期刊文献+
共找到252,950篇文章
< 1 2 250 >
每页显示 20 50 100
Nondestructive detection of key phenotypes for the canopy of the watermelon plug seedlings based on deep learning
1
作者 Lei Li Zhilong Bie +4 位作者 Yi Zhang Yuan Huang Chengli Peng Binbin Han Shengyong Xu 《Horticultural Plant Journal》 2026年第1期149-160,共12页
Nondestructive measurement technology of phenotype can provide substantial phenotypic data support for applications such as seedling breeding,management,and quality testing.The current method of measuring seedling phe... Nondestructive measurement technology of phenotype can provide substantial phenotypic data support for applications such as seedling breeding,management,and quality testing.The current method of measuring seedling phenotypes mainly relies on manual measurement which is inefficient,subjective and destroys samples.Therefore,the paper proposes a nondestructive measurement method for the canopy phenotype of the watermelon plug seedlings based on deep learning.The Azure Kinect was used to shoot canopy color images,depth images,and RGB-D images of the watermelon plug seedlings.The Mask-RCNN network was used to classify,segment,and count the canopy leaves of the watermelon plug seedlings.To reduce the error of leaf area measurement caused by mutual occlusion of leaves,the leaves were repaired by CycleGAN,and the depth images were restored by image processing.Then,the Delaunay triangulation was adopted to measure the leaf area in the leaf point cloud.The YOLOX target detection network was used to identify the growing point position of each seedling on the plug tray.Then the depth differences between the growing point and the upper surface of the plug tray were calculated to obtain plant height.The experiment results show that the nondestructive measurement algorithm proposed in this paper achieves good measurement performance for the watermelon plug seedlings from the 1 true-leaf to 3 true-leaf stages.The average relative error of measurement is 2.33%for the number of true leaves,4.59%for the number of cotyledons,8.37%for the leaf area,and 3.27%for the plant height.The experiment results demonstrate that the proposed algorithm in this paper provides an effective solution for the nondestructive measurement of the canopy phenotype of the plug seedlings. 展开更多
关键词 Watermelon seedlings Azure Kinect CANOPY Phenotype detection Deep learning
在线阅读 下载PDF
Six Elements That Help Create a Friendly Environment and Motivate Learning
2
作者 Roberto Cuccu 《Sino-US English Teaching》 2025年第1期1-6,共6页
The following sections of this article are the background of the experiences described in the book Creative Journals in a Bottle.Out-of-the-Box Activities That Help Teenagers Become Sensitive and Self-Confident Adults... The following sections of this article are the background of the experiences described in the book Creative Journals in a Bottle.Out-of-the-Box Activities That Help Teenagers Become Sensitive and Self-Confident Adults(Cuccu,2024).Being a teacher in a classroom of young people involves more than just being able to tell them about a topic they have to study,they are also educators and play an important role in their development in a critical period of their lives.The following sections deal with things to do and not to do in order to create an ideal environment characterized by empathy,motivation,and learning together. 展开更多
关键词 Neuro-Linguistic Programming different views of a situation Cooperative learning dealing with students learning styles students’interests role of empathy
在线阅读 下载PDF
Needle detection and localisation for robot-assisted subretinal injection using deep learning
3
作者 Mingchuan Zhou Xiangyu Guo +7 位作者 Matthias Grimm Elias Lochner Zhongliang Jiang Abouzar Eslami Juan Ye Nassir Navab Alois Knoll Mohammad Ali Nasseri 《CAAI Transactions on Intelligence Technology》 2025年第3期703-715,共13页
Subretinal injection is a complicated task for retinal surgeons to operate manually.In this paper we demonstrate a robust framework for needle detection and localisation in robotassisted subretinal injection using mic... Subretinal injection is a complicated task for retinal surgeons to operate manually.In this paper we demonstrate a robust framework for needle detection and localisation in robotassisted subretinal injection using microscope-integrated Optical Coherence Tomography with deep learning.Five convolutional neural networks with different architectures were evaluated.The main differences between the architectures are the amount of information they receive at the input layer.When evaluated on ex-vivo pig eyes,the top performing network successfully detected all needles in the dataset and localised them with an Intersection over Union value of 0.55.The algorithm was evaluated by comparing the depth of the top and bottom edge of the predicted bounding box to the ground truth.This analysis showed that the top edge can be used to predict the depth of the needle with a maximum error of 8.5μm. 展开更多
关键词 deep learning optical coherence tomography robot-assisted surgery subretinal injection
在线阅读 下载PDF
Advanced machine learning techniques for predicting mechanical properties of eco-friendly self-compacting concrete
4
