期刊文献+
共找到254,316篇文章
< 1 2 250 >
每页显示 20 50 100
CBL联合Seminar教学法在本科生呼吸内科教学中的应用
1
作者 刘冬 赵璐娜 +1 位作者 陈琳 龚梦如 《卫生职业教育》 2026年第3期44-49,共6页
目的 探讨基于病例学习(case-based learning,CBL)联合Seminar教学法在本科生呼吸内科教学中的应用效果。方法选取石河子大学医学院2019—2020级45名医学影像学专业本科生,随机分为实验组(n=23)和对照组(n=22)。实验组采用CBL联合Semina... 目的 探讨基于病例学习(case-based learning,CBL)联合Seminar教学法在本科生呼吸内科教学中的应用效果。方法选取石河子大学医学院2019—2020级45名医学影像学专业本科生,随机分为实验组(n=23)和对照组(n=22)。实验组采用CBL联合Seminar教学法,对照组采用传统CBL教学法。教学结束后,通过问卷调查和课程考核成绩比较两组教学效果。结果 实验组的理论成绩和见习成绩均显著高于对照组(P<0.001)。实验组对教学模式的满意度显著高于对照组(P<0.001)。结论 CBL联合Seminar教学法在本科生呼吸内科教学中应用效果显著,能有效提高学生的临床思维能力、实践能力和学习满意度。 展开更多
关键词 cbl SEMINAR 呼吸内科 教学法
在线阅读 下载PDF
“互联网+”背景下PBL联合CBL在普外科临床实习中的教学实践与效果评价
2
作者 连仕博 樊勇 +2 位作者 侯琳琳 高田宇 魏秋亚 《卫生职业教育》 2026年第2期31-34,共4页
目的 探究“互联网+”背景下PBL联合CBL教学模式在普外科临床实习教学中的应用效果。方法 选取于2023年10月至2024年11月在兰州大学第二医院普外科实习的180名实习生作为研究对象,随机分为实验组和对照组。实验组采用“互联网+”背景下... 目的 探究“互联网+”背景下PBL联合CBL教学模式在普外科临床实习教学中的应用效果。方法 选取于2023年10月至2024年11月在兰州大学第二医院普外科实习的180名实习生作为研究对象,随机分为实验组和对照组。实验组采用“互联网+”背景下PBL联合CBL教学模式,对照组采用传统教学模式。教学干预两个月后,对两组实习生进行临床理论、临床技能、病例分析考核以及教学满意度问卷调查。结果 实验组实习生的临床理论、临床技能、病例分析考核成绩以及临床综合能力考核总成绩均显著高于对照组(P<0.001),教学满意度也高于对照组(P<0.05)。结论“互联网+”背景下PBL联合CBL教学模式能有效提升普外科实习生的临床实践能力、学习积极性和临床思维能力,教学效果显著,具有推广价值。 展开更多
关键词 “互联网+” PBL cbl 普外科 临床实习
在线阅读 下载PDF
CBL联合早查房DSA阅片在血管外科教学中的应用
3
作者 成津 张帆 +1 位作者 李立强 郭连瑞 《卫生职业教育》 2026年第2期42-45,共4页
目的 探讨案例教学法(CBL)联合早查房DSA阅片的教学模式在血管外科教学中的应用效果。方法 将2024年4—10月在首都医科大学宣武医院血管外科参与住院医师规范化培训的42名住院医师随机分为两组,对照组采用传统讲授式教学法,观察组采用CB... 目的 探讨案例教学法(CBL)联合早查房DSA阅片的教学模式在血管外科教学中的应用效果。方法 将2024年4—10月在首都医科大学宣武医院血管外科参与住院医师规范化培训的42名住院医师随机分为两组,对照组采用传统讲授式教学法,观察组采用CBL联合早查房DSA阅片的教学模式。教学结束后,比较两组的理论水平、临床能力及教学满意度。结果 观察组在解剖知识、影像阅片以及病例分析方面的考核成绩优于对照组(P<0.01)。此外,观察组的教学满意度问卷调查得分显著高于对照组(P<0.05)。结论 相比于传统教学方式,CBL联合早查房DSA阅片的教学模式能够显著激发住院医师的学习主动性,帮助其深入理解血管外科知识,培养临床思维能力,提升教学质量。 展开更多
