic fragments is necessary.Howeve...To better understand the migration behavior of plastic fragments in the environment,development of rapid non-destructive methods for in-situ identification and characterization of plastic fragments is necessary.However,most of the studies had focused only on colored plastic fragments,ignoring colorless plastic fragments and the effects of different environmental media(backgrounds),thus underestimating their abundance.To address this issue,the present study used near-infrared spectroscopy to compare the identification of colored and colorless plastic fragments based on partial least squares-discriminant analysis(PLS-DA),extreme gradient boost,support vector machine and random forest classifier.The effects of polymer color,type,thickness,and background on the plastic fragments classification were evaluated.PLS-DA presented the best and most stable outcome,with higher robustness and lower misclassification rate.All models frequently misinterpreted colorless plastic fragments and its background when the fragment thickness was less than 0.1mm.A two-stage modeling method,which first distinguishes the plastic types and then identifies colorless plastic fragments that had been misclassified as background,was proposed.The method presented an accuracy higher than 99%in different backgrounds.In summary,this study developed a novel method for rapid and synchronous identification of colored and colorless plastic fragments under complex environmental backgrounds.展开更多
Although conventional object detection methods achieve high accuracy through extensively annotated datasets,acquiring such large-scale labeled data remains challenging and cost-prohibitive in numerous real-world appli...Although conventional object detection methods achieve high accuracy through extensively annotated datasets,acquiring such large-scale labeled data remains challenging and cost-prohibitive in numerous real-world applications.Few-shot object detection presents a new research idea that aims to localize and classify objects in images using only limited annotated examples.However,the inherent challenge in few-shot object detection lies in the insufficient sample diversity to fully characterize the sample feature distribution,which consequently impacts model performance.Inspired by contrastive learning principles,we propose an Implicit Feature Contrastive Learning(IFCL)module to address this limitation and augment feature diversity for more robust representational learning.This module generates augmented support sample features in a mixed feature space and implicitly contrasts them with query Region of Interest(RoI)features.This approach facilitates more comprehensive learning of both intra-class feature similarity and inter-class feature diversity,thereby enhancing the model’s object classification and localization capabilities.Extensive experiments on PASCAL VOC show that our method achieves a respective improvement of 3.2%,1.8%,and 2.3%on 10-shot of three Novel Sets compared to the baseline model FPD.展开更多
This study utilized a sequential mediating model to examine the role of motivation to learn and transfer selfefficacy in the relationships between perceived content validity,mentoring function,continuous learning work...This study utilized a sequential mediating model to examine the role of motivation to learn and transfer selfefficacy in the relationships between perceived content validity,mentoring function,continuous learning work culture and intention to transfer learning.The sample comprized 429 final-year apprentices in Guangdong province,China(females=69.9%,Engineering&Medicine=69%,mean age=20.99,SD=1.60).The apprentices completed standardized measures of motivation to learn,transfer self-efficacy perceived content validity,mentoring function,and continuous learning work culture.Structural equation modeling was used to analyze the data.Results showed perceived content validity,mentoring function,continuous learning culture to predict intention to transfer learning.Of these factors,perceived content validity was the strongest predictor of intention to transfer learning.Of these factors,perceived content validity was the most influential predictor of intention to transfer learning.The motivation to learn and transfer self-efficacy sequentially mediated the relationship between mentoring function and intention to learning transfer to be stronger than by either alone.Although perceived content validity and continuous learning culture exhibited no significant direct effects on intention to transfer learning,they demonstrated positive indirect associations with intention to transfer via motivation to learn and transfer self-efficacy.These study findings extend the applications of the learning transfer framework to individuals undergoing apprenticeship training which also would apply to other a long-term work-based learning programs.展开更多
With the rapid urbanization and exponential population growth in China,two-wheeled vehicles have become a popular mode of transportation,particularly for short-distance travel.However,due to a lack of safety awareness...With the rapid urbanization and exponential population growth in China,two-wheeled vehicles have become a popular mode of transportation,particularly for short-distance travel.However,due to a lack of safety awareness,traffic violations by two-wheeled vehicle riders have become a widespread concern,contributing to urban traffic risks.Currently,significant human and material resources are being allocated to monitor and intercept non-compliant riders to ensure safe driving behavior.To enhance the safety,efficiency,and cost-effectiveness of traffic monitoring,automated detection systems based on image processing algorithms can be employed to identify traffic violations from eye-level video footage.In this study,we propose a robust detection algorithm specifically designed for two-wheeled vehicles,which serves as a fundamental step toward intelligent traffic monitoring.Our approach integrates a novel convolutional and attention mechanism to improve detection accuracy and efficiency.Additionally,we introduce a semi-supervised training strategy that leverages a large number of unlabeled images to enhance the model’s learning capability by extracting valuable background information.This method enables the model to generalize effectively to diverse urban environments and varying lighting conditions.We evaluate our proposed algorithm on a custom-built dataset,and experimental results demonstrate its superior performance,achieving an average precision(AP)of 95%and a recall(R)of 90.6%.Furthermore,the model maintains a computational efficiency of only 25.7 GFLOPs while achieving a high processing speed of 249 FPS,making it highly suitable for deployment on edge devices.Compared to existing detection methods,our approach significantly enhances the accuracy and robustness of two-wheeled vehicle identification while ensuring real-time performance.展开更多
Hepatitis is an infection that affects the liver through contaminated foods or blood transfusions,and it has many types,from normal to serious.Hepatitis is diagnosed through many blood tests and factors;Artificial Int...Hepatitis is an infection that affects the liver through contaminated foods or blood transfusions,and it has many types,from normal to serious.Hepatitis is diagnosed through many blood tests and factors;Artificial Intelligence(AI)techniques have played an important role in early diagnosis and help physicians make decisions.This study evaluated the performance of Machine Learning(ML)algorithms on the hepatitis data set.The dataset contains missing values that have been processed and outliers removed.The dataset was counterbalanced by the Synthetic Minority Over-sampling Technique(SMOTE).The features of the data set were processed in two ways:first,the application of the Recursive Feature Elimination(RFE)algorithm to arrange the percentage of contribution of each feature to the diagnosis of hepatitis,then selection of important features using the t-distributed Stochastic Neighbor Embedding(t-SNE)and Principal Component Analysis(PCA)algorithms.Second,the SelectKBest function was applied to give scores for each attribute,followed by the t-SNE and PCA algorithms.Finally,the classification algorithms K-Nearest Neighbors(KNN),Support Vector Machine(SVM),Artificial Neural Network(ANN),Decision Tree(DT),and Random Forest(RF)were fed by the dataset after processing the features in different methods are RFE with t-SNE and PCA and SelectKBest with t-SNE and PCA).All algorithms yielded promising results for diagnosing hepatitis data sets.The RF with RFE and PCA methods achieved accuracy,Precision,Recall,and AUC of 97.18%,96.72%,97.29%,and 94.2%,respectively,during the training phase.During the testing phase,it reached accuracy,Precision,Recall,and AUC by 96.31%,95.23%,97.11%,and 92.67%,respectively.展开更多