作者 Arslan Qayyum Khan Syed Ghulam Muhammad +1 位作者 Ali Raza Amorn Pimanmas 《Journal of Road Engineering》 2025年第2期213-229,共17页
This study evaluates the performance of advanced machine learning(ML)models in predicting the mechanical properties of eco-friendly self-compacting concrete(SCC),with a focus on compressive strength,V-funnel time,Lbox... This study evaluates the performance of advanced machine learning(ML)models in predicting the mechanical properties of eco-friendly self-compacting concrete(SCC),with a focus on compressive strength,V-funnel time,Lbox ratio,and slump flow.The motivation for this study stems from the increasing need to optimize concrete mix designs while minimizing environmental impact and reducing the reliance on costly physical testing.Six ML models-backpropagation neural network(BPNN),random forest regression(RFR),K-nearest neighbors(KNN),stacking,bagging,and eXtreme gradient boosting(XGBoost)-were trained and validated using a comprehensive dataset of 239 mix design parameters.The models'predictive accuracies were assessed using the coefficient of determination,mean squared error,root mean squared error,and mean absolute error.XGBoost consistently outperformed other models,achieving the coefficient of determination values of 0.999,0.933,and 0.935 for compressive strength in the training,validation,and testing datasets,respectively.Sensitivity analysis revealed that cement,silica fume,coarse aggregate,and superplasticizer positively influenced compressive strength,while water content had a negative impact.These findings highlight the potential of ML models,particularly XGBoost and RFR,in optimizing SCC mix designs,reducing reliance on physical testing,and enhancing sustainability in construction.The application of these models can lead to more efficient and eco-friendly concrete mix designs,benefiting real-world construction projects by improving quality control and reducing costs. 展开更多
关键词 Self-compacting concrete Eco-friendly concrete Machine learning model Compressive strength WORKABILITY
在线阅读 下载PDF
Investigation and Strategy Research on the Causes of Middle School Students’Learning Difficulties in the Context of the Leading Country in Education
5
作者 Jun-Jie Yan Xiao-Nan Luo +2 位作者 Qun-Fang Zeng Hui-Lin Zhang Jian-Nan Wu 《教育技术与创新》 2025年第2期1-10,共10页
The purpose of this research is to analyze the causal mechanisms of learning difficulties of middle school students and use them to propose strategies to help them.This research is particularly valuable for its focus ... The purpose of this research is to analyze the causal mechanisms of learning difficulties of middle school students and use them to propose strategies to help them.This research is particularly valuable for its focus on middle school students.Research on this critical transition period is often lacking compared to primary and high school.Therefore,this research establishes a structured equation model and analyzes the data from the survey using the partial least squares method.The data were obtained from a 13,900 Wenzhou City,China students’questionnaire.The research found that learning strategies were the most significant influences on learning effectiveness,followed by learning motivation and learning relationships.Meanwhile,learning relationships had a significant impact on learning pressure.Therefore,this research proposes targeted support strategies.It aims to enhance learning motivation(Set achievable learning goals for each student with learning difficulties based on their actual situation),optimize learning strategies(Encourage students with learning difficulties to learn self-regulatory strategies such as goal setting,time management,and self-reflection),and improve learning relationships(Establish a good social network to promote positive interaction between students with learning difficulties and their peers).At the same time,it reduces students’learning pressure.Ultimately,the learning effectiveness of students with learning difficulties is improved. 展开更多
关键词 support strategies leading country in education students with learning difficulties middle school students
在线阅读 下载PDF
Handling class imbalance of radio frequency interference in deep learning-based fast radio burst search pipelines using a deep convolutional generative adversarial network
6
作者 Wenlong Du Yanling Liu Maozheng Chen 《Astronomical Techniques and Instruments》 2025年第1期10-15,共6页
This paper addresses the performance degradation issue in a fast radio burst search pipeline based on deep learning.This issue is caused by the class imbalance of the radio frequency interference samples in the traini... This paper addresses the performance degradation issue in a fast radio burst search pipeline based on deep learning.This issue is caused by the class imbalance of the radio frequency interference samples in the training dataset,and one solution is applied to improve the distribution of the training data by augmenting minority class samples using a deep convolutional generative adversarial network.Experi.mental results demonstrate that retraining the deep learning model with the newly generated dataset leads to a new fast radio burst classifier,which effectively reduces false positives caused by periodic wide-band impulsive radio frequency interference,thereby enhancing the performance of the search pipeline. 展开更多
