期刊文献+
共找到248,381篇文章
< 1 2 250 >
每页显示 20 50 100
Six Elements That Help Create a Friendly Environment and Motivate Learning
1
作者 Roberto Cuccu 《Sino-US English Teaching》 2025年第1期1-6,共6页
The following sections of this article are the background of the experiences described in the book Creative Journals in a Bottle.Out-of-the-Box Activities That Help Teenagers Become Sensitive and Self-Confident Adults... The following sections of this article are the background of the experiences described in the book Creative Journals in a Bottle.Out-of-the-Box Activities That Help Teenagers Become Sensitive and Self-Confident Adults(Cuccu,2024).Being a teacher in a classroom of young people involves more than just being able to tell them about a topic they have to study,they are also educators and play an important role in their development in a critical period of their lives.The following sections deal with things to do and not to do in order to create an ideal environment characterized by empathy,motivation,and learning together. 展开更多
关键词 Neuro-Linguistic Programming different views of a situation Cooperative learning dealing with students learning styles students’interests role of empathy
在线阅读 下载PDF
Needle detection and localisation for robot-assisted subretinal injection using deep learning
2
作者 Mingchuan Zhou Xiangyu Guo +7 位作者 Matthias Grimm Elias Lochner Zhongliang Jiang Abouzar Eslami Juan Ye Nassir Navab Alois Knoll Mohammad Ali Nasseri 《CAAI Transactions on Intelligence Technology》 2025年第3期703-715,共13页
Subretinal injection is a complicated task for retinal surgeons to operate manually.In this paper we demonstrate a robust framework for needle detection and localisation in robotassisted subretinal injection using mic... Subretinal injection is a complicated task for retinal surgeons to operate manually.In this paper we demonstrate a robust framework for needle detection and localisation in robotassisted subretinal injection using microscope-integrated Optical Coherence Tomography with deep learning.Five convolutional neural networks with different architectures were evaluated.The main differences between the architectures are the amount of information they receive at the input layer.When evaluated on ex-vivo pig eyes,the top performing network successfully detected all needles in the dataset and localised them with an Intersection over Union value of 0.55.The algorithm was evaluated by comparing the depth of the top and bottom edge of the predicted bounding box to the ground truth.This analysis showed that the top edge can be used to predict the depth of the needle with a maximum error of 8.5μm. 展开更多
关键词 deep learning optical coherence tomography robot-assisted surgery subretinal injection
在线阅读 下载PDF
Advanced machine learning techniques for predicting mechanical properties of eco-friendly self-compacting concrete
3
作者 Arslan Qayyum Khan Syed Ghulam Muhammad +1 位作者 Ali Raza Amorn Pimanmas 《Journal of Road Engineering》 2025年第2期213-229,共17页