Nonlinear science is a fundamental area of physics research that investigates complex dynamical systems which are often characterized by high sensitivity and nonlinear behaviors.Numerical simulations play a pivotal ro...Nonlinear science is a fundamental area of physics research that investigates complex dynamical systems which are often characterized by high sensitivity and nonlinear behaviors.Numerical simulations play a pivotal role in nonlinear science,serving as a critical tool for revealing the underlying principles governing these systems.In addition,they play a crucial role in accelerating progress across various fields,such as climate modeling,weather forecasting,and fluid dynamics.However,their high computational cost limits their application in high-precision or long-duration simulations.In this study,we propose a novel data-driven approach for simulating complex physical systems,particularly turbulent phenomena.Specifically,we develop an efficient surrogate model based on the wavelet neural operator(WNO).Experimental results demonstrate that the enhanced WNO model can accurately simulate small-scale turbulent flows while using lower computational costs.In simulations of complex physical fields,the improved WNO model outperforms established deep learning models,such as U-Net,Res Net,and the Fourier neural operator(FNO),in terms of accuracy.Notably,the improved WNO model exhibits exceptional generalization capabilities,maintaining stable performance across a wide range of initial conditions and high-resolution scenarios without retraining.This study highlights the significant potential of the enhanced WNO model for simulating complex physical systems,providing strong evidence to support the development of more efficient,scalable,and high-precision simulation techniques.展开更多
Speech-face association aims to achieve identity matching between facial images and voice segments by aligning cross-modal features.Existing research primarily focuses on learning shared-space representations and comp...Speech-face association aims to achieve identity matching between facial images and voice segments by aligning cross-modal features.Existing research primarily focuses on learning shared-space representations and computing one-to-one similarities between cross-modal sample pairs to establish their correlation.However,these approaches do not fully account for intra-class variations between the modalities or the many-to-many relationships among cross-modal samples,which are crucial for robust association modeling.To address these challenges,we propose a novel framework that leverages global information to align voice and face embeddings while effectively correlating identity information embedded in both modalities.First,we jointly pre-train face recognition and speaker recognition networks to encode discriminative features from facial images and voice segments.This shared pre-training step ensures the extraction of complementary identity information across modalities.Subsequently,we introduce a cross-modal simplex center loss,which aligns samples with identity centers located at the vertices of a regular simplex inscribed on a hypersphere.This design enforces an equidistant and balanced distribution of identity embeddings,reducing intra-class variations.Furthermore,we employ an improved triplet center loss that emphasizes hard sample mining and optimizes inter-class separability,enhancing the model’s ability to generalize across challenging scenarios.Extensive experiments validate the effectiveness of our framework,demonstrating superior performance across various speech-face association tasks,including matching,verification,and retrieval.Notably,in the challenging gender-constrained matching task,our method achieves a remarkable accuracy of 79.22%,significantly outperforming existing approaches.These results highlight the potential of the proposed framework to advance the state of the art in cross-modal identity association.展开更多
Objective:This study aimed to develop and validate a predictive model for postoperative complications in gastrointestinal cancer patients using a large multicenter database,based on machine learning algorithms.Methods...Objective:This study aimed to develop and validate a predictive model for postoperative complications in gastrointestinal cancer patients using a large multicenter database,based on machine learning algorithms.Methods:We analyzed the clinicopathological data of 3,926 gastrointestinal cancer patients from the Prevalence of Abdominal Complications After GastroEnterological surgery(PACAGE)database,covering 20 medical centers from December 2018 to December 2020.The predictive performance was evaluated using receiver operating characteristic(ROC)curves and Brier Score.Results:The patients were divided into gastric(2,271 cases)and colorectal cancer(1,655 cases)groups and further divided into training and external validation sets.The overall postoperative complication rates for gastric and colorectal cancer groups were 18.1%and 14.8%,respectively.The most common complication was the intraabdominal infection in both gastric and colorectal cancer groups.In the training set,the Random Forest(RF)model predicted the highest mean area under the curve(AUC)values for overall complications and different types of complications,in both the gastric cancer group and the colorectal cancer group,with similar results obtained in the external validation set.ROC curve analysis showed good predictive performance of the RF model for overall and infectious complications.An application-based clinical tool was developed for easy application in clinical practice.Conclusions:This model demonstrated good predictive performance for overall and infectious complications based on the multi-center database,supporting clinical decision-making and personalized treatment strategies.展开更多
To capture the nonlinear dynamics and gain evolution in chirped pulse amplification(CPA)systems,the split-step Fourier method and the fourth-order Runge–Kutta method are integrated to iteratively address the generali...To capture the nonlinear dynamics and gain evolution in chirped pulse amplification(CPA)systems,the split-step Fourier method and the fourth-order Runge–Kutta method are integrated to iteratively address the generalized nonlinear Schrödinger equation and the rate equations.However,this approach is burdened by substantial computational demands,resulting in significant time expenditures.In the context of intelligent laser optimization and inverse design,the necessity for numerous simulations further exacerbates this issue,highlighting the need for fast and accurate simulation methodologies.Here,we introduce an end-to-end model augmented with active learning(E2E-AL)with decent generalization through different dedicated embedding methods over various parameters.On an identical computational platform,the artificial intelligence–driven model is 2000 times faster than the conventional simulation method.Benefiting from the active learning strategy,the E2E-AL model achieves decent precision with only two-thirds of the training samples compared with the case without such a strategy.Furthermore,we demonstrate a multi-objective inverse design of the CPA systems enabled by the E2E-AL model.The E2E-AL framework manifests the potential of becoming a standard approach for the rapid and accurate modeling of ultrafast lasers and is readily extended to simulate other complex systems.展开更多