关键词 Fast radio burst Deep convolutional generative adversarial network Class imbalance Radio frequency interference Deep learning
在线阅读 下载PDF
Predicting lymph node metastasis in colorectal cancer using caselevel multiple instance learning
7
作者 Ling-Feng Zou Xuan-Bing Wang +4 位作者 Jing-Wen Li Xin Ouyang Yi-Ying Luo Yan Luo Cheng-Long Wang 《World Journal of Gastroenterology》 2026年第1期110-125,共16页
BACKGROUND The accurate prediction of lymph node metastasis(LNM)is crucial for managing locally advanced(T3/T4)colorectal cancer(CRC).However,both traditional histopathology and standard slide-level deep learning ofte... BACKGROUND The accurate prediction of lymph node metastasis(LNM)is crucial for managing locally advanced(T3/T4)colorectal cancer(CRC).However,both traditional histopathology and standard slide-level deep learning often fail to capture the sparse and diagnostically critical features of metastatic potential.AIM To develop and validate a case-level multiple-instance learning(MIL)framework mimicking a pathologist's comprehensive review and improve T3/T4 CRC LNM prediction.METHODS The whole-slide images of 130 patients with T3/T4 CRC were retrospectively collected.A case-level MIL framework utilising the CONCH v1.5 and UNI2-h deep learning models was trained on features from all haematoxylin and eosinstained primary tumour slides for each patient.These pathological features were subsequently integrated with clinical data,and model performance was evaluated using the area under the curve(AUC).RESULTS The case-level framework demonstrated superior LNM prediction over slide-level training,with the CONCH v1.5 model achieving a mean AUC(±SD)of 0.899±0.033 vs 0.814±0.083,respectively.Integrating pathology features with clinical data further enhanced performance,yielding a top model with a mean AUC of 0.904±0.047,in sharp contrast to a clinical-only model(mean AUC 0.584±0.084).Crucially,a pathologist’s review confirmed that the model-identified high-attention regions correspond to known high-risk histopathological features.CONCLUSION A case-level MIL framework provides a superior approach for predicting LNM in advanced CRC.This method shows promise for risk stratification and therapy decisions,requiring further validation. 展开更多
关键词 Colorectal cancer Lymph node metastasis Deep learning Multiple instance learning HISTOPATHOLOGY
暂未订购
Forecasting solar cycles using the time-series dense encoder deep learning model
8
作者 Cui Zhao Shangbin Yang +1 位作者 Jianguo Liu Shiyuan Liu 《Astronomical Techniques and Instruments》 2026年第1期43-54,共12页
The solar cycle(SC),a phenomenon caused by the quasi-periodic regular activities in the Sun,occurs approximately every 11 years.Intense solar activity can disrupt the Earth’s ionosphere,affecting communication and na... The solar cycle(SC),a phenomenon caused by the quasi-periodic regular activities in the Sun,occurs approximately every 11 years.Intense solar activity can disrupt the Earth’s ionosphere,affecting communication and navigation systems.Consequently,accurately predicting the intensity of the SC holds great significance,but predicting the SC involves a long-term time series,and many existing time series forecasting methods have fallen short in terms of accuracy and efficiency.The Time-series Dense Encoder model is a deep learning solution tailored for long time series prediction.Based on a multi-layer perceptron structure,it outperforms the best previously existing models in accuracy,while being efficiently trainable on general datasets.We propose a method based on this model for SC forecasting.Using a trained model,we predict the test set from SC 19 to SC 25 with an average mean absolute percentage error of 32.02,root mean square error of 30.3,mean absolute error of 23.32,and R^(2)(coefficient of determination)of 0.76,outperforming other deep learning models in terms of accuracy and training efficiency on sunspot number datasets.Subsequently,we use it to predict the peaks of SC 25 and SC 26.For SC 25,the peak time has ended,but a stronger peak is predicted for SC 26,of 199.3,within a range of 170.8-221.9,projected to occur during April 2034. 展开更多
关键词 Solar cycle Forecasting TIDE Deep learning
在线阅读 下载PDF
An Improved Reinforcement Learning-Based 6G UAV Communication for Smart Cities
9
作者 Vi Hoai Nam Chu Thi Minh Hue Dang Van Anh 《Computers, Materials & Continua》 2026年第1期2030-2044,共15页
