期刊文献+
共找到246,247篇文章
< 1 2 250 >
每页显示 20 50 100
FS-DRL:Fine-Grained Scheduling of Autonomous Vehicles at Non-Signalized Intersections via Dual Reinforced Learning
1
作者 Ning Sun Weihao Wu +1 位作者 Guangbing Xiao Guodong Yin 《Chinese Journal of Mechanical Engineering》 2025年第3期377-392,共16页
Complex road conditions without signalized intersections when the traffic flow is nearly saturated result in high traffic congestion and accidents,reducing the traffic efficiency of intelligent vehicles.The complex ro... Complex road conditions without signalized intersections when the traffic flow is nearly saturated result in high traffic congestion and accidents,reducing the traffic efficiency of intelligent vehicles.The complex road traffic environment of smart vehicles and other vehicles frequently experiences conflicting start and stop motion.The fine-grained scheduling of autonomous vehicles(AVs)at non-signalized intersections,which is a promising technique for exploring optimal driving paths for both assisted driving nowadays and driverless cars in the near future,has attracted significant attention owing to its high potential for improving road safety and traffic efficiency.Fine-grained scheduling primarily focuses on signalized intersection scenarios,as applying it directly to non-signalized intersections is challenging because each AV can move freely without traffic signal control.This may cause frequent driving collisions and low road traffic efficiency.Therefore,this study proposes a novel algorithm to address this issue.Our work focuses on the fine-grained scheduling of automated vehicles at non-signal intersections via dual reinforced training(FS-DRL).For FS-DRL,we first use a grid to describe the non-signalized intersection and propose a convolutional neural network(CNN)-based fast decision model that can rapidly yield a coarse-grained scheduling decision for each AV in a distributed manner.We then load these coarse-grained scheduling decisions onto a deep Q-learning network(DQN)for further evaluation.We use an adaptive learning rate to maximize the reward function and employ parameterεto tradeoff the fast speed of coarse-grained scheduling in the CNN and optimal fine-grained scheduling in the DQN.In addition,we prove that using this adaptive learning rate leads to a converged loss rate with an extremely small number of training loops.The simulation results show that compared with Dijkstra,RNN,and ant colony-based scheduling,FS-DRL yields a high accuracy of 96.5%on the sample,with improved performance of approximately 61.54%-85.37%in terms of the average conflict and traffic efficiency. 展开更多
关键词 Autonomous vehicles SCHEDULING CNN DQN Adaptive learning rate
在线阅读 下载PDF
DRL-IQA:Deep Reinforcement Learning for Opinion-Unaware Blind Image Quality Assessment
2
作者 Ying Zefeng Pan Da Shi Ping 《China Communications》 2025年第6期237-254,共18页
Most blind image quality assessment(BIQA)methods require a large amount of time to collect human opinion scores as training labels,which limits their usability in practice.Thus,we present an opinion-unaware BIQA metho... Most blind image quality assessment(BIQA)methods require a large amount of time to collect human opinion scores as training labels,which limits their usability in practice.Thus,we present an opinion-unaware BIQA method based on deep reinforcement learning which is trained without subjective scores,named DRL-IQA.Inspired by the human visual perception process,our model is formulated as a quality reinforced agent,which consists of the dynamic distortion generation part and the quality perception part.By considering the image distortion degradation process as a sequential decision-making process,the dynamic distortion generation part can develop a strategy to add as many different distortions as possible to an image,which enriches the distortion space to alleviate overfitting.A reward function calculated from quality degradation after adding distortion is utilized to continuously optimize the strategy.Furthermore,the quality perception part can extract rich quality features from the quality degradation process without using subjective scores,and accurately predict the state values that represent the image quality.Experimental results reveal that our method achieves competitive quality prediction performance compared to other state-of-the-art BIQA methods. 展开更多