This study evaluates the performance of advanced machine learning(ML)models in predicting the mechanical properties of eco-friendly self-compacting concrete(SCC),with a focus on compressive strength,V-funnel time,Lbox... This study evaluates the performance of advanced machine learning(ML)models in predicting the mechanical properties of eco-friendly self-compacting concrete(SCC),with a focus on compressive strength,V-funnel time,Lbox ratio,and slump flow.The motivation for this study stems from the increasing need to optimize concrete mix designs while minimizing environmental impact and reducing the reliance on costly physical testing.Six ML models-backpropagation neural network(BPNN),random forest regression(RFR),K-nearest neighbors(KNN),stacking,bagging,and eXtreme gradient boosting(XGBoost)-were trained and validated using a comprehensive dataset of 239 mix design parameters.The models'predictive accuracies were assessed using the coefficient of determination,mean squared error,root mean squared error,and mean absolute error.XGBoost consistently outperformed other models,achieving the coefficient of determination values of 0.999,0.933,and 0.935 for compressive strength in the training,validation,and testing datasets,respectively.Sensitivity analysis revealed that cement,silica fume,coarse aggregate,and superplasticizer positively influenced compressive strength,while water content had a negative impact.These findings highlight the potential of ML models,particularly XGBoost and RFR,in optimizing SCC mix designs,reducing reliance on physical testing,and enhancing sustainability in construction.The application of these models can lead to more efficient and eco-friendly concrete mix designs,benefiting real-world construction projects by improving quality control and reducing costs. 展开更多
关键词 Self-compacting concrete Eco-friendly concrete Machine learning model Compressive strength WORKABILITY
在线阅读 下载PDF
Investigation and Strategy Research on the Causes of Middle School Students’Learning Difficulties in the Context of the Leading Country in Education
4
作者 Jun-Jie Yan Xiao-Nan Luo +2 位作者 Qun-Fang Zeng Hui-Lin Zhang Jian-Nan Wu 《教育技术与创新》 2025年第2期1-10,共10页
The purpose of this research is to analyze the causal mechanisms of learning difficulties of middle school students and use them to propose strategies to help them.This research is particularly valuable for its focus ... The purpose of this research is to analyze the causal mechanisms of learning difficulties of middle school students and use them to propose strategies to help them.This research is particularly valuable for its focus on middle school students.Research on this critical transition period is often lacking compared to primary and high school.Therefore,this research establishes a structured equation model and analyzes the data from the survey using the partial least squares method.The data were obtained from a 13,900 Wenzhou City,China students’questionnaire.The research found that learning strategies were the most significant influences on learning effectiveness,followed by learning motivation and learning relationships.Meanwhile,learning relationships had a significant impact on learning pressure.Therefore,this research proposes targeted support strategies.It aims to enhance learning motivation(Set achievable learning goals for each student with learning difficulties based on their actual situation),optimize learning strategies(Encourage students with learning difficulties to learn self-regulatory strategies such as goal setting,time management,and self-reflection),and improve learning relationships(Establish a good social network to promote positive interaction between students with learning difficulties and their peers).At the same time,it reduces students’learning pressure.Ultimately,the learning effectiveness of students with learning difficulties is improved. 展开更多