Unmanned Aerial Vehicles(UAVs)have become integral components in smart city infrastructures,supporting applications such as emergency response,surveillance,and data collection.However,the high mobility and dynamic top... Unmanned Aerial Vehicles(UAVs)have become integral components in smart city infrastructures,supporting applications such as emergency response,surveillance,and data collection.However,the high mobility and dynamic topology of Flying Ad Hoc Networks(FANETs)present significant challenges for maintaining reliable,low-latency communication.Conventional geographic routing protocols often struggle in situations where link quality varies and mobility patterns are unpredictable.To overcome these limitations,this paper proposes an improved routing protocol based on reinforcement learning.This new approach integrates Q-learning with mechanisms that are both link-aware and mobility-aware.The proposed method optimizes the selection of relay nodes by using an adaptive reward function that takes into account energy consumption,delay,and link quality.Additionally,a Kalman filter is integrated to predict UAV mobility,improving the stability of communication links under dynamic network conditions.Simulation experiments were conducted using realistic scenarios,varying the number of UAVs to assess scalability.An analysis was conducted on key performance metrics,including the packet delivery ratio,end-to-end delay,and total energy consumption.The results demonstrate that the proposed approach significantly improves the packet delivery ratio by 12%–15%and reduces delay by up to 25.5%when compared to conventional GEO and QGEO protocols.However,this improvement comes at the cost of higher energy consumption due to additional computations and control overhead.Despite this trade-off,the proposed solution ensures reliable and efficient communication,making it well-suited for large-scale UAV networks operating in complex urban environments. 展开更多
关键词 UAV FANET smart cities reinforcement learning Q-learning
在线阅读 下载PDF
RankXLAN:An explainable ensemble-based machine learning framework for biomarker detection,therapeutic target identification,and classification using transcriptomic and epigenomic stomach cancer data
10
作者 Kasmika Borah Himanish Shekhar Das +1 位作者 Mudassir Khan Saurav Mallik 《Medical Data Mining》 2026年第1期13-31,共19页
Background:Stomach cancer(SC)is one of the most lethal malignancies worldwide due to late-stage diagnosis and limited treatment.The transcriptomic,epigenomic,and proteomic,etc.,omics datasets generated by high-through... Background:Stomach cancer(SC)is one of the most lethal malignancies worldwide due to late-stage diagnosis and limited treatment.The transcriptomic,epigenomic,and proteomic,etc.,omics datasets generated by high-throughput sequencing technology have become prominent in biomedical research,and they reveal molecular aspects of cancer diagnosis and therapy.Despite the development of advanced sequencing technology,the presence of high-dimensionality in multi-omics data makes it challenging to interpret the data.Methods:In this study,we introduce RankXLAN,an explainable ensemble-based multi-omics framework that integrates feature selection(FS),ensemble learning,bioinformatics,and in-silico validation for robust biomarker detection,potential therapeutic drug-repurposing candidates’identification,and classification of SC.To enhance the interpretability of the model,we incorporated explainable artificial intelligence(SHapley Additive exPlanations analysis),as well as accuracy,precision,F1-score,recall,cross-validation,specificity,likelihood ratio(LR)+,LR−,and Youden index results.Results:The experimental results showed that the top four FS algorithms achieved improved results when applied to the ensemble learning classification model.The proposed ensemble model produced an area under the curve(AUC)score of 0.994 for gene expression,0.97 for methylation,and 0.96 for miRNA expression data.Through the integration of bioinformatics and ML approach of the transcriptomic and epigenomic multi-omics dataset,we identified potential marker genes,namely,UBE2D2,HPCAL4,IGHA1,DPT,and FN3K.In-silico molecular docking revealed a strong binding affinity between ANKRD13C and the FDA-approved drug Everolimus(binding affinity−10.1 kcal/mol),identifying ANKRD13C as a potential therapeutic drug-repurposing target for SC.Conclusion:The proposed framework RankXLAN outperforms other existing frameworks for serum biomarker identification,therapeutic target identification,and SC classification with multi-omics datasets. 展开更多
关键词 stomach cancer BIOINFORMATICS ensemble learning classifier BIOMARKER targets
在线阅读 下载PDF
Novel genes involved in vascular dysfunction of the middle temporal gyrus in Alzheimer's disease:transcriptomics combined with machine learning analysis
11
作者 Meiling Wang Aojie He +5 位作者 Yubing Kang Zhaojun Wang Yahui He Kahleong Lim Chengwu Zhang Li Lu 《Neural Regeneration Research》 2025年第12期3620-3634,共15页
Studies have shown that vascular dysfunction is closely related to the pathogenesis of Alzheimer's disease.The middle temporal gyrus region of the brain is susceptible to pronounced impairment in Alzheimer's d... Studies have shown that vascular dysfunction is closely related to the pathogenesis of Alzheimer's disease.The middle temporal gyrus region of the brain is susceptible to pronounced impairment in Alzheimer's disease.Identification of the molecules involved in vascular aberrance of the middle temporal gyrus would support elucidation of the mechanisms underlying Alzheimer's disease and discove ry of novel targets for intervention.We carried out single-cell transcriptomic analysis of the middle temporal gyrus in the brains of patients with Alzheimer's disease and healthy controls,revealing obvious changes in vascular function.CellChat analysis of intercellular