The manufacturing processes of casing rings are prone to multi-type defects such as holes,cracks,and porosity,so ultrasonic testing is vital for the quality of aeroengine.Conventional ultrasonic testing requires manua...The manufacturing processes of casing rings are prone to multi-type defects such as holes,cracks,and porosity,so ultrasonic testing is vital for the quality of aeroengine.Conventional ultrasonic testing requires manual analysis,which is susceptible to human omission,inconsistent results,and time-consumption.In this paper,a method for automated detection of defects is proposed for the ultrasonic Total Focusing Method(TFM)inspection of casing rings based on deep learning.First,the original datasets of defect images are established,and the Mask R-CNN is used to increase the number of defects in a single image.Then,the YOLOX-S-improved lightweight model is proposed,and the feature extraction network is replaced by Faster Net to reduce redundant computations.The Super-Resolution Generative Adversarial Network(SRGAN)and Convolutional Block Attention Module(CBAM)are integrated to improve the identification precision.Finally,a new test dataset is created by ultrasonic TFM inspection of an aeroengine casing ring.The results show that the mean of Average Precision(m AP)of the YOLOX-S-improved model reaches 99.17%,and the corresponding speed reaches 77.6 FPS.This study indicates that the YOLOX-S-improved model performs better than conventional object detection models.And the generalization ability of the proposed model is verified by ultrasonic B-scan images.展开更多
Landslide susceptibility evaluation plays an important role in disaster prevention and reduction.Feature-based transfer learning(TL)is an effective method for solving landslide susceptibility mapping(LSM)in target reg...Landslide susceptibility evaluation plays an important role in disaster prevention and reduction.Feature-based transfer learning(TL)is an effective method for solving landslide susceptibility mapping(LSM)in target regions with no available samples.However,as the study area expands,the distribution of land-slide types and triggering mechanisms becomes more diverse,leading to performance degradation in models relying on landslide evaluation knowledge from a single source domain due to domain feature shift.To address this,this study proposes a Multi-source Domain Adaptation Convolutional Neural Network(MDACNN),which combines the landslide prediction knowledge learned from two source domains to perform cross-regional LSM in complex large-scale areas.The method is validated through case studies in three regions located in southeastern coastal China and compared with single-source domain TL models(TCA-based models).The results demonstrate that MDACNN effectively integrates transfer knowledge from multiple source domains to learn diverse landslide-triggering mechanisms,thereby significantly reducing prediction bias inherent to single-source domain TL models,achieving an average improvement of 16.58%across all metrics.Moreover,the landslide susceptibility maps gener-ated by MDACNN accurately quantify the spatial distribution of landslide risks in the target area,provid-ing a powerful scientific and technological tool for landslide disaster management and prevention.展开更多
Porters play a crucial role in hospitals because they ensure the efficient transportation of patients,medical equipment,and vital documents.Despite its importance,there is a lack of research addressing the prediction ...Porters play a crucial role in hospitals because they ensure the efficient transportation of patients,medical equipment,and vital documents.Despite its importance,there is a lack of research addressing the prediction of completion times for porter tasks.To address this gap,we utilized real-world porter delivery data from Taiwan University Hospital,China,Yunlin Branch,Taiwan Region of China.We first identified key features that can influence the duration of porter tasks.We then employed three widely-used machine learning algorithms:decision tree,random forest,and gradient boosting.To leverage the strengths of each algorithm,we finally adopted an ensemble modeling approach that aggregates their individual predictions.Our experimental results show that the proposed ensemble model can achieve a mean absolute error of 3 min in predicting task response time and 4.42 min in task completion time.The prediction error is around 50%lower compared to using only the historical average.These results demonstrate that our method significantly improves the accuracy of porter task time prediction,supporting better resource planning and patient care.It helps ward staff streamline workflows by reducing delays,enables porter managers to allocate resources more effectively,and shortens patient waiting times,contributing to a better care experience.展开更多
Neutron time-of-flight(ToF)measurement is a highly accurate method for obtaining the kinetic energy of a neutron by measuring its velocity,but requires precise acquisition of the neutron signal arrival time.However,th...Neutron time-of-flight(ToF)measurement is a highly accurate method for obtaining the kinetic energy of a neutron by measuring its velocity,but requires precise acquisition of the neutron signal arrival time.However,the high hardware costs and data burden associated with the acquisition of neutron ToF signals pose significant challenges.Higher sampling rates increase the data volume,data processing,and storage hardware costs.Compressed sampling can address these challenges,but it faces issues regarding optimal sampling efficiency and high-quality reconstructed signals.This paper proposes a revolutionary deep learning-based compressed sampling(DL-CS)algorithm for reconstructing neutron ToF signals that outperform traditional compressed sampling methods.This approach comprises four modules:random projection,rising dimensions,initial reconstruction,and final reconstruction.Initially,the technique adaptively compresses neutron ToF signals sequentially using three convolutional layers,replacing random measurement matrices in traditional compressed sampling theory.Subsequently,the signals are reconstructed using a modified inception module,long short-term memory,and self-attention.The performance of this deep compressed sampling method was quantified using the percentage root-mean-square difference,correlation coefficient,and reconstruction time.Experimental results showed that our proposed DL-CS approach can significantly enhance signal quality compared with other compressed sampling methods.This is evidenced by a percentage root-mean-square difference,correlation coefficient,and reconstruction time results of 5%,0.9988,and 0.0108 s,respectively,obtained for sampling rates below 10%for the neutron ToF signal generated using an electron-beam-driven photoneutron source.The results showed that the proposed DL-CS approach significantly improves the signal quality compared with other compressed sampling methods,exhibiting excellent reconstruction accuracy and speed.展开更多
The machine learning model developed by Shi et al for predicting colorectal polyp recurrence after endoscopic mucosal resection represents a significant advancement in the field of clinical gastroenterology.By integra...The machine learning model developed by Shi et al for predicting colorectal polyp recurrence after endoscopic mucosal resection represents a significant advancement in the field of clinical gastroenterology.By integrating patient-specific factors,such as age,smoking history,and Helicobacter pylori infection,the eXtreme Gradient Boosting algorithm enables precise personalised colonoscopy follow-up planning and risk assessment.This predictive tool offers substantial benefits by optimising surveillance intervals and directing healthcare resources more efficiently toward high-risk individuals.However,real-world implementation requires consideration of the generalisability of our findings across diverse patient populations and clinician training backgrounds.展开更多