关键词 support strategies leading country in education students with learning difficulties middle school students
在线阅读 下载PDF
Handling class imbalance of radio frequency interference in deep learning-based fast radio burst search pipelines using a deep convolutional generative adversarial network
5
作者 Wenlong Du Yanling Liu Maozheng Chen 《Astronomical Techniques and Instruments》 2025年第1期10-15,共6页
This paper addresses the performance degradation issue in a fast radio burst search pipeline based on deep learning.This issue is caused by the class imbalance of the radio frequency interference samples in the traini... This paper addresses the performance degradation issue in a fast radio burst search pipeline based on deep learning.This issue is caused by the class imbalance of the radio frequency interference samples in the training dataset,and one solution is applied to improve the distribution of the training data by augmenting minority class samples using a deep convolutional generative adversarial network.Experi.mental results demonstrate that retraining the deep learning model with the newly generated dataset leads to a new fast radio burst classifier,which effectively reduces false positives caused by periodic wide-band impulsive radio frequency interference,thereby enhancing the performance of the search pipeline. 展开更多
关键词 Fast radio burst Deep convolutional generative adversarial network Class imbalance Radio frequency interference Deep learning
在线阅读 下载PDF
Novel genes involved in vascular dysfunction of the middle temporal gyrus in Alzheimer's disease:transcriptomics combined with machine learning analysis
6
作者 Meiling Wang Aojie He +5 位作者 Yubing Kang Zhaojun Wang Yahui He Kahleong Lim Chengwu Zhang Li Lu 《Neural Regeneration Research》 2025年第12期3620-3634,共15页
Studies have shown that vascular dysfunction is closely related to the pathogenesis of Alzheimer's disease.The middle temporal gyrus region of the brain is susceptible to pronounced impairment in Alzheimer's d... Studies have shown that vascular dysfunction is closely related to the pathogenesis of Alzheimer's disease.The middle temporal gyrus region of the brain is susceptible to pronounced impairment in Alzheimer's disease.Identification of the molecules involved in vascular aberrance of the middle temporal gyrus would support elucidation of the mechanisms underlying Alzheimer's disease and discove ry of novel targets for intervention.We carried out single-cell transcriptomic analysis of the middle temporal gyrus in the brains of patients with Alzheimer's disease and healthy controls,revealing obvious changes in vascular function.CellChat analysis of intercellular communication in the middle temporal gyrus showed that the number of cell interactions in this region was decreased in Alzheimer's disease patients,with altered intercellular communication of endothelial cells and pericytes being the most prominent.Differentially expressed genes were also identified.Using the CellChat results,AUCell evaluation of the pathway activity of specific cells showed that the obvious changes in vascular function in the middle temporal gyrus in Alzheimer's disease were directly related to changes in the vascular endothelial growth factor(VEGF)A-VEGF receptor(VEGFR)2 pathway.AUCell analysis identified subtypes of endothelial cells and pericytes directly related to VEGFA-VEGFR2 pathway activity.Two subtypes of middle temporal gyrus cells showed significant alteration in AD:endothelial cells with high