communication in the middle temporal gyrus showed that the number of cell interactions in this region was decreased in Alzheimer's disease patients,with altered intercellular communication of endothelial cells and pericytes being the most prominent.Differentially expressed genes were also identified.Using the CellChat results,AUCell evaluation of the pathway activity of specific cells showed that the obvious changes in vascular function in the middle temporal gyrus in Alzheimer's disease were directly related to changes in the vascular endothelial growth factor(VEGF)A-VEGF receptor(VEGFR)2 pathway.AUCell analysis identified subtypes of endothelial cells and pericytes directly related to VEGFA-VEGFR2 pathway activity.Two subtypes of middle temporal gyrus cells showed significant alteration in AD:endothelial cells with high expression of Erb-B2 receptor tyrosine kinase 4(ERBB4^(high))and pericytes with high expression of angiopoietin-like 4(ANGPTL4^(high)).Finally,combining bulk RNA sequencing data and two machine learning algorithms(least absolute shrinkage and selection operator and random forest),four characteristic Alzheimer's disease feature genes were identified:somatostatin(SST),protein tyrosine phosphatase non-receptor type 3(PTPN3),glutinase(GL3),and tropomyosin 3(PTM3).These genes were downregulated in the middle temporal gyrus of patients with Alzheimer's disease and may be used to target the VEGF pathway.Alzheimer's disease mouse models demonstrated consistent altered expression of these genes in the middle temporal gyrus.In conclusion,this study detected changes in intercellular communication between endothelial cells and pericytes in the middle temporal gyrus and identified four novel feature genes related to middle temporal gyrus and vascular functioning in patients with Alzheimer's disease.These findings contribute to a deeper understanding of the molecular mechanisms underlying Alzheimer's disease and present novel treatment targets. 展开更多
关键词 Alzheimer’s disease bioinformatics CellChat cerebrovascular disorders endothelial cells intercellular communication machine learning middle temporal gyrus PERICYTES vascular endothelial growth factor pathway
暂未订购
GFL-SAR: Graph Federated Collaborative Learning Framework Based on Structural Amplification and Attention Refinement
12
作者 Hefei Wang Ruichun Gu +2 位作者 Jingyu Wang Xiaolin Zhang Hui Wei 《Computers, Materials & Continua》 2026年第1期1683-1702,共20页
Graph Federated Learning(GFL)has shown great potential in privacy protection and distributed intelligence through distributed collaborative training of graph-structured data without sharing raw information.However,exi... Graph Federated Learning(GFL)has shown great potential in privacy protection and distributed intelligence through distributed collaborative training of graph-structured data without sharing raw information.However,existing GFL approaches often lack the capability for comprehensive feature extraction and adaptive optimization,particularly in non-independent and identically distributed(NON-IID)scenarios where balancing global structural understanding and local node-level detail remains a challenge.To this end,this paper proposes a novel framework called GFL-SAR(Graph Federated Collaborative Learning Framework Based on Structural Amplification and Attention Refinement),which enhances the representation learning capability of graph data through a dual-branch collaborative design.Specifically,we propose the Structural Insight Amplifier(SIA),which utilizes an improved Graph Convolutional Network(GCN)to strengthen structural awareness and improve modeling of topological patterns.In parallel,we propose the Attentive Relational Refiner(ARR),which employs an enhanced Graph Attention Network(GAT)to perform fine-grained modeling of node relationships and neighborhood features,thereby improving the expressiveness of local interactions and preserving critical contextual information.GFL-SAR effectively integrates multi-scale features from every branch via feature fusion and federated optimization,thereby addressing existing GFL limitations in structural modeling and feature representation.Experiments on standard benchmark datasets including Cora,Citeseer,Polblogs,and Cora_ML demonstrate that GFL-SAR achieves superior performance in classification accuracy,convergence speed,and robustness compared to existing methods,confirming its effectiveness and generalizability in GFL tasks. 展开更多
关键词 Graph federated learning GCN GNNs attention mechanism
在线阅读 下载PDF
Deep Learning-Assisted Organogel Pressure Sensor for Alphabet Recognition and Bio-Mechanical Motion Monitoring
13
作者 Kusum Sharma Kousik Bhunia +5 位作者 Subhajit Chatterjee Muthukumar Perumalsamy Anandhan Ayyappan Saj Theophilus Bhatti Yung‑Cheol Byun Sang-Jae Kim 《Nano-Micro Letters》 2026年第2期644-663,共20页
Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,... Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility,adhesion,self-healing,and environmental robustness with excellent sensing metrics.Herein,we report a multifunctional,anti-freezing,selfadhesive,and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes(CoN CNT)embedded in a polyvinyl alcohol-gelatin(PVA/GLE)matrix.Fabricated using a binary solvent system of water and ethylene glycol(EG),the CoN CNT/PVA/GLE organogel exhibits excellent flexibility,biocompatibility,and temperature tolerance with remarkable environmental stability.Electrochemical impedance spectroscopy confirms near-stable performance across a broad humidity range(40%-95%RH).Freeze-tolerant conductivity under sub-zero conditions(-20℃)is attributed to the synergistic role of CoN CNT and EG,preserving mobility and network integrity.The Co N CNT/PVA/GLE organogel sensor exhibits high sensitivity of 5.75 k Pa^(-1)in the detection range from 0 to 20 k Pa,ideal for subtle biomechanical motion detection.A smart human-machine interface for English letter recognition using deep learning achieved 98%accuracy.The organogel sensor utility was extended to detect human gestures like finger bending,wrist motion,and throat vibration during speech. 展开更多
关键词 Wearable ORGANOGEL Deep learning Pressure sensor Bio-mechanical motion
在线阅读 下载PDF
FedCW: Client Selection with Adaptive Weight in Heterogeneous Federated Learning
14
作者 Haotian Wu Jiaming Pei Jinhai Li 《Computers, Materials & Continua》 2026年第1期1551-1570,共20页
With the increasing complexity of vehicular networks and the proliferation of connected vehicles,Federated Learning(FL)has emerged as a critical framework for decentralized model training while preserving data privacy... With the increasing complexity of vehicular networks and the proliferation of connected vehicles,Federated Learning(FL)has emerged as a critical framework for decentralized model training while preserving data privacy.However,efficient client selection and adaptive weight allocation in heterogeneous and non-IID environments remain challenging.To address these issues,we propose Federated Learning with Client Selection and Adaptive Weighting(FedCW),a novel algorithm that leverages adaptive client selection and dynamic weight allocation for optimizing model convergence in real-time vehicular networks.FedCW selects clients based on their Euclidean distance from the global model and dynamically adjusts aggregation weights to optimize both data diversity and model convergence.Experimental results show that FedCW significantly outperforms existing FL algorithms such as FedAvg,FedProx,and SCAFFOLD,particularly in non-IID settings,achieving faster convergence,higher accuracy,and reduced communication overhead.These findings demonstrate that FedCW provides an effective solution for enhancing the performance of FL in heterogeneous,edge-based computing environments. 展开更多
关键词 Federated learning non-IID client selection weight allocation vehicular networks
在线阅读 下载PDF
Landslide susceptibility on the Qinghai-Tibet Plateau:Key driving factors identified through machine learning
15
作者 YANG Wanqing GE Quansheng +3 位作者 TAO Zexing XU Duanyang WANG Yuan HAO Zhixin 《Journal of Geographical Sciences》 2026年第1期199-218,共20页
Landslides pose a formidable natural hazard across the Qinghai-Tibet Plateau(QTP),endangering both ecosystems and human life.Identifying the driving factors behind landslides and accurately assessing susceptibility ar... Landslides pose a formidable natural hazard across the Qinghai-Tibet Plateau(QTP),endangering both ecosystems and human life.Identifying the driving factors behind landslides and accurately assessing susceptibility are key to mitigating disaster risk.This study integrated multi-source historical landslide data with 15 predictive factors and used several machine learning models—Random Forest(RF),Gradient Boosting Regression Trees(GBRT),Extreme Gradient Boosting(XGBoost),and Categorical Boosting(CatBoost)—to generate susceptibility maps.The Shapley additive explanation(SHAP)method was applied to quantify factor importance and explore their nonlinear effects.The results showed that:(1)CatBoost was the best-performing model(CA=0.938,AUC=0.980)in assessing landslide susceptibility,with altitude emerging as the most significant factor,followed by distance to roads and earthquake sites,precipitation,and slope;(2)the SHAP method revealed critical nonlinear thresholds,demonstrating that historical landslides were concentrated at mid-altitudes(1400-4000 m)and decreased markedly above 4000 m,with a parallel reduction in probability beyond 700 m from roads;and(3)landslide-prone areas,comprising 13%of the QTP,were concentrated in the southeastern and northeastern parts of the plateau.By integrating machine learning and SHAP analysis,this study revealed landslide hazard-prone areas and their driving factors,providing insights to support disaster management strategies and sustainable regional planning. 展开更多
关键词 landslide susceptibility machine learning SHAP driving factors nonlinear effects
原文传递
DPIL-Traj: Differential Privacy Trajectory Generation Framework with Imitation Learning
16
作者 Huaxiong Liao Xiangxuan Zhong +4 位作者 Xueqi Chen Yirui Huang Yuwei Lin Jing Zhang Bruce Gu 《Computers, Materials & Continua》 2026年第1期1530-1550,共21页