关键词 blind image quality assessment deep reinforcement learning opinion-unaware
在线阅读 下载PDF
基于DRL的大规模定制装配车间调度研究
3
作者 屈新怀 张慧慧 +1 位作者 丁必荣 孟冠军 《合肥工业大学学报(自然科学版)》 北大核心 2025年第7期878-883,共6页
针对大规模定制装配车间中订单的随机性和偶然性问题,文章提出一种基于深度强化学习(deep reinforcement learning,DRL)的大规模定制装配车间作业调度优化方法。建立以最小化产品组件更换次数和最小化订单提前/拖期惩罚为目标的大规模... 针对大规模定制装配车间中订单的随机性和偶然性问题,文章提出一种基于深度强化学习(deep reinforcement learning,DRL)的大规模定制装配车间作业调度优化方法。建立以最小化产品组件更换次数和最小化订单提前/拖期惩罚为目标的大规模定制装配车间作业调度优化模型,基于调度模型建立马尔科夫决策过程,合理定义状态、动作和奖励函数;将调度模型优化问题与DRL方法相结合,并采用改进的D3QN算法进行模型求解;最后进行仿真实验验证。结果表明,文章所提方法能有效减少产品组件更换次数和降低订单提前/拖期惩罚。 展开更多
关键词 大规模定制 装配车间 深度强化学习(drl) 车间作业调度 调度优化模型
在线阅读 下载PDF
玻尔兹曼优化Q-learning的高速铁路越区切换控制算法 被引量:3
4
作者 陈永 康婕 《控制理论与应用》 北大核心 2025年第4期688-694,共7页
针对5G-R高速铁路越区切换使用固定切换阈值,且忽略了同频干扰、乒乓切换等的影响,导致越区切换成功率低的问题,提出了一种玻尔兹曼优化Q-learning的越区切换控制算法.首先,设计了以列车位置–动作为索引的Q表,并综合考虑乒乓切换、误... 针对5G-R高速铁路越区切换使用固定切换阈值,且忽略了同频干扰、乒乓切换等的影响,导致越区切换成功率低的问题,提出了一种玻尔兹曼优化Q-learning的越区切换控制算法.首先,设计了以列车位置–动作为索引的Q表,并综合考虑乒乓切换、误码率等构建Q-learning算法回报函数;然后,提出玻尔兹曼搜索策略优化动作选择,以提高切换算法收敛性能;最后,综合考虑基站同频干扰的影响进行Q表更新,得到切换判决参数,从而控制切换执行.仿真结果表明:改进算法在不同运行速度和不同运行场景下,较传统算法能有效提高切换成功率,且满足无线通信服务质量QoS的要求. 展开更多
关键词 越区切换 5G-R Q-learning算法 玻尔兹曼优化策略
在线阅读 下载PDF
一种基于DRL的分布式装备体系优选方法
5
作者 王子怡 张凯 +1 位作者 钱殿伟 刘玉贞 《系统仿真学报》 北大核心 2025年第6期1565-1573,共9页
针对传统算法在大规模场景中求解速度不足且适应性较差的问题,基于DRL对大规模分布式装备体系优选问题进行智能化求解。根据分布式装备体系作战的特点,利用复杂网络对其进行图形式建模,并基于注意力机制对装备间的连边关系进行表征,构... 针对传统算法在大规模场景中求解速度不足且适应性较差的问题,基于DRL对大规模分布式装备体系优选问题进行智能化求解。根据分布式装备体系作战的特点,利用复杂网络对其进行图形式建模,并基于注意力机制对装备间的连边关系进行表征,构建分布式装备体系数字仿真环境。仿真结果表明:与遗传进化算法相比,该模型在求解时间、适应性等方面优势明显,有效提高了大规模分布式装备体系优选决策模型的性能。 展开更多
关键词 drl 图神经网络 注意力机制 复杂网络 分布式装备体系
原文传递
Early identification of stroke through deep learning with multi-modal human speech and movement data 被引量:4
6
作者 Zijun Ou Haitao Wang +9 位作者 Bin Zhang Haobang Liang Bei Hu Longlong Ren Yanjuan Liu Yuhu Zhang Chengbo Dai Hejun Wu Weifeng Li Xin Li 《Neural Regeneration Research》 SCIE CAS 2025年第1期234-241,共8页
Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are... Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are commonly used for stroke screening,accurate administration is dependent on specialized training.In this study,we proposed a novel multimodal deep learning approach,based on the FAST,for assessing suspected stroke patients exhibiting symptoms such as limb weakness,facial paresis,and speech disorders in acute settings.We collected a dataset comprising videos and audio recordings of emergency room patients performing designated limb movements,facial expressions,and speech tests based on the FAST.We compared the constructed deep learning model,which was designed to process multi-modal datasets,with six prior models that achieved good action classification performance,including the I3D,SlowFast,X3D,TPN,TimeSformer,and MViT.We found that the findings of our deep learning model had a higher clinical value compared with the other approaches.Moreover,the multi-modal model outperformed its single-module variants,highlighting the benefit of utilizing multiple types of patient data,such as action videos and speech audio.These results indicate that a multi-modal deep learning model combined with the FAST could greatly improve the accuracy and sensitivity of early stroke identification of stroke,thus providing a practical and powerful tool for assessing stroke patients in an emergency clinical setting. 展开更多
关键词 artificial intelligence deep learning DIAGNOSIS early detection FAST SCREENING STROKE
在线阅读 下载PDF
The Internet of Things under Federated Learning:A Review of the Latest Advances and Applications 被引量:1
7
作者 Jinlong Wang Zhenyu Liu +2 位作者 Xingtao Yang Min Li Zhihan Lyu 《Computers, Materials & Continua》 SCIE EI 2025年第1期1-39,共39页