AIM:To predict the post-operative vault and the suitable size of the implantable collamer lens(ICL)by comparing the performance of multiple artificial intelligence(AI)algorithms.METHODS:A retrospective analysis of 83 ...AIM:To predict the post-operative vault and the suitable size of the implantable collamer lens(ICL)by comparing the performance of multiple artificial intelligence(AI)algorithms.METHODS:A retrospective analysis of 83 patients with 132 eyes was conducted from 2020 to 2023.All patients underwent implantation of EVO-V4C ICLs.ICLs were selected based on STAAR’s recommended formula.Postoperative vault values were measured using anterior segment optical coherence tomography(ASOCT).First,feature selection was performed on patients’preoperative examination parameters to identify those most closely related to postoperative vault and incorporate them into the machine learning model.Subsequently,four regression models,namely MLP,XGBoost,RFR,and KNN,were employed to predict the vault,and their predictive performances were compared.The ICL size was set as the prediction target,with the vault and other input features serving as new inputs for predicting the ICL size.RESULTS:Among all preoperative parameters,16 parameters were most closely related to postoperative vault and were included in the prediction model.In vault prediction,XGBoost performed the best in the regression model(R^(2)=0.9999),followed by MLP(R^(2)=0.9987)and RFR(R^(2)=0.8982),while the KNN model had the lowest predictive performance(R^(2)=0.3852).XGBoost achieved a prediction accuracy of 99.8%,MLP had a prediction accuracy of 98.9%,while RFR and KNN had accuracies of 87.1%and 57.4%,respectively.CONCLUSION:AI effectively predicts postoperative vault and determines ICL size.XGBoost outperforms other machine-learning algorithms tested.Its accurate predictions help ophthalmologists choose the right ICL size,ensuring proper vaulting.展开更多
The Reliability-Based Design Optimization(RBDO)of complex engineering structures considering uncertainties has problems of being high-dimensional,highly nonlinear,and timeconsuming,which requires a significant amount ...The Reliability-Based Design Optimization(RBDO)of complex engineering structures considering uncertainties has problems of being high-dimensional,highly nonlinear,and timeconsuming,which requires a significant amount of sampling simulation computation.In this paper,a basis-adaptive Polynomial Chaos(PC)-Kriging surrogate model is proposed,in order to relieve the computational burden and enhance the predictive accuracy of a metamodel.The active learning basis-adaptive PC-Kriging model is combined with a quantile-based RBDO framework.Finally,five engineering cases have been implemented,including a benchmark RBDO problem,three high-dimensional explicit problems,and a high-dimensional implicit problem.Compared with Support Vector Regression(SVR),Kriging,and polynomial chaos expansion models,results show that the proposed basis-adaptive PC-Kriging model is more accurate and efficient for RBDO problems of complex engineering structures.展开更多
Oncology covers a wide range of knowledge and is more difficult compared to other clinical disciplines.Therefore,it is crucial to seek an efficient teaching method for oncology education.In recent years,China’s inter...Oncology covers a wide range of knowledge and is more difficult compared to other clinical disciplines.Therefore,it is crucial to seek an efficient teaching method for oncology education.In recent years,China’s internet technology has achieved rapid development.Massive Open Online Course(MOOC),a blended learning approach based on internet technology,has strong applicability to medical education.It can not only improve teaching quality but also promote further reform of the discipline.Based on this,our study searched for relevant research at home and abroad and reviewed the implementation path of integrating MOOC and blended learning in oncology education.This provides a theoretical foundation for the innovation of oncology teaching models,improves the level of oncology teaching,and lays a solid foundation for talent reserves in oncology departments.展开更多
This study demonstrates the complexity and importance of water quality as a measure of the health and sustainability of ecosystems that directly influence biodiversity,human health,and the world economy.The predictabi...This study demonstrates the complexity and importance of water quality as a measure of the health and sustainability of ecosystems that directly influence biodiversity,human health,and the world economy.The predictability of water quality thus plays a crucial role in managing our ecosystems to make informed decisions and,hence,proper environmental management.This study addresses these challenges by proposing an effective machine learning methodology applied to the“Water Quality”public dataset.The methodology has modeled the dataset suitable for providing prediction classification analysis with high values of the evaluating parameters such as accuracy,sensitivity,and specificity.The proposed methodology is based on two novel approaches:(a)the SMOTE method to deal with unbalanced data and(b)the skillfully involved classical machine learning models.This paper uses Random Forests,Decision Trees,XGBoost,and Support Vector Machines because they can handle large datasets,train models for handling skewed datasets,and provide high accuracy in water quality classification.A key contribution of this work is the use of custom sampling strategies within the SMOTE approach,which significantly enhanced performance metrics and improved class imbalance handling.The results demonstrate significant improvements in predictive performance,achieving the highest reported metrics:accuracy(98.92%vs.96.06%),sensitivity(98.3%vs.71.26%),and F1 score(98.37%vs.79.74%)using the XGBoost model.These improvements underscore the effectiveness of our custom SMOTE sampling strategies in addressing class imbalance.The findings contribute to environmental management by enabling ecology specialists to develop more accurate strategies for monitoring,assessing,and managing drinking water quality,ensuring better ecosystem and public health outcomes.展开更多
Policy training against diverse opponents remains a challenge when using Multi-Agent Reinforcement Learning(MARL)in multiple Unmanned Combat Aerial Vehicle(UCAV)air combat scenarios.In view of this,this paper proposes...Policy training against diverse opponents remains a challenge when using Multi-Agent Reinforcement Learning(MARL)in multiple Unmanned Combat Aerial Vehicle(UCAV)air combat scenarios.In view of this,this paper proposes a novel Dominant and Non-dominant strategy sample selection(DoNot)mechanism and a Local Observation Enhanced Multi-Agent Proximal Policy Optimization(LOE-MAPPO)algorithm to train the multi-UCAV air combat policy and improve its generalization.Specifically,the LOE-MAPPO algorithm adopts a mixed state that concatenates the global state and individual agent's local observation to enable efficient value function learning in multi-UCAV air combat.The DoNot mechanism classifies opponents into dominant or non-dominant strategy opponents,and samples from easier to more challenging opponents to form an adaptive training curriculum.Empirical results demonstrate that the proposed LOE-MAPPO algorithm outperforms baseline MARL algorithms in multi-UCAV air combat scenarios,and the DoNot mechanism leads to stronger policy generalization when facing diverse opponents.The results pave the way for the fast generation of cooperative strategies for air combat agents with MARLalgorithms.展开更多
In this work,we consider an Unmanned Aerial Vehicle(UAV)-aided covert transmission network,which adopts the uplink transmission of Communication Nodes(CNs)as a cover to facilitate covert transmission to a Primary Comm...In this work,we consider an Unmanned Aerial Vehicle(UAV)-aided covert transmission network,which adopts the uplink transmission of Communication Nodes(CNs)as a cover to facilitate covert transmission to a Primary Communication Node(PCN).Specifically,all nodes transmit to the UAV exploiting uplink non-Orthogonal Multiple Access(NOMA),while the UAV performs covert transmission to the PCN at the same frequency.To minimize the average age of covert information,we formulate a joint optimization problem of UAV trajectory and power allocation designing subject to multi-dimensional constraints including covertness demand,communication quality requirement,maximum flying speed,and the maximum available resources.To address this problem,we embed Signomial Programming(SP)into Deep Reinforcement Learning(DRL)and propose a DRL framework capable of handling the constrained Markov decision processes,named SP embedded Soft Actor-Critic(SSAC).By adopting SSAC,we achieve the joint optimization of UAV trajectory and power allocation.Our simulations show the optimized UAV trajectory and verify the superiority of SSAC compared with various existing baseline schemes.The results of this study suggest that by maintaining appropriate distances from both the PCN and CNs,one can effectively enhance the performance of covert communication by reducing the detection probability of the CNs.展开更多
基金supported by the National Natural Science Foundation of China(No.22276139)the Shanghai’s Municipal State-owned Assets Supervision and Administration Commission(No.2022028).