expression of Erb-B2 receptor tyrosine kinase 4(ERBB4^(high))and pericytes with high expression of angiopoietin-like 4(ANGPTL4^(high)).Finally,combining bulk RNA sequencing data and two machine learning algorithms(least absolute shrinkage and selection operator and random forest),four characteristic Alzheimer's disease feature genes were identified:somatostatin(SST),protein tyrosine phosphatase non-receptor type 3(PTPN3),glutinase(GL3),and tropomyosin 3(PTM3).These genes were downregulated in the middle temporal gyrus of patients with Alzheimer's disease and may be used to target the VEGF pathway.Alzheimer's disease mouse models demonstrated consistent altered expression of these genes in the middle temporal gyrus.In conclusion,this study detected changes in intercellular communication between endothelial cells and pericytes in the middle temporal gyrus and identified four novel feature genes related to middle temporal gyrus and vascular functioning in patients with Alzheimer's disease.These findings contribute to a deeper understanding of the molecular mechanisms underlying Alzheimer's disease and present novel treatment targets. 展开更多
关键词 Alzheimer’s disease bioinformatics CellChat cerebrovascular disorders endothelial cells intercellular communication machine learning middle temporal gyrus PERICYTES vascular endothelial growth factor pathway
暂未订购
DL/T 820.2与NB/T 47013.3管道超声检测标准的工程应用比较
7
作者 张建国 张涛 +1 位作者 王焱祥 孙宝玉 《无损检测》 2025年第5期83-86,共4页
针对超声斜探头检测标准DL/T 820.2—2019与NB/T 47013.3—2023中使用不同试块而导致的检测基准灵敏度差异与评定差异进行了理论与试验验证。通过理论计算与试验得出二者标准中采用φ3 mm×40 mm (长度,下同)的长横孔回波声压与φ2 ... 针对超声斜探头检测标准DL/T 820.2—2019与NB/T 47013.3—2023中使用不同试块而导致的检测基准灵敏度差异与评定差异进行了理论与试验验证。通过理论计算与试验得出二者标准中采用φ3 mm×40 mm (长度,下同)的长横孔回波声压与φ2 mm×60 mm的长横孔回波声压的差异,继而进行了距离-波幅曲线的绘制与分析。最后,总结了二者标准的评定差异。 展开更多
关键词 dl/T 820.2—2019 NB/T 47013.3—2023 基准灵敏度 评定差异
在线阅读 下载PDF
玻尔兹曼优化Q-learning的高速铁路越区切换控制算法 被引量:3
8
作者 陈永 康婕 《控制理论与应用》 北大核心 2025年第4期688-694,共7页
针对5G-R高速铁路越区切换使用固定切换阈值,且忽略了同频干扰、乒乓切换等的影响,导致越区切换成功率低的问题,提出了一种玻尔兹曼优化Q-learning的越区切换控制算法.首先,设计了以列车位置–动作为索引的Q表,并综合考虑乒乓切换、误... 针对5G-R高速铁路越区切换使用固定切换阈值,且忽略了同频干扰、乒乓切换等的影响,导致越区切换成功率低的问题,提出了一种玻尔兹曼优化Q-learning的越区切换控制算法.首先,设计了以列车位置–动作为索引的Q表,并综合考虑乒乓切换、误码率等构建Q-learning算法回报函数;然后,提出玻尔兹曼搜索策略优化动作选择,以提高切换算法收敛性能;最后,综合考虑基站同频干扰的影响进行Q表更新,得到切换判决参数,从而控制切换执行.仿真结果表明:改进算法在不同运行速度和不同运行场景下,较传统算法能有效提高切换成功率,且满足无线通信服务质量QoS的要求. 展开更多
关键词 越区切换 5G-R Q-learning算法 玻尔兹曼优化策略
在线阅读 下载PDF
深度学习图像重建算法(DLIR)对能谱CT多参数图像质量改善的体模研究 被引量:1
9
作者 赵艳红 马保龙 +4 位作者 张晓文 沈云 石骁萌 苏治祥 陈大治 《中国CT和MRI杂志》 2025年第1期186-188,共3页
目的 探讨深度学习重建算法对能谱CT多参数成像单能量图像、有效原子序数图、碘水图、水碘图图像质量的改善。方法 选择一个20cm直径的圆柱形聚丙烯体摸,在内部放入九支试管,试管中分别装入(3.75、7.5、15、30mg/mL)不同浓度及(18m m、1... 目的 探讨深度学习重建算法对能谱CT多参数成像单能量图像、有效原子序数图、碘水图、水碘图图像质量的改善。方法 选择一个20cm直径的圆柱形聚丙烯体摸,在内部放入九支试管,试管中分别装入(3.75、7.5、15、30mg/mL)不同浓度及(18m m、10m m、2 m m)不同管径的碘对比剂及水和钙溶液,利用GE APEX CT进行能谱扫描,将扫描完成图像分别利用FBP、40%ASIR-V及深度学习(低DLIR-L、中DLIR-M、高DLIR-H)重建出五组图像。采用后处理软件分别重建出70keV单能量图像、基物质图(碘-水图、水-碘图)及有效原子序数图。对浓度为3.75 mg/m L、15 mg/mL及Water三支试管进行数据分析。在FBP、40%ASIR-V、DLIR-L、DLIR-M、DLIR-H五组图像测量70keV的CT值、碘-水图的碘浓度、水-碘图的水浓度、有效原子序数及图像噪声,计算各图像的信噪比(SNR),对比5组图像质量的差异。结果5种重建算法下的图像在低浓度造影剂(3.75mg/mL)、高浓度造影剂(15mg/m L)及水试管内70keV的CT值差异均无统计学意义(P值均>0.05),有效原子序数、碘水图的碘浓度及水碘图的水浓度亦无明显统计学差异(P值均>0.05)。70keV、有效原子序数图、碘水图、水碘图的噪声及图像信噪比5组图像差异均有统计学意义(P值均<0.05),DLIR下的噪声值均较FBP及40%ASIR-V降低,图像信噪比提高(P值均<0.05),DLIR-H噪声最小,信噪比最高。结论 在能谱CT成像中, DLIR较FBP及40%ASIR-V在单能量图像、有效原子序数图、碘水图、水碘图的噪声降低,信噪比提高。 展开更多
关键词 体模 能谱 体层摄影术 X线计算机 深度学习 图像质量
暂未订购
KDL课程对小学生体育学习兴趣与体质健康水平影响的实验研究 被引量:1
10