The generation of synthetic trajectories has become essential in various fields for analyzing complex movement patterns.However,the use of real-world trajectory data poses significant privacy risks,such as location re... The generation of synthetic trajectories has become essential in various fields for analyzing complex movement patterns.However,the use of real-world trajectory data poses significant privacy risks,such as location reidentification and correlation attacks.To address these challenges,privacy-preserving trajectory generation methods are critical for applications relying on sensitive location data.This paper introduces DPIL-Traj,an advanced framework designed to generate synthetic trajectories while achieving a superior balance between data utility and privacy preservation.Firstly,the framework incorporates Differential Privacy Clustering,which anonymizes trajectory data by applying differential privacy techniques that add noise,ensuring the protection of sensitive user information.Secondly,Imitation Learning is used to replicate decision-making behaviors observed in real-world trajectories.By learning from expert trajectories,this component generates synthetic data that closely mimics real-world decision-making processes while optimizing the quality of the generated trajectories.Finally,Markov-based Trajectory Generation is employed to capture and maintain the inherent temporal dynamics of movement patterns.Extensive experiments conducted on the GeoLife trajectory dataset show that DPIL-Traj improves utility performance by an average of 19.85%,and in terms of privacy performance by an average of 12.51%,compared to state-of-the-art approaches.Ablation studies further reveal that DP clustering effectively safeguards privacy,imitation learning enhances utility under noise,and the Markov module strengthens temporal coherence. 展开更多
关键词 PRIVACY-PRESERVING trajectory generation differential privacy imitation learning Markov chain
在线阅读 下载PDF
Advances in Machine Learning for Explainable Intrusion Detection Using Imbalance Datasets in Cybersecurity with Harris Hawks Optimization
17
作者 Amjad Rehman Tanzila Saba +2 位作者 Mona M.Jamjoom Shaha Al-Otaibi Muhammad I.Khan 《Computers, Materials & Continua》 2026年第1期1804-1818,共15页
Modern intrusion detection systems(MIDS)face persistent challenges in coping with the rapid evolution of cyber threats,high-volume network traffic,and imbalanced datasets.Traditional models often lack the robustness a... Modern intrusion detection systems(MIDS)face persistent challenges in coping with the rapid evolution of cyber threats,high-volume network traffic,and imbalanced datasets.Traditional models often lack the robustness and explainability required to detect novel and sophisticated attacks effectively.This study introduces an advanced,explainable machine learning framework for multi-class IDS using the KDD99 and IDS datasets,which reflects real-world network behavior through a blend of normal and diverse attack classes.The methodology begins with sophisticated data preprocessing,incorporating both RobustScaler and QuantileTransformer to address outliers and skewed feature distributions,ensuring standardized and model-ready inputs.Critical dimensionality reduction is achieved via the Harris Hawks Optimization(HHO)algorithm—a nature-inspired metaheuristic modeled on hawks’hunting strategies.HHO efficiently identifies the most informative features by optimizing a fitness function based on classification performance.Following feature selection,the SMOTE is applied to the training data to resolve class imbalance by synthetically augmenting underrepresented attack types.The stacked architecture is then employed,combining the strengths of XGBoost,SVM,and RF as base learners.This layered approach improves prediction robustness and generalization by balancing bias and variance across diverse classifiers.The model was evaluated using standard classification metrics:precision,recall,F1-score,and overall accuracy.The best overall performance was recorded with an accuracy of 99.44%for UNSW-NB15,demonstrating the model’s effectiveness.After balancing,the model demonstrated a clear improvement in detecting the attacks.We tested the model on four datasets to show the effectiveness of the proposed approach and performed the ablation study to check the effect of each parameter.Also,the proposed model is computationaly efficient.To support transparency and trust in decision-making,explainable AI(XAI)techniques are incorporated that provides both global and local insight into feature contributions,and offers intuitive visualizations for individual predictions.This makes it suitable for practical deployment in cybersecurity environments that demand both precision and accountability. 展开更多
关键词 Intrusion detection XAI machine learning ensemble method CYBERSECURITY imbalance data
在线阅读 下载PDF
Machine learning facilitated gesture recognition using structural optimized wearable yarn-based strain sensor
18
作者 Xiaoyan Yue Qingtao Li +6 位作者 Ziqi Wang Lingmeihui Duan Wenke Yang Duo Pan Hu Liu Chuntai Liu Changyu Shen 《Nano Research》 2026年第1期1200-1212,共13页