With the rapid development of artificial intelligence,the Internet of Things(IoT)can deploy various machine learning algorithms for network and application management.In the IoT environment,many sensors and devices ge... With the rapid development of artificial intelligence,the Internet of Things(IoT)can deploy various machine learning algorithms for network and application management.In the IoT environment,many sensors and devices generatemassive data,but data security and privacy protection have become a serious challenge.Federated learning(FL)can achieve many intelligent IoT applications by training models on local devices and allowing AI training on distributed IoT devices without data sharing.This review aims to deeply explore the combination of FL and the IoT,and analyze the application of federated learning in the IoT from the aspects of security and privacy protection.In this paper,we first describe the potential advantages of FL and the challenges faced by current IoT systems in the fields of network burden and privacy security.Next,we focus on exploring and analyzing the advantages of the combination of FL on the Internet,including privacy security,attack detection,efficient communication of the IoT,and enhanced learning quality.We also list various application scenarios of FL on the IoT.Finally,we propose several open research challenges and possible solutions. 展开更多
关键词 Federated learning Internet of Things SENSORS machine learning privacy security
在线阅读 下载PDF
面向通信空白场景的DRL辅助FANET双跳信息增强路由协议
8
作者 郭歆莹 李明 朱春华 《无线电通信技术》 北大核心 2025年第5期929-939,共11页
针对飞行自组网(Flying Ad Hoc Network,FANET)在通信空白场景下存在的高时延问题,提出了一种深度强化学习(Deep Reinforcement Learning,DRL)辅助的双跳信息增强路由协议(Double-Hop Information Enhanced Routing Protocol,DHRP)。为... 针对飞行自组网(Flying Ad Hoc Network,FANET)在通信空白场景下存在的高时延问题,提出了一种深度强化学习(Deep Reinforcement Learning,DRL)辅助的双跳信息增强路由协议(Double-Hop Information Enhanced Routing Protocol,DHRP)。为了实现有效的路由决策,采用马尔可夫决策过程(Markov Decision Process,MDP)对路由行为进行建模,在状态空间设计中结合了节点位置信息与链路信道容量,并综合考虑了双跳范围内的网络信息,以深度值网络为核心,在融合实时网络状态动态调整机制的奖励函数引导下,做出最优下一跳路由决策。实验结果表明,在通信空白场景下,DHRP相较于现有的路由方案,显著降低了FANET的平均端到端时延。此外,在不同节点规模和网络拥塞条件下,DHRP均表现出优越的适应性和鲁棒性,通过对动态网络环境的实时感知与智能决策机制,有效保障了整体网络性能。 展开更多
关键词 飞行自组网 通信空白 深度强化学习 双跳信息 路由协议
在线阅读 下载PDF
基于MDP和Q-learning的绿色移动边缘计算任务卸载策略
9
作者 赵宏伟 吕盛凱 +2 位作者 庞芷茜 马子涵 李雨 《河南理工大学学报(自然科学版)》 北大核心 2025年第5期9-16,共8页
目的为了在汽车、空调等制造类工业互联网企业中实现碳中和,利用边缘计算任务卸载技术处理生产设备的任务卸载问题,以减少服务器的中心负载,减少数据中心的能源消耗和碳排放。方法提出一种基于马尔可夫决策过程(Markov decision process... 目的为了在汽车、空调等制造类工业互联网企业中实现碳中和,利用边缘计算任务卸载技术处理生产设备的任务卸载问题,以减少服务器的中心负载,减少数据中心的能源消耗和碳排放。方法提出一种基于马尔可夫决策过程(Markov decision process,MDP)和Q-learning的绿色边缘计算任务卸载策略,该策略考虑了计算频率、传输功率、碳排放等约束,基于云边端协同计算模型,将碳排放优化问题转化为混合整数线性规划模型,通过MDP和Q-learning求解模型,并对比随机分配算法、Q-learning算法、SARSA(state action reward state action)算法的收敛性能、碳排放与总时延。结果与已有的计算卸载策略相比,新策略对应的任务调度算法收敛比SARSA算法、Q-learning算法分别提高了5%,2%,收敛性更好;系统碳排放成本比Q-learning算法、SARSA算法分别减少了8%,22%;考虑终端数量多少,新策略比Q-learning算法、SARSA算法终端数量分别减少了6%,7%;系统总计算时延上,新策略明显低于其他算法,比随机分配算法、Q-learning算法、SARSA算法分别减少了27%,14%,22%。结论该策略能够合理优化卸载计算任务和资源分配,权衡时延、能耗,减少系统碳排放量。 展开更多
关键词 碳排放 边缘计算 强化学习 马尔可夫决策过程 任务卸载
在线阅读 下载PDF
SensFL:Privacy-Preserving Vertical Federated Learning with Sensitive Regularization 被引量:1
10
作者 Chongzhen Zhang Zhichen Liu +4 位作者 Xiangrui Xu Fuqiang Hu Jiao Dai Baigen Cai Wei Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期385-404,共20页
In the realm of Intelligent Railway Transportation Systems,effective multi-party collaboration is crucial due to concerns over privacy and data silos.Vertical Federated Learning(VFL)has emerged as a promising approach... In the realm of Intelligent Railway Transportation Systems,effective multi-party collaboration is crucial due to concerns over privacy and data silos.Vertical Federated Learning(VFL)has emerged as a promising approach to facilitate such collaboration,allowing diverse entities to collectively enhance machine learning models without the need to share sensitive training data.However,existing works have highlighted VFL’s susceptibility to privacy inference attacks,where an honest but curious