作者 郭强 姚舒颖 +1 位作者 汪晓赞 吴依依 《体育学刊》 北大核心 2025年第2期132-138,共7页
基于新课标理念下探究KDL课程教学与传统体育与健康课程教学对小学生体育学习兴趣与体质水平的影响,为提高课堂教学质量提供参考依据。以宁波市某小学五、六年级的143名学生(2个对照组、3个实验组)为实验对象,其中实验组学生采用KDL课... 基于新课标理念下探究KDL课程教学与传统体育与健康课程教学对小学生体育学习兴趣与体质水平的影响,为提高课堂教学质量提供参考依据。以宁波市某小学五、六年级的143名学生(2个对照组、3个实验组)为实验对象,其中实验组学生采用KDL课程教学,对照组采用传统体育与健康课程教学。运用独立样本T检验和配对样本T检验分析课程实施前后对小学生体育学习兴趣与体质水平的影响,运用相关分析和多元回归分析其相关关系。结果表明:(1)KDL课程能够有效提高水平三学生的运动参与程度、自主学习程度,对于体育学习积极性兴趣的影响尤为明显;(2)与传统体育与健康课程相比,KDL课程能够有效提高水平三学生50 m跑和1 min仰卧起坐的成绩,但对于肺活量和体重没有显著性影响作用;两类课程教学均对1 min跳绳成绩有显著影响作用;(3)体育学习兴趣与体质健康水平在不同年级和性别维度上有显著相关性,运动参与态度和自主学习态度对于50m跑和仰卧起坐有积极的预测作用。 展开更多
关键词 学校体育 Kdl课程 体育学习兴趣 体质健康
在线阅读 下载PDF
基于多尺度特征融合SSDLite的光伏组件缺陷检测 被引量:1
11
作者 项新建 汤卉 +3 位作者 肖家乐 王世乾 张颖超 王磊 《太阳能学报》 北大核心 2025年第1期669-675,共7页
为了应对光伏组件缺陷检测中人工检测速度缓慢以及使用YOLO等深度学习模型时速度较慢且硬件成本高的问题,提出一种基于SSDLite的多层特征融合轻量化目标检测方法。该方法采用MobileNetV2作为SSDLite模型的骨干网络,并从中提取3个不同层... 为了应对光伏组件缺陷检测中人工检测速度缓慢以及使用YOLO等深度学习模型时速度较慢且硬件成本高的问题,提出一种基于SSDLite的多层特征融合轻量化目标检测方法。该方法采用MobileNetV2作为SSDLite模型的骨干网络,并从中提取3个不同层次的特征层进行特征融合。针对不同缺陷的尺寸特点,对模型中的先验框的大小也进行了重新设计。在MobileNetV2的瓶颈结构中引入CBAM注意力机制,以提高模型的检测精度。相比传统的SSDLite模型,该文模型平均精度从65.8%提高至72.4%,虽然速度略微下降,但已基本满足实际应用的需求。 展开更多
关键词 光伏组件 目标检测 深度学习 SSdlite 多层特征融合 MobileNetV2
原文传递
CBL-TDL的医学实验室生物安全培训带教流程探讨
12
作者 储雯雯 刘周 +1 位作者 刘莉娟 叶乃芳 《中国卫生产业》 2025年第10期225-227,232,共4页
目的传统教学模式下,医学研究生缺少主动探索和实践的机会,缺乏独立思考能力,填鸭式的实验室生物安全培训不再受学生欢迎。本文提出一种结合案例教学法(case-based learning,CBL)和任务驱动教学法(task-driven learning,TDL)的医学研究... 目的传统教学模式下,医学研究生缺少主动探索和实践的机会,缺乏独立思考能力,填鸭式的实验室生物安全培训不再受学生欢迎。本文提出一种结合案例教学法(case-based learning,CBL)和任务驱动教学法(task-driven learning,TDL)的医学研究生实验室生物安全培训带教流程,以期提高研究生实验室生物安全的意识和技能水平,降低实验室生物安全事故的发生率,保障实验室人员和环境的安全。 展开更多
关键词 案例教学法 任务驱动教学法 实验室生物安全 医学研究生
暂未订购
RESCAL-DLP:融合动态学习二元组的图谱嵌入模型
13
作者 冯勇 闫寒 +2 位作者 徐红艳 徐涵琪 贾永鑫 《中文信息学报》 北大核心 2025年第7期17-26,共10页
知识图谱现有数据集大多因不够完整导致嵌入表示不准确,目前主要是通过添加信息来保证嵌入准确性,但存在过多依赖添加三元组以外的附加信息、忽略挖掘三元组自身的有效信息等问题。二元组是由三元组中的关系与头实体或尾实体组成的实体... 知识图谱现有数据集大多因不够完整导致嵌入表示不准确,目前主要是通过添加信息来保证嵌入准确性,但存在过多依赖添加三元组以外的附加信息、忽略挖掘三元组自身的有效信息等问题。二元组是由三元组中的关系与头实体或尾实体组成的实体关系对,当前研究较少考虑利用二元组潜在的语义信息来提升嵌入的效果。为此,该文提出了一种融合动态学习二元组的图谱嵌入模型(RESCAL-DLP)。首先,使用正负实例构建策略进行数据扩充,使数据集包含更丰富的二元组的特征信息;其次,通过对比学习二元组的语义相似度来加强模型的学习能力,提升嵌入效果;最后,动态调整二元组学习权重进行模型训练。在两个公开标准数据集WN18RR、FB15K-237上进行链接预测实验以评估所提模型的效果。实验结果表明,所提模型相较于当前主流模型在各项指标上均有一定的提升,并在最小化计算资源和模型训练时间的前提下,取得了令人满意的结果。 展开更多
关键词 知识图谱 嵌入表示 数据扩充 二元组 对比学习
在线阅读 下载PDF
Tool Wear State Recognition with Deep Transfer Learning Based on Spindle Vibration for Milling Process 被引量:1
14
作者 Qixin Lan Binqiang Chen +1 位作者 Bin Yao Wangpeng He 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2825-2844,共20页
The wear of metal cutting tools will progressively rise as the cutting time goes on. Wearing heavily on the toolwill generate significant noise and vibration, negatively impacting the accuracy of the forming and the s... The wear of metal cutting tools will progressively rise as the cutting time goes on. Wearing heavily on the toolwill generate significant noise and vibration, negatively impacting the accuracy of the forming and the surfaceintegrity of the workpiece. Hence, during the cutting process, it is imperative to continually monitor the tool wearstate andpromptly replace anyheavilyworn tools toguarantee thequality of the cutting.The conventional tool wearmonitoring models, which are based on machine learning, are specifically built for the intended cutting conditions.However, these models require retraining when the cutting conditions undergo any changes. This method has noapplication value if the cutting conditions frequently