文摘To better understand the migration behavior of plastic fragments in the environment,development of rapid non-destructive methods for in-situ identification and characterization of plastic fragments is necessary.However,most of the studies had focused only on colored plastic fragments,ignoring colorless plastic fragments and the effects of different environmental media(backgrounds),thus underestimating their abundance.To address this issue,the present study used near-infrared spectroscopy to compare the identification of colored and colorless plastic fragments based on partial least squares-discriminant analysis(PLS-DA),extreme gradient boost,support vector machine and random forest classifier.The effects of polymer color,type,thickness,and background on the plastic fragments classification were evaluated.PLS-DA presented the best and most stable outcome,with higher robustness and lower misclassification rate.All models frequently misinterpreted colorless plastic fragments and its background when the fragment thickness was less than 0.1mm.A two-stage modeling method,which first distinguishes the plastic types and then identifies colorless plastic fragments that had been misclassified as background,was proposed.The method presented an accuracy higher than 99%in different backgrounds.In summary,this study developed a novel method for rapid and synchronous identification of colored and colorless plastic fragments under complex environmental backgrounds.
基金funded by the China Chongqing Municipal Science and Technology Bureau,grant numbers CSTB2024TIAD-CYKJCXX0009,CSTB2024NSCQ-LZX0043,CSTB2022NSCQ-MSX0288Chongqing Municipal Commission of Housing and Urban-Rural Development,grant number CKZ2024-87+3 种基金the Chongqing University of Technology Graduate Education High-Quality Development Project,grant number gzlsz202401the Chongqing University of Technology—Chongqing LINGLUE Technology Co.,Ltd.Electronic Information(Artificial Intelligence)Graduate Joint Training Basethe Postgraduate Education and Teaching Reform Research Project in Chongqing,grant number yjg213116the Chongqing University of Technology-CISDI Chongqing Information Technology Co.,Ltd.Computer Technology Graduate Joint Training Base.
文摘Although conventional object detection methods achieve high accuracy through extensively annotated datasets,acquiring such large-scale labeled data remains challenging and cost-prohibitive in numerous real-world applications.Few-shot object detection presents a new research idea that aims to localize and classify objects in images using only limited annotated examples.However,the inherent challenge in few-shot object detection lies in the insufficient sample diversity to fully characterize the sample feature distribution,which consequently impacts model performance.Inspired by contrastive learning principles,we propose an Implicit Feature Contrastive Learning(IFCL)module to address this limitation and augment feature diversity for more robust representational learning.This module generates augmented support sample features in a mixed feature space and implicitly contrasts them with query Region of Interest(RoI)features.This approach facilitates more comprehensive learning of both intra-class feature similarity and inter-class feature diversity,thereby enhancing the model’s object classification and localization capabilities.Extensive experiments on PASCAL VOC show that our method achieves a respective improvement of 3.2%,1.8%,and 2.3%on 10-shot of three Novel Sets compared to the baseline model FPD.
基金funded by Hanshan Normal University School-Level Research Initiation Program(grant numbers QD202244QD2024207)+3 种基金the Guangdong Higher Education Society’s“Fourteenth Five-Year”Plan 2024 Higher Education Research(grant number 24GYB43)the 2024 Guangdong Provincial Undergraduate Teaching Quality and Teaching Reform Engineering Project:Excellence Program for Cultivating Publicly-Funded Pre-service Teachers for Primary Education in the Context of Rural Revitalizationthe Hanshan Normal University Guangdong East Regional Education Collaborative Innovation Research Centerfunded by these sources.
文摘This study utilized a sequential mediating model to examine the role of motivation to learn and transfer selfefficacy in the relationships between perceived content validity,mentoring function,continuous learning work culture and intention to transfer learning.The sample comprized 429 final-year apprentices in Guangdong province,China(females=69.9%,Engineering&Medicine=69%,mean age=20.99,SD=1.60).The apprentices completed standardized measures of motivation to learn,transfer self-efficacy perceived content validity,mentoring function,and continuous learning work culture.Structural equation modeling was used to analyze the data.Results showed perceived content validity,mentoring function,continuous learning culture to predict intention to transfer learning.Of these factors,perceived content validity was the strongest predictor of intention to transfer learning.Of these factors,perceived content validity was the most influential predictor of intention to transfer learning.The motivation to learn and transfer self-efficacy sequentially mediated the relationship between mentoring function and intention to learning transfer to be stronger than by either alone.Although perceived content validity and continuous learning culture exhibited no significant direct effects on intention to transfer learning,they demonstrated positive indirect associations with intention to transfer via motivation to learn and transfer self-efficacy.These study findings extend the applications of the learning transfer framework to individuals undergoing apprenticeship training which also would apply to other a long-term work-based learning programs.
基金supported by the Natural Science Foundation Project of Fujian Province,China(Grant No.2023J011439 and No.2019J01859).
文摘With the rapid urbanization and exponential population growth in China,two-wheeled vehicles have become a popular mode of transportation,particularly for short-distance travel.However,due to a lack of safety awareness,traffic violations by two-wheeled vehicle riders have become a widespread concern,contributing to urban traffic risks.Currently,significant human and material resources are being allocated to monitor and intercept non-compliant riders to ensure safe driving behavior.To enhance the safety,efficiency,and cost-effectiveness of traffic monitoring,automated detection systems based on image processing algorithms can be employed to identify traffic violations from eye-level video footage.In this study,we propose a robust detection algorithm specifically designed for two-wheeled vehicles,which serves as a fundamental step toward intelligent traffic monitoring.Our approach integrates a novel convolutional and attention mechanism to improve detection accuracy and efficiency.Additionally,we introduce a semi-supervised training strategy that leverages a large number of unlabeled images to enhance the model’s learning capability by extracting valuable background information.This method enables the model to generalize effectively to diverse urban environments and varying lighting conditions.We evaluate our proposed algorithm on a custom-built dataset,and experimental results demonstrate its superior performance,achieving an average precision(AP)of 95%and a recall(R)of 90.6%.Furthermore,the model maintains a computational efficiency of only 25.7 GFLOPs while achieving a high processing speed of 249 FPS,making it highly suitable for deployment on edge devices.Compared to existing detection methods,our approach significantly enhances the accuracy and robustness of two-wheeled vehicle identification while ensuring real-time performance.
基金funded by Scientific Research Deanship at University of Ha’il,Saudi Arabia,through project number GR-24009.