server could potentially reconstruct a client’s raw data from embeddings uploaded by the client.This vulnerability poses a significant threat to VFL-based intelligent railway transportation systems.In this paper,we introduce SensFL,a novel privacy-enhancing method to against privacy inference attacks in VFL.Specifically,SensFL integrates regularization of the sensitivity of embeddings to the original data into the model training process,effectively limiting the information contained in shared embeddings.By reducing the sensitivity of embeddings to the original data,SensFL can effectively resist reverse privacy attacks and prevent the reconstruction of the original data from the embeddings.Extensive experiments were conducted on four distinct datasets and three different models to demonstrate the efficacy of SensFL.Experiment results show that SensFL can effectively mitigate privacy inference attacks while maintaining the accuracy of the primary learning task.These results underscore SensFL’s potential to advance privacy protection technologies within VFL-based intelligent railway systems,addressing critical security concerns in collaborative learning environments. 展开更多
关键词 Vertical federated learning PRIVACY DEFENSES
在线阅读 下载PDF
A Comprehensive Survey on Federated Learning Applications in Computational Mental Healthcare 被引量:1
11
作者 Vajratiya Vajrobol Geetika Jain Saxena +6 位作者 Amit Pundir Sanjeev Singh Akshat Gaurav Savi Bansal Razaz Waheeb Attar Mosiur Rahman Brij B.Gupta 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期49-90,共42页
Mental health is a significant issue worldwide,and the utilization of technology to assist mental health has seen a growing trend.This aims to alleviate the workload on healthcare professionals and aid individuals.Num... Mental health is a significant issue worldwide,and the utilization of technology to assist mental health has seen a growing trend.This aims to alleviate the workload on healthcare professionals and aid individuals.Numerous applications have been developed to support the challenges in intelligent healthcare systems.However,because mental health data is sensitive,privacy concerns have emerged.Federated learning has gotten some attention.This research reviews the studies on federated learning and mental health related to solving the issue of intelligent healthcare systems.It explores various dimensions of federated learning in mental health,such as datasets(their types and sources),applications categorized based on mental health symptoms,federated mental health frameworks,federated machine learning,federated deep learning,and the benefits of federated learning in mental health applications.This research conducts surveys to evaluate the current state of mental health applications,mainly focusing on the role of Federated Learning(FL)and related privacy and data security concerns.The survey provides valuable insights into how these applications are emerging and evolving,specifically emphasizing FL’s impact. 展开更多
关键词 DEPRESSION emotional recognition intelligent healthcare systems mental health federated learning stress detection sleep behaviour
在线阅读 下载PDF
A Novel Self-Supervised Learning Network for Binocular Disparity Estimation 被引量:1
12
作者 Jiawei Tian Yu Zhou +5 位作者 Xiaobing Chen Salman A.AlQahtani Hongrong Chen Bo Yang Siyu Lu Wenfeng Zheng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期209-229,共21页
Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This st... Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments. 展开更多
关键词 Parallax estimation parallax regression model self-supervised learning Pseudo-Siamese neural network pyramid dilated convolution binocular disparity estimation
在线阅读 下载PDF
无监督环境下改进Q-learning算法在网络异常诊断中的应用
13
作者 梁西陈 《六盘水师范学院学报》 2025年第3期89-97,共9页
针对无监督环境下传统网络异常诊断算法存在异常点定位和异常数据分类准确率低等不足,通过设计一种基于改进Q-learning算法的无线网络异常诊断方法:首先基于ADU(Asynchronous Data Unit异步数据单元)单元采集无线网络的数据流,并提取数... 针对无监督环境下传统网络异常诊断算法存在异常点定位和异常数据分类准确率低等不足,通过设计一种基于改进Q-learning算法的无线网络异常诊断方法:首先基于ADU(Asynchronous Data Unit异步数据单元)单元采集无线网络的数据流,并提取数据包特征;然后构建Q-learning算法模型探索状态值和奖励值的平衡点,利用SA(Simulated Annealing模拟退火)算法从全局视角对下一时刻状态进行精确识别;最后确定训练样本的联合分布概率,提升输出值的逼近性能以达到平衡探索与代价之间的均衡。测试结果显示:改进Q-learning算法的网络异常定位准确率均值达99.4%,在不同类型网络异常的分类精度和分类效率等方面,也优于三种传统网络异常诊断方法。 展开更多