change. This manuscript proposes a method for monitoringtool wear basedonunsuperviseddeep transfer learning. Due to the similarity of the tool wear process under varyingworking conditions, a tool wear recognitionmodel that can adapt to both current and previous working conditionshas been developed by utilizing cutting monitoring data from history. To extract and classify cutting vibrationsignals, the unsupervised deep transfer learning network comprises a one-dimensional (1D) convolutional neuralnetwork (CNN) with a multi-layer perceptron (MLP). To achieve distribution alignment of deep features throughthe maximum mean discrepancy algorithm, a domain adaptive layer is embedded in the penultimate layer of thenetwork. A platformformonitoring tool wear during endmilling has been constructed. The proposedmethod wasverified through the execution of a full life test of end milling under multiple working conditions with a Cr12MoVsteel workpiece. Our experiments demonstrate that the transfer learning model maintains a classification accuracyof over 80%. In comparisonwith the most advanced tool wearmonitoring methods, the presentedmodel guaranteessuperior performance in the target domains. 展开更多
关键词 Multi-working conditions tool wear state recognition unsupervised transfer learning domain adaptation maximum mean discrepancy(MMD)
在线阅读 下载PDF
Early identification of stroke through deep learning with multi-modal human speech and movement data 被引量:4
15
作者 Zijun Ou Haitao Wang +9 位作者 Bin Zhang Haobang Liang Bei Hu Longlong Ren Yanjuan Liu Yuhu Zhang Chengbo Dai Hejun Wu Weifeng Li Xin Li 《Neural Regeneration Research》 SCIE CAS 2025年第1期234-241,共8页
Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are... Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are commonly used for stroke screening,accurate administration is dependent on specialized training.In this study,we proposed a novel multimodal deep learning approach,based on the FAST,for assessing suspected stroke patients exhibiting symptoms such as limb weakness,facial paresis,and speech disorders in acute settings.We collected a dataset comprising videos and audio recordings of emergency room patients performing designated limb movements,facial expressions,and speech tests based on the FAST.We compared the constructed deep learning model,which was designed to process multi-modal datasets,with six prior models that achieved good action classification performance,including the I3D,SlowFast,X3D,TPN,TimeSformer,and MViT.We found that the findings of our deep learning model had a higher clinical value compared with the other approaches.Moreover,the multi-modal model outperformed its single-module variants,highlighting the benefit of utilizing multiple types of patient data,such as action videos and speech audio.These results indicate that a multi-modal deep learning model combined with the FAST could greatly improve the accuracy and sensitivity of early stroke identification of stroke,thus providing a practical and powerful tool for assessing stroke patients in an emergency clinical setting. 展开更多
关键词 artificial intelligence deep learning DIAGNOSIS early detection FAST SCREENING STROKE
在线阅读 下载PDF
基于百度飞桨EasyDL平台的芯片质检系统设计与开发
16
作者 孙翠改 盛雪丰 于大为 《现代信息科技》 2025年第12期184-192,198,共10页