文摘Hepatitis is an infection that affects the liver through contaminated foods or blood transfusions,and it has many types,from normal to serious.Hepatitis is diagnosed through many blood tests and factors;Artificial Intelligence(AI)techniques have played an important role in early diagnosis and help physicians make decisions.This study evaluated the performance of Machine Learning(ML)algorithms on the hepatitis data set.The dataset contains missing values that have been processed and outliers removed.The dataset was counterbalanced by the Synthetic Minority Over-sampling Technique(SMOTE).The features of the data set were processed in two ways:first,the application of the Recursive Feature Elimination(RFE)algorithm to arrange the percentage of contribution of each feature to the diagnosis of hepatitis,then selection of important features using the t-distributed Stochastic Neighbor Embedding(t-SNE)and Principal Component Analysis(PCA)algorithms.Second,the SelectKBest function was applied to give scores for each attribute,followed by the t-SNE and PCA algorithms.Finally,the classification algorithms K-Nearest Neighbors(KNN),Support Vector Machine(SVM),Artificial Neural Network(ANN),Decision Tree(DT),and Random Forest(RF)were fed by the dataset after processing the features in different methods are RFE with t-SNE and PCA and SelectKBest with t-SNE and PCA).All algorithms yielded promising results for diagnosing hepatitis data sets.The RF with RFE and PCA methods achieved accuracy,Precision,Recall,and AUC of 97.18%,96.72%,97.29%,and 94.2%,respectively,during the training phase.During the testing phase,it reached accuracy,Precision,Recall,and AUC by 96.31%,95.23%,97.11%,and 92.67%,respectively.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.42005003 and 41475094)。
文摘Nonlinear science is a fundamental area of physics research that investigates complex dynamical systems which are often characterized by high sensitivity and nonlinear behaviors.Numerical simulations play a pivotal role in nonlinear science,serving as a critical tool for revealing the underlying principles governing these systems.In addition,they play a crucial role in accelerating progress across various fields,such as climate modeling,weather forecasting,and fluid dynamics.However,their high computational cost limits their application in high-precision or long-duration simulations.In this study,we propose a novel data-driven approach for simulating complex physical systems,particularly turbulent phenomena.Specifically,we develop an efficient surrogate model based on the wavelet neural operator(WNO).Experimental results demonstrate that the enhanced WNO model can accurately simulate small-scale turbulent flows while using lower computational costs.In simulations of complex physical fields,the improved WNO model outperforms established deep learning models,such as U-Net,Res Net,and the Fourier neural operator(FNO),in terms of accuracy.Notably,the improved WNO model exhibits exceptional generalization capabilities,maintaining stable performance across a wide range of initial conditions and high-resolution scenarios without retraining.This study highlights the significant potential of the enhanced WNO model for simulating complex physical systems,providing strong evidence to support the development of more efficient,scalable,and high-precision simulation techniques.
基金funded by the Scientific Funding for China Academy of Railway Sciences Corporation Limited,China(No.2023YJ125).
文摘Speech-face association aims to achieve identity matching between facial images and voice segments by aligning cross-modal features.Existing research primarily focuses on learning shared-space representations and computing one-to-one similarities between cross-modal sample pairs to establish their correlation.However,these approaches do not fully account for intra-class variations between the modalities or the many-to-many relationships among cross-modal samples,which are crucial for robust association modeling.To address these challenges,we propose a novel framework that leverages global information to align voice and face embeddings while effectively correlating identity information embedded in both modalities.First,we jointly pre-train face recognition and speaker recognition networks to encode discriminative features from facial images and voice segments.This shared pre-training step ensures the extraction of complementary identity information across modalities.Subsequently,we introduce a cross-modal simplex center loss,which aligns samples with identity centers located at the vertices of a regular simplex inscribed on a hypersphere.This design enforces an equidistant and balanced distribution of identity embeddings,reducing intra-class variations.Furthermore,we employ an improved triplet center loss that emphasizes hard sample mining and optimizes inter-class separability,enhancing the model’s ability to generalize across challenging scenarios.Extensive experiments validate the effectiveness of our framework,demonstrating superior performance across various speech-face association tasks,including matching,verification,and retrieval.Notably,in the challenging gender-constrained matching task,our method achieves a remarkable accuracy of 79.22%,significantly outperforming existing approaches.These results highlight the potential of the proposed framework to advance the state of the art in cross-modal identity association.
基金supported by the Natural Science Foundation of Fujian Province(No.2022J01755)。
文摘Objective:This study aimed to develop and validate a predictive model for postoperative complications in gastrointestinal cancer patients using a large multicenter database,based on machine learning algorithms.Methods:We analyzed the clinicopathological data of 3,926 gastrointestinal cancer patients from the Prevalence of Abdominal Complications After GastroEnterological surgery(PACAGE)database,covering 20 medical centers from December 2018 to December 2020.The predictive performance was evaluated using receiver operating characteristic(ROC)curves and Brier Score.Results:The patients were divided into gastric(2,271 cases)and colorectal cancer(1,655 cases)groups and further divided into training and external validation sets.The overall postoperative complication rates for gastric and colorectal cancer groups were 18.1%and 14.8%,respectively.The most common complication was the intraabdominal infection in both gastric and colorectal cancer groups.In the training set,the Random Forest(RF)model predicted the highest mean area under the curve(AUC)values for overall complications and different types of complications,in both the gastric cancer group and the colorectal cancer group,with similar results obtained in the external validation set.ROC curve analysis showed good predictive performance of the RF model for overall and infectious complications.An application-based clinical tool was developed for easy application in clinical practice.Conclusions:This model demonstrated good predictive performance for overall and infectious complications based on the multi-center database,supporting clinical decision-making and personalized treatment strategies.
基金supported by the National Natural Science Foundation of China(Grant Nos.62227821,62025503,and 62205199).
文摘To capture the nonlinear dynamics and gain evolution in chirped pulse amplification(CPA)systems,the split-step Fourier method and the fourth-order Runge–Kutta method are integrated to iteratively address the generalized nonlinear Schrödinger equation and the rate equations.However,this approach is burdened by substantial computational demands,resulting in significant time expenditures.In the context of intelligent laser optimization and inverse design,the necessity for numerous simulations further exacerbates this issue,highlighting the need for fast and accurate simulation methodologies.Here,we introduce an end-to-end model augmented with active learning(E2E-AL)with decent generalization through different dedicated embedding methods over various parameters.On an identical computational platform,the artificial intelligence–driven model is 2000 times faster than the conventional simulation method.Benefiting from the active learning strategy,the E2E-AL model achieves decent precision with only two-thirds of the training samples compared with the case without such a strategy.Furthermore,we demonstrate a multi-objective inverse design of the CPA systems enabled by the E2E-AL model.The E2E-AL framework manifests the potential of becoming a standard approach for the rapid and accurate modeling of ultrafast lasers and is readily extended to simulate other complex systems.