The advancement of wearable sensing technologies demands multifunctional materials that integrate high sensitivity,environmental resilience,and intelligent signal processing.In this work,a flexible hydrophobic conduct... The advancement of wearable sensing technologies demands multifunctional materials that integrate high sensitivity,environmental resilience,and intelligent signal processing.In this work,a flexible hydrophobic conductive yarn(FCB@SY)featuring a controllable microcrack structure is developed via a synergistic approach combining ultrasonic swelling and non-solvent induced phase separation(NIPS).By embedding a robust conductive network and engineering microcrack morphology,the resulting sensor achieves an ultrahigh gauge factor(GF≈12,670),an ultrabroad working range(0%-547%),a low detection limit(0.5%),rapid response/recovery time(140 ms/140 ms),and outstanding durability over 10,000 cycles.Furthermore,the hydrophobic surface endowed by conductive coatings imparts exceptional chemical stability against acidic and alkaline environments,as well as reliable waterproof performance.This enables consistent functionality under harsh conditions,including underwater operation.Integrated with machine learning algorithms,the FCB@SY-based intelligent sensing system demonstrates dualmode capabilities in human motion tracking and gesture recognition,offering significant potential for applications in wearable electronics,human-machine interfaces,and soft robotics. 展开更多
关键词 wearable electronic device machine learning gesture recognition strain sensors HYDROPHOBIC
原文传递
Artificial intelligence and machine learning-driven advancements in gastrointestinal cancer:Paving the way for precision medicine
19
作者 Chahat Suri Yashwant K Ratre +2 位作者 Babita Pande LVKS Bhaskar Henu K Verma 《World Journal of Gastroenterology》 2026年第1期14-36,共23页
Gastrointestinal(GI)cancers remain a leading cause of cancer-related morbidity and mortality worldwide.Artificial intelligence(AI),particularly machine learning and deep learning(DL),has shown promise in enhancing can... Gastrointestinal(GI)cancers remain a leading cause of cancer-related morbidity and mortality worldwide.Artificial intelligence(AI),particularly machine learning and deep learning(DL),has shown promise in enhancing cancer detection,diagnosis,and prognostication.A narrative review of literature published from January 2015 to march 2025 was conducted using PubMed,Web of Science,and Scopus.Search terms included"gastrointestinal cancer","artificial intelligence","machine learning","deep learning","radiomics","multimodal detection"and"predictive modeling".Studies were included if they focused on clinically relevant AI applications in GI oncology.AI algorithms for GI cancer detection have achieved high performance across imaging modalities,with endoscopic DL systems reporting accuracies of 85%-97%for polyp detection and segmentation.Radiomics-based models have predicted molecular biomarkers such as programmed cell death ligand 2 expression with area under the curves up to 0.92.Large language models applied to radiology reports demonstrated diagnostic accuracy comparable to junior radiologists(78.9%vs 80.0%),though without incremental value when combined with human interpretation.Multimodal AI approaches integrating imaging,pathology,and clinical data show emerging potential for precision oncology.AI in GI oncology has reached clinically relevant accuracy levels in multiple diagnostic tasks,with multimodal approaches and predictive biomarker modeling offering new opportunities for personalized care.However,broader validation,integration into clinical workflows,and attention to ethical,legal,and social implications remain critical for widespread adoption. 展开更多
关键词 Artificial intelligence Gastrointestinal cancer Precision medicine Multimodal detection Machine learning
在线阅读 下载PDF
Evaluation of Reinforcement Learning-Based Adaptive Modulation in Shallow Sea Acoustic Communication
20
作者 Yifan Qiu Xiaoyu Yang +1 位作者 Feng Tong Dongsheng Chen 《哈尔滨工程大学学报(英文版)》 2026年第1期292-299,共8页
While reinforcement learning-based underwater acoustic adaptive modulation shows promise for enabling environment-adaptive communication as supported by extensive simulation-based research,its practical performance re... While reinforcement learning-based underwater acoustic adaptive modulation shows promise for enabling environment-adaptive communication as supported by extensive simulation-based research,its practical performance remains underexplored in field investigations.To evaluate the practical applicability of this emerging technique in adverse shallow sea channels,a field experiment was conducted using three communication modes:orthogonal frequency division multiplexing(OFDM),M-ary frequency-shift keying(MFSK),and direct sequence spread spectrum(DSSS)for reinforcement learning-driven adaptive modulation.Specifically,a Q-learning method is used to select the optimal modulation mode according to the channel quality quantified by signal-to-noise ratio,multipath spread length,and Doppler frequency offset.Experimental results demonstrate that the reinforcement learning-based adaptive modulation scheme outperformed fixed threshold detection in terms of total throughput and average bit error rate,surpassing conventional adaptive modulation strategies. 展开更多
关键词 Adaptive modulation Shallow sea underwater acoustic modulation Reinforcement learning
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部