针对当前工业生产中芯片检测效率低下、人工成本高昂及产品一致性差等问题,文章设计并开发了一套基于人工智能技术的自动化芯片质量检测系统。该系统以百度飞桨(PaddlePaddle)EasyDL平台为核心,通过工业相机采集芯片图像,运用深度学习... 针对当前工业生产中芯片检测效率低下、人工成本高昂及产品一致性差等问题,文章设计并开发了一套基于人工智能技术的自动化芯片质量检测系统。该系统以百度飞桨(PaddlePaddle)EasyDL平台为核心,通过工业相机采集芯片图像,运用深度学习算法实现芯片引脚缺失与表面划痕等缺陷的智能识别。实验结果表明,该系统可有效替代传统人工检测方式,显著提升检测精度与效率,降低生产成本,为增强产业核心竞争力、推动关键技术创新提供了有力支撑。本系统的成功应用不仅促进了产业自主创新能力的提升,也为实现制造业高质量发展提供了新的技术路径。 展开更多
关键词 百度飞桨 Easydl 芯片检测 质量检测 深度学习 智能制造
在线阅读 下载PDF
The Internet of Things under Federated Learning:A Review of the Latest Advances and Applications 被引量:1
17
作者 Jinlong Wang Zhenyu Liu +2 位作者 Xingtao Yang Min Li Zhihan Lyu 《Computers, Materials & Continua》 SCIE EI 2025年第1期1-39,共39页
With the rapid development of artificial intelligence,the Internet of Things(IoT)can deploy various machine learning algorithms for network and application management.In the IoT environment,many sensors and devices ge... With the rapid development of artificial intelligence,the Internet of Things(IoT)can deploy various machine learning algorithms for network and application management.In the IoT environment,many sensors and devices generatemassive data,but data security and privacy protection have become a serious challenge.Federated learning(FL)can achieve many intelligent IoT applications by training models on local devices and allowing AI training on distributed IoT devices without data sharing.This review aims to deeply explore the combination of FL and the IoT,and analyze the application of federated learning in the IoT from the aspects of security and privacy protection.In this paper,we first describe the potential advantages of FL and the challenges faced by current IoT systems in the fields of network burden and privacy security.Next,we focus on exploring and analyzing the advantages of the combination of FL on the Internet,including privacy security,attack detection,efficient communication of the IoT,and enhanced learning quality.We also list various application scenarios of FL on the IoT.Finally,we propose several open research challenges and possible solutions. 展开更多
关键词 Federated learning Internet of Things SENSORS machine learning privacy security
在线阅读 下载PDF
基于MDP和Q-learning的绿色移动边缘计算任务卸载策略
18
作者 赵宏伟 吕盛凱 +2 位作者 庞芷茜 马子涵 李雨 《河南理工大学学报(自然科学版)》 北大核心 2025年第5期9-16,共8页
目的为了在汽车、空调等制造类工业互联网企业中实现碳中和,利用边缘计算任务卸载技术处理生产设备的任务卸载问题,以减少服务器的中心负载,减少数据中心的能源消耗和碳排放。方法提出一种基于马尔可夫决策过程(Markov decision process... 目的为了在汽车、空调等制造类工业互联网企业中实现碳中和,利用边缘计算任务卸载技术处理生产设备的任务卸载问题,以减少服务器的中心负载,减少数据中心的能源消耗和碳排放。方法提出一种基于马尔可夫决策过程(Markov decision process,MDP)和Q-learning的绿色边缘计算任务卸载策略,该策略考虑了计算频率、传输功率、碳排放等约束,基于云边端协同计算模型,将碳排放优化问题转化为混合整数线性规划模型,通过MDP和Q-learning求解模型,并对比随机分配算法、Q-learning算法、SARSA(state action reward state action)算法的收敛性能、碳排放与总时延。结果与已有的计算卸载策略相比,新策略对应的任务调度算法收敛比SARSA算法、Q-learning算法分别提高了5%,2%,收敛性更好;系统碳排放成本比Q-learning算法、SARSA算法分别减少了8%,22%;考虑终端数量多少,新策略比Q-learning算法、SARSA算法终端数量分别减少了6%,7%;系统总计算时延上,新策略明显低于其他算法,比随机分配算法、Q-learning算法、SARSA算法分别减少了27%,14%,22%。结论该策略能够合理优化卸载计算任务和资源分配,权衡时延、能耗,减少系统碳排放量。 展开更多
关键词 碳排放 边缘计算 强化学习 马尔可夫决策过程 任务卸载
在线阅读 下载PDF
SensFL:Privacy-Preserving Vertical Federated Learning with Sensitive Regularization 被引量:1
19
作者 Chongzhen Zhang Zhichen Liu +4 位作者 Xiangrui Xu Fuqiang Hu Jiao Dai Baigen Cai Wei Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期385-404,共20页