关键词 无监督 改进Q-learning ADU单元 状态值 联合分布概率
在线阅读 下载PDF
DEEP NEURAL NETWORKS COMBINING MULTI-TASK LEARNING FOR SOLVING DELAY INTEGRO-DIFFERENTIAL EQUATIONS 被引量:1
14
作者 WANG Chen-yao SHI Feng 《数学杂志》 2025年第1期13-38,共26页
Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay di... Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data. 展开更多
关键词 Delay integro-differential equation Multi-task learning parameter sharing structure deep neural network sequential training scheme
在线阅读 下载PDF
融合DRL的改进遗传算法求解众包车辆-公共交通协同配送问题
15
作者 冯睿锋 陈彦如 《计算机工程》 北大核心 2025年第10期357-368,共12页
针对农村地区配送场景,提出一种车辆路径问题的变体——众包车辆-公共交通协同配送问题(VRPOD-SL)。该问题对参与配送的公交车辆及其服务的物流客户进行选择,同时需选择参与配送的众包车辆,并对众包车辆的行驶路径等进行决策。考虑众包... 针对农村地区配送场景,提出一种车辆路径问题的变体——众包车辆-公共交通协同配送问题(VRPOD-SL)。该问题对参与配送的公交车辆及其服务的物流客户进行选择,同时需选择参与配送的众包车辆,并对众包车辆的行驶路径等进行决策。考虑众包车辆的起终点、服务范围和最大载重,以及公交车辆的载货空间限制和按固定路线行驶等特点,以最小化配送总成本为优化目标,构建VRPOD-SL的整数规划模型。由于公交车辆提供物流服务的客户选择决策,影响到众包车辆的服务客户选择,进而需要不断求解众包车辆路径问题,导致问题的计算复杂度较高,因此设计一种基于深度强化学习(DRL)的启发式算法,即融合了注意力模型的遗传算法(GA-AM)。该算法将遗传算法(GA)的全局搜索特性和注意力模型(AM)的并行决策能力相结合,能够有效减少VRPOD-SL的求解时间。同时设计局部搜索算法,进一步提高解决方案的质量。数值实验结果表明,所提出的GA-AM在求解性能方面明显优于Gurobi求解器、自适应大邻域搜索(ALNS)算法和变邻域搜索(VNS)算法。此外,研究结果也验证了众包车辆-公共交通协同配送模式的有效性。 展开更多
关键词 车辆路径问题 深度强化学习 改进遗传算法 众包车辆-公共交通协同配送 自适应大邻域搜索算法
在线阅读 下载PDF
Beyond the Cloud: Federated Learning and Edge AI for the Next Decade 被引量:1
16
作者 Sooraj George Thomas Praveen Kumar Myakala 《Journal of Computer and Communications》 2025年第2期37-50,共14页
As AI systems scale, the limitations of cloud-based architectures, including latency, bandwidth, and privacy concerns, demand decentralized alternatives. Federated learning (FL) and Edge AI provide a paradigm shift by... As AI systems scale, the limitations of cloud-based architectures, including latency, bandwidth, and privacy concerns, demand decentralized alternatives. Federated learning (FL) and Edge AI provide a paradigm shift by combining privacy preserving training with efficient, on device computation. This paper introduces a cutting-edge FL-edge integration framework, achieving a 10% to 15% increase in model accuracy and reducing communication costs by 25% in heterogeneous environments. Blockchain based secure aggregation ensures robust and tamper-proof model updates, while exploratory quantum AI techniques enhance computational efficiency. By addressing key challenges such as device variability and non-IID data, this work sets the stage for the next generation of adaptive, privacy-first AI systems, with applications in IoT, healthcare, and autonomous systems. 展开更多
关键词 Federated learning Edge AI Decentralized Computing Privacy-Preserving AI Blockchain Quantum AI
在线阅读 下载PDF
Multi-model ensemble learning for battery state-of-health estimation:Recent advances and perspectives 被引量:1
17
作者 Chuanping Lin Jun Xu +4 位作者 Delong Jiang Jiayang Hou Ying Liang Zhongyue Zou Xuesong Mei 《Journal of Energy Chemistry》 2025年第1期739-759,共21页
The burgeoning market for lithium-ion batteries has stimulated a growing need for more reliable battery performance monitoring. Accurate state-of-health(SOH) estimation is critical for ensuring battery operational per... The burgeoning market for lithium-ion batteries has stimulated a growing need for more reliable battery performance monitoring. Accurate state-of-health(SOH) estimation is critical for ensuring battery operational performance. Despite numerous data-driven methods reported in existing research for battery SOH estimation, these methods often exhibit inconsistent performance across different application scenarios. To address this issue and overcome the performance limitations of individual data-driven models,integrating multiple models for SOH estimation has received considerable attention. Ensemble learning(EL) typically leverages the strengths of multiple base models to achieve more