基金supported by the Postdoctoral Fellowship Program of CPSF,China(No.GZC20232015)the China Postdoctoral Science Foundation(No.2024M752499)+3 种基金the Postdoctoral Project of Hubei Province,China(No.2024HBBHCXA076)the Wuhan East Lake New Technology Development Zone Open List Project,China(No.2022KJB128)the National Natural Science Foundation of China(No.51875428)the Fundamental Research Funds for the Central Universities,China(No.104972024RSCbs0013)。
文摘The manufacturing processes of casing rings are prone to multi-type defects such as holes,cracks,and porosity,so ultrasonic testing is vital for the quality of aeroengine.Conventional ultrasonic testing requires manual analysis,which is susceptible to human omission,inconsistent results,and time-consumption.In this paper,a method for automated detection of defects is proposed for the ultrasonic Total Focusing Method(TFM)inspection of casing rings based on deep learning.First,the original datasets of defect images are established,and the Mask R-CNN is used to increase the number of defects in a single image.Then,the YOLOX-S-improved lightweight model is proposed,and the feature extraction network is replaced by Faster Net to reduce redundant computations.The Super-Resolution Generative Adversarial Network(SRGAN)and Convolutional Block Attention Module(CBAM)are integrated to improve the identification precision.Finally,a new test dataset is created by ultrasonic TFM inspection of an aeroengine casing ring.The results show that the mean of Average Precision(m AP)of the YOLOX-S-improved model reaches 99.17%,and the corresponding speed reaches 77.6 FPS.This study indicates that the YOLOX-S-improved model performs better than conventional object detection models.And the generalization ability of the proposed model is verified by ultrasonic B-scan images.
基金the National Natural Science Foundation of China(Grant No.42301002,and 52109118)Fujian Provincial Water Resources Science and Technology Project(Grant No.MSK202524)Guidance fund for Science and Technology Program,Fujian province(Grant No.2024Y0002).
文摘Landslide susceptibility evaluation plays an important role in disaster prevention and reduction.Feature-based transfer learning(TL)is an effective method for solving landslide susceptibility mapping(LSM)in target regions with no available samples.However,as the study area expands,the distribution of land-slide types and triggering mechanisms becomes more diverse,leading to performance degradation in models relying on landslide evaluation knowledge from a single source domain due to domain feature shift.To address this,this study proposes a Multi-source Domain Adaptation Convolutional Neural Network(MDACNN),which combines the landslide prediction knowledge learned from two source domains to perform cross-regional LSM in complex large-scale areas.The method is validated through case studies in three regions located in southeastern coastal China and compared with single-source domain TL models(TCA-based models).The results demonstrate that MDACNN effectively integrates transfer knowledge from multiple source domains to learn diverse landslide-triggering mechanisms,thereby significantly reducing prediction bias inherent to single-source domain TL models,achieving an average improvement of 16.58%across all metrics.Moreover,the landslide susceptibility maps gener-ated by MDACNN accurately quantify the spatial distribution of landslide risks in the target area,provid-ing a powerful scientific and technological tool for landslide disaster management and prevention.
基金supported by National Taiwan University Hospital Yunlin Branch Project NTUHYL 110.C018National Science and Technology Council,Taiwan.
文摘Porters play a crucial role in hospitals because they ensure the efficient transportation of patients,medical equipment,and vital documents.Despite its importance,there is a lack of research addressing the prediction of completion times for porter tasks.To address this gap,we utilized real-world porter delivery data from Taiwan University Hospital,China,Yunlin Branch,Taiwan Region of China.We first identified key features that can influence the duration of porter tasks.We then employed three widely-used machine learning algorithms:decision tree,random forest,and gradient boosting.To leverage the strengths of each algorithm,we finally adopted an ensemble modeling approach that aggregates their individual predictions.Our experimental results show that the proposed ensemble model can achieve a mean absolute error of 3 min in predicting task response time and 4.42 min in task completion time.The prediction error is around 50%lower compared to using only the historical average.These results demonstrate that our method significantly improves the accuracy of porter task time prediction,supporting better resource planning and patient care.It helps ward staff streamline workflows by reducing delays,enables porter managers to allocate resources more effectively,and shortens patient waiting times,contributing to a better care experience.
基金supported by the National Defense Technology Foundation Program of China(No.JSJT2022209A001-3)Sichuan Science and Technology Program(No.2021JDRC0011)+1 种基金Nuclear Energy Development Research Program of China(Research on High Energy X-ray Imaging of Nuclear Fuel)Scientific Research and Innovation Team Program of Sichuan University of Science and Engineering(No.SUSE652A001).
文摘Neutron time-of-flight(ToF)measurement is a highly accurate method for obtaining the kinetic energy of a neutron by measuring its velocity,but requires precise acquisition of the neutron signal arrival time.However,the high hardware costs and data burden associated with the acquisition of neutron ToF signals pose significant challenges.Higher sampling rates increase the data volume,data processing,and storage hardware costs.Compressed sampling can address these challenges,but it faces issues regarding optimal sampling efficiency and high-quality reconstructed signals.This paper proposes a revolutionary deep learning-based compressed sampling(DL-CS)algorithm for reconstructing neutron ToF signals that outperform traditional compressed sampling methods.This approach comprises four modules:random projection,rising dimensions,initial reconstruction,and final reconstruction.Initially,the technique adaptively compresses neutron ToF signals sequentially using three convolutional layers,replacing random measurement matrices in traditional compressed sampling theory.Subsequently,the signals are reconstructed using a modified inception module,long short-term memory,and self-attention.The performance of this deep compressed sampling method was quantified using the percentage root-mean-square difference,correlation coefficient,and reconstruction time.Experimental results showed that our proposed DL-CS approach can significantly enhance signal quality compared with other compressed sampling methods.This is evidenced by a percentage root-mean-square difference,correlation coefficient,and reconstruction time results of 5%,0.9988,and 0.0108 s,respectively,obtained for sampling rates below 10%for the neutron ToF signal generated using an electron-beam-driven photoneutron source.The results showed that the proposed DL-CS approach significantly improves the signal quality compared with other compressed sampling methods,exhibiting excellent reconstruction accuracy and speed.
文摘The machine learning model developed by Shi et al for predicting colorectal polyp recurrence after endoscopic mucosal resection represents a significant advancement in the field of clinical gastroenterology.By integrating patient-specific factors,such as age,smoking history,and Helicobacter pylori infection,the eXtreme Gradient Boosting algorithm enables precise personalised colonoscopy follow-up planning and risk assessment.This predictive tool offers substantial benefits by optimising surveillance intervals and directing healthcare resources more efficiently toward high-risk individuals.However,real-world implementation requires consideration of the generalisability of our findings across diverse patient populations and clinician training backgrounds.
基金Supported by the National Natural Science Foundation of China(No.82271100)the Jiangsu Science and Technology Support Program(No.BE2022805)the Clinical Skills Enhancement Program of Jiangsu Province Hospital(No.JSPH-MC-2022-24).