In the realm of Intelligent Railway Transportation Systems,effective multi-party collaboration is crucial due to concerns over privacy and data silos.Vertical Federated Learning(VFL)has emerged as a promising approach... In the realm of Intelligent Railway Transportation Systems,effective multi-party collaboration is crucial due to concerns over privacy and data silos.Vertical Federated Learning(VFL)has emerged as a promising approach to facilitate such collaboration,allowing diverse entities to collectively enhance machine learning models without the need to share sensitive training data.However,existing works have highlighted VFL’s susceptibility to privacy inference attacks,where an honest but curious server could potentially reconstruct a client’s raw data from embeddings uploaded by the client.This vulnerability poses a significant threat to VFL-based intelligent railway transportation systems.In this paper,we introduce SensFL,a novel privacy-enhancing method to against privacy inference attacks in VFL.Specifically,SensFL integrates regularization of the sensitivity of embeddings to the original data into the model training process,effectively limiting the information contained in shared embeddings.By reducing the sensitivity of embeddings to the original data,SensFL can effectively resist reverse privacy attacks and prevent the reconstruction of the original data from the embeddings.Extensive experiments were conducted on four distinct datasets and three different models to demonstrate the efficacy of SensFL.Experiment results show that SensFL can effectively mitigate privacy inference attacks while maintaining the accuracy of the primary learning task.These results underscore SensFL’s potential to advance privacy protection technologies within VFL-based intelligent railway systems,addressing critical security concerns in collaborative learning environments. 展开更多
关键词 Vertical federated learning PRIVACY DEFENSES
在线阅读 下载PDF
ASLP-DL—A Novel Approach Employing Lightweight Deep Learning Framework for Optimizing Accident Severity Level Prediction
20
作者 Saba Awan Zahid Mehmood 《Computers, Materials & Continua》 SCIE EI 2024年第2期2535-2555,共21页
Highway safety researchers focus on crash injury severity,utilizing deep learning—specifically,deep neural networks(DNN),deep convolutional neural networks(D-CNN),and deep recurrent neural networks(D-RNN)—as the pre... Highway safety researchers focus on crash injury severity,utilizing deep learning—specifically,deep neural networks(DNN),deep convolutional neural networks(D-CNN),and deep recurrent neural networks(D-RNN)—as the preferred method for modeling accident severity.Deep learning’s strength lies in handling intricate relation-ships within extensive datasets,making it popular for accident severity level(ASL)prediction and classification.Despite prior success,there is a need for an efficient system recognizing ASL in diverse road conditions.To address this,we present an innovative Accident Severity Level Prediction Deep Learning(ASLP-DL)framework,incorporating DNN,D-CNN,and D-RNN models fine-tuned through iterative hyperparameter selection with Stochastic Gradient Descent.The framework optimizes hidden layers and integrates data augmentation,Gaussian noise,and dropout regularization for improved generalization.Sensitivity and factor contribution analyses identify influential predictors.Evaluated on three diverse crash record databases—NCDB 2018–2019,UK 2015–2020,and US 2016–2021—the D-RNN model excels with an ACC score of 89.0281%,a Roc Area of 0.751,an F-estimate of 0.941,and a Kappa score of 0.0629 over the NCDB dataset.The proposed framework consistently outperforms traditional methods,existing machine learning,and deep learning techniques. 展开更多
关键词 Injury SEVERITY PREDICTION deep learning feature
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部