robust and accurate outputs. However, the lack of a clear review of current research hinders the further development of ensemble methods in SOH estimation. Therefore, this paper comprehensively reviews multi-model ensemble learning methods for battery SOH estimation. First, existing ensemble methods are systematically categorized into 6 classes based on their combination strategies. Different realizations and underlying connections are meticulously analyzed for each category of EL methods, highlighting distinctions, innovations, and typical applications. Subsequently, these ensemble methods are comprehensively compared in terms of base models, combination strategies, and publication trends. Evaluations across 6 dimensions underscore the outstanding performance of stacking-based ensemble methods. Following this, these ensemble methods are further inspected from the perspectives of weighted ensemble and diversity, aiming to inspire potential approaches for enhancing ensemble performance. Moreover, addressing challenges such as base model selection, measuring model robustness and uncertainty, and interpretability of ensemble models in practical applications is emphasized. Finally, future research prospects are outlined, specifically noting that deep learning ensemble is poised to advance ensemble methods for battery SOH estimation. The convergence of advanced machine learning with ensemble learning is anticipated to yield valuable avenues for research. Accelerated research in ensemble learning holds promising prospects for achieving more accurate and reliable battery SOH estimation under real-world conditions. 展开更多
关键词 Lithium-ion battery State-of-health estimation DATA-DRIVEN Machine learning Ensemble learning Ensemble diversity
在线阅读 下载PDF
Comprehensive Review and Analysis on Facial Emotion Recognition:Performance Insights into Deep and Traditional Learning with Current Updates and Challenges
18
作者 Amjad Rehman Muhammad Mujahid +2 位作者 Alex Elyassih Bayan AlGhofaily Saeed Ali Omer Bahaj 《Computers, Materials & Continua》 SCIE EI 2025年第1期41-72,共32页
In computer vision and artificial intelligence,automatic facial expression-based emotion identification of humans has become a popular research and industry problem.Recent demonstrations and applications in several fi... In computer vision and artificial intelligence,automatic facial expression-based emotion identification of humans has become a popular research and industry problem.Recent demonstrations and applications in several fields,including computer games,smart homes,expression analysis,gesture recognition,surveillance films,depression therapy,patientmonitoring,anxiety,and others,have brought attention to its significant academic and commercial importance.This study emphasizes research that has only employed facial images for face expression recognition(FER),because facial expressions are a basic way that people communicate meaning to each other.The immense achievement of deep learning has resulted in a growing use of its much architecture to enhance efficiency.This review is on machine learning,deep learning,and hybrid methods’use of preprocessing,augmentation techniques,and feature extraction for temporal properties of successive frames of data.The following section gives a brief summary of assessment criteria that are accessible to the public and then compares them with benchmark results the most trustworthy way to assess FER-related research topics statistically.In this review,a brief synopsis of the subject matter may be beneficial for novices in the field of FER as well as seasoned scholars seeking fruitful avenues for further investigation.The information conveys fundamental knowledge and provides a comprehensive understanding of the most recent state-of-the-art research. 展开更多
关键词 Face emotion recognition deep learning hybrid learning CK+ facial images machine learning technological development
在线阅读 下载PDF
A deep transfer learning model for the deformation of braced excavations with limited monitoring data 被引量:1