文摘AIM:To predict the post-operative vault and the suitable size of the implantable collamer lens(ICL)by comparing the performance of multiple artificial intelligence(AI)algorithms.METHODS:A retrospective analysis of 83 patients with 132 eyes was conducted from 2020 to 2023.All patients underwent implantation of EVO-V4C ICLs.ICLs were selected based on STAAR’s recommended formula.Postoperative vault values were measured using anterior segment optical coherence tomography(ASOCT).First,feature selection was performed on patients’preoperative examination parameters to identify those most closely related to postoperative vault and incorporate them into the machine learning model.Subsequently,four regression models,namely MLP,XGBoost,RFR,and KNN,were employed to predict the vault,and their predictive performances were compared.The ICL size was set as the prediction target,with the vault and other input features serving as new inputs for predicting the ICL size.RESULTS:Among all preoperative parameters,16 parameters were most closely related to postoperative vault and were included in the prediction model.In vault prediction,XGBoost performed the best in the regression model(R^(2)=0.9999),followed by MLP(R^(2)=0.9987)and RFR(R^(2)=0.8982),while the KNN model had the lowest predictive performance(R^(2)=0.3852).XGBoost achieved a prediction accuracy of 99.8%,MLP had a prediction accuracy of 98.9%,while RFR and KNN had accuracies of 87.1%and 57.4%,respectively.CONCLUSION:AI effectively predicts postoperative vault and determines ICL size.XGBoost outperforms other machine-learning algorithms tested.Its accurate predictions help ophthalmologists choose the right ICL size,ensuring proper vaulting.
基金supported by the National Key R&D Program of China(No.2021YFB1715000)the National Natural Science Foundation of China(No.52375073)。
文摘The Reliability-Based Design Optimization(RBDO)of complex engineering structures considering uncertainties has problems of being high-dimensional,highly nonlinear,and timeconsuming,which requires a significant amount of sampling simulation computation.In this paper,a basis-adaptive Polynomial Chaos(PC)-Kriging surrogate model is proposed,in order to relieve the computational burden and enhance the predictive accuracy of a metamodel.The active learning basis-adaptive PC-Kriging model is combined with a quantile-based RBDO framework.Finally,five engineering cases have been implemented,including a benchmark RBDO problem,three high-dimensional explicit problems,and a high-dimensional implicit problem.Compared with Support Vector Regression(SVR),Kriging,and polynomial chaos expansion models,results show that the proposed basis-adaptive PC-Kriging model is more accurate and efficient for RBDO problems of complex engineering structures.
基金Mechanism of Nanotechnology-driven Polyphyllin I in Sensitizing PD-1 Monoclonal Antibody in Breast Cancer(82204922)Nanotechnology-driven Polyphyllin I Affects Mitochondrial Homeostasis via Cuproptosis and Its Mechanism in Breast Cancer Treatment(ZZ18-YQ-022)。
文摘Oncology covers a wide range of knowledge and is more difficult compared to other clinical disciplines.Therefore,it is crucial to seek an efficient teaching method for oncology education.In recent years,China’s internet technology has achieved rapid development.Massive Open Online Course(MOOC),a blended learning approach based on internet technology,has strong applicability to medical education.It can not only improve teaching quality but also promote further reform of the discipline.Based on this,our study searched for relevant research at home and abroad and reviewed the implementation path of integrating MOOC and blended learning in oncology education.This provides a theoretical foundation for the innovation of oncology teaching models,improves the level of oncology teaching,and lays a solid foundation for talent reserves in oncology departments.
文摘This study demonstrates the complexity and importance of water quality as a measure of the health and sustainability of ecosystems that directly influence biodiversity,human health,and the world economy.The predictability of water quality thus plays a crucial role in managing our ecosystems to make informed decisions and,hence,proper environmental management.This study addresses these challenges by proposing an effective machine learning methodology applied to the“Water Quality”public dataset.The methodology has modeled the dataset suitable for providing prediction classification analysis with high values of the evaluating parameters such as accuracy,sensitivity,and specificity.The proposed methodology is based on two novel approaches:(a)the SMOTE method to deal with unbalanced data and(b)the skillfully involved classical machine learning models.This paper uses Random Forests,Decision Trees,XGBoost,and Support Vector Machines because they can handle large datasets,train models for handling skewed datasets,and provide high accuracy in water quality classification.A key contribution of this work is the use of custom sampling strategies within the SMOTE approach,which significantly enhanced performance metrics and improved class imbalance handling.The results demonstrate significant improvements in predictive performance,achieving the highest reported metrics:accuracy(98.92%vs.96.06%),sensitivity(98.3%vs.71.26%),and F1 score(98.37%vs.79.74%)using the XGBoost model.These improvements underscore the effectiveness of our custom SMOTE sampling strategies in addressing class imbalance.The findings contribute to environmental management by enabling ecology specialists to develop more accurate strategies for monitoring,assessing,and managing drinking water quality,ensuring better ecosystem and public health outcomes.
文摘Policy training against diverse opponents remains a challenge when using Multi-Agent Reinforcement Learning(MARL)in multiple Unmanned Combat Aerial Vehicle(UCAV)air combat scenarios.In view of this,this paper proposes a novel Dominant and Non-dominant strategy sample selection(DoNot)mechanism and a Local Observation Enhanced Multi-Agent Proximal Policy Optimization(LOE-MAPPO)algorithm to train the multi-UCAV air combat policy and improve its generalization.Specifically,the LOE-MAPPO algorithm adopts a mixed state that concatenates the global state and individual agent's local observation to enable efficient value function learning in multi-UCAV air combat.The DoNot mechanism classifies opponents into dominant or non-dominant strategy opponents,and samples from easier to more challenging opponents to form an adaptive training curriculum.Empirical results demonstrate that the proposed LOE-MAPPO algorithm outperforms baseline MARL algorithms in multi-UCAV air combat scenarios,and the DoNot mechanism leads to stronger policy generalization when facing diverse opponents.The results pave the way for the fast generation of cooperative strategies for air combat agents with MARLalgorithms.
基金This study was co-supported by the National Natural Science Foundation of China(No.62025110&62271093)the Natural Science Foundation of Chongqing,China(No.CSTB2023NSCQ-LZX0108).
文摘In this work,we consider an Unmanned Aerial Vehicle(UAV)-aided covert transmission network,which adopts the uplink transmission of Communication Nodes(CNs)as a cover to facilitate covert transmission to a Primary Communication Node(PCN).Specifically,all nodes transmit to the UAV exploiting uplink non-Orthogonal Multiple Access(NOMA),while the UAV performs covert transmission to the PCN at the same frequency.To minimize the average age of covert information,we formulate a joint optimization problem of UAV trajectory and power allocation designing subject to multi-dimensional constraints including covertness demand,communication quality requirement,maximum flying speed,and the maximum available resources.To address this problem,we embed Signomial Programming(SP)into Deep Reinforcement Learning(DRL)and propose a DRL framework capable of handling the constrained Markov decision processes,named SP embedded Soft Actor-Critic(SSAC).By adopting SSAC,we achieve the joint optimization of UAV trajectory and power allocation.Our simulations show the optimized UAV trajectory and verify the superiority of SSAC compared with various existing baseline schemes.The results of this study suggest that by maintaining appropriate distances from both the PCN and CNs,one can effectively enhance the performance of covert communication by reducing the detection probability of the CNs.