19
作者 Yuanqin Tao Shaoxiang Zeng +3 位作者 Tiantian Ying Honglei Sun Sunjuexu Pan Yuanqiang Cai 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1555-1568,共14页
The current deep learning models for braced excavation cannot predict deformation from the beginning of excavation due to the need for a substantial corpus of sufficient historical data for training purposes.To addres... The current deep learning models for braced excavation cannot predict deformation from the beginning of excavation due to the need for a substantial corpus of sufficient historical data for training purposes.To address this issue,this study proposes a transfer learning model based on a sequence-to-sequence twodimensional(2D)convolutional long short-term memory neural network(S2SCL2D).The model can use the existing data from other adjacent similar excavations to achieve wall deflection prediction once a limited amount of monitoring data from the target excavation has been recorded.In the absence of adjacent excavation data,numerical simulation data from the target project can be employed instead.A weight update strategy is proposed to improve the prediction accuracy by integrating the stochastic gradient masking with an early stopping mechanism.To illustrate the proposed methodology,an excavation project in Hangzhou,China is adopted.The proposed deep transfer learning model,which uses either adjacent excavation data or numerical simulation data as the source domain,shows a significant improvement in performance when compared to the non-transfer learning model.Using the simulation data from the target project even leads to better prediction performance than using the actual monitoring data from other adjacent excavations.The results demonstrate that the proposed model can reasonably predict the deformation with limited data from the target project. 展开更多
关键词 Braced excavation Wall deflections Transfer learning Deep learning Finite element simulation
在线阅读 下载PDF
TELL-Me:A time-series-decomposition-based ensembled lightweight learning model for diverse battery prognosis and diagnosis 被引量:1
20
作者 Kun-Yu Liu Ting-Ting Wang +2 位作者 Bo-Bo Zou Hong-Jie Peng Xinyan Liu 《Journal of Energy Chemistry》 2025年第7期1-8,共8页
As batteries become increasingly essential for energy storage technologies,battery prognosis,and diagnosis remain central to ensure reliable operation and effective management,as well as to aid the in-depth investigat... As batteries become increasingly essential for energy storage technologies,battery prognosis,and diagnosis remain central to ensure reliable operation and effective management,as well as to aid the in-depth investigation of degradation mechanisms.However,dynamic operating conditions,cell-to-cell inconsistencies,and limited availability of labeled data have posed significant challenges to accurate and robust prognosis and diagnosis.Herein,we introduce a time-series-decomposition-based ensembled lightweight learning model(TELL-Me),which employs a synergistic dual-module framework to facilitate accurate and reliable forecasting.The feature module formulates features with physical implications and sheds light on battery aging mechanisms,while the gradient module monitors capacity degradation rates and captures aging trend.TELL-Me achieves high accuracy in end-of-life prediction using minimal historical data from a single battery without requiring offline training dataset,and demonstrates impressive generality and robustness across various operating conditions and battery types.Additionally,by correlating feature contributions with degradation mechanisms across different datasets,TELL-Me is endowed with the diagnostic ability that not only enhances prediction reliability but also provides critical insights into the design and optimization of next-generation batteries. 展开更多
关键词 Battery prognosis Interpretable machine learning Degradation diagnosis Ensemble learning Online prediction Lightweight model
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部