关键词 案例教学法 早查房 DSA阅片 教学 血管外科
在线阅读 下载PDF
BOPPPS-PBL-CBL-RBL“四轨并驱”教学模式在伤寒论教学中应用的思考
4
作者 杨勤军 储全根 +4 位作者 方向明 童佳兵 刘锋 董妍妍 李泽庚 《陕西中医药大学学报》 2026年第1期182-187,共6页
伤寒论是中医“四大经典”之一,也是中医专业高等教育学生必修的临床基础课程。BOPPPS-PBLCBL-RBL“四轨并驱”教学模式在伤寒论教学中应用,旨在实现以教学为基础、以问题为导向,以临床案例为核心,以科研思维为补充,以协同教学为保障,... 伤寒论是中医“四大经典”之一,也是中医专业高等教育学生必修的临床基础课程。BOPPPS-PBLCBL-RBL“四轨并驱”教学模式在伤寒论教学中应用,旨在实现以教学为基础、以问题为导向,以临床案例为核心,以科研思维为补充,以协同教学为保障,突出理论知识、临床能力与科研思维的综合培养,以期活化学生辨治疾病的能力和科研思维,促进现代中医药人才培养,实现从知识型向新医科背景下应用能力型培养模式的转变。 展开更多
关键词 伤寒论 BOPPPS-PBL-cbl-RBL 四轨并驱 多元教学模式 理论探讨
在线阅读 下载PDF
CBL与TBL联合教学模式在临床医学八年制医学生影像学见习中的效果评价
5
作者 阮帅之 颜瑞仪 +8 位作者 刘琪星 许湘 贾鸣男 黄欣莹 王勤 张燕 王凤丹 王怡宁 冯逢 《基础医学与临床》 2026年第1期144-149,共6页
目的探讨案例导向教学法(CBL)和团队导向教学法(TBL)在临床医学八年制医学生影像学见习中的教学效果。方法研究对象为2024年7月至2025年2月在北京协和医学院临床见习阶段参加医学影像学巡诊课程的89名临床医学八年制医学生,针对各器官... 目的探讨案例导向教学法(CBL)和团队导向教学法(TBL)在临床医学八年制医学生影像学见习中的教学效果。方法研究对象为2024年7月至2025年2月在北京协和医学院临床见习阶段参加医学影像学巡诊课程的89名临床医学八年制医学生,针对各器官系统开展8次影像教学课程(共24学时)。学生被随机分为对照组(传统教学)和实验组(CBL与TBL结合教学),每次课后通过问卷统计学生的学习成果及自我满意度情况。结果问卷调查显示,实验组学生在临床思维和逻辑分析能力提升、学习反馈等多方面均显著优于对照组(P<0.05),而且参与课堂展示比单纯听讲更有助于提升知识的掌握程度,调动学习兴趣与主动性(P<0.05)。结论CBL与TBL相结合的教学方法能提升八年制医学生的临床分析能力和教学满意度,具备一定推广潜力。 展开更多
关键词 案例导向教学法 团队导向教学法 医学影像学 八年制医学教育 北京协和医学院(PUMC)
在线阅读 下载PDF
“TBL+CBL”模式在中医临床专业《中药学》实践教学中的应用研究
6
作者 张璐 黄欣 +2 位作者 施汀兰 曹纬国 刘莎 《教育教学研究前沿》 2026年第1期204-206,共3页
传统中医药遵循“医先识药,识药先懂医,无医不识药,医药不相离”原则,但随着社会分工细化,当下中医师及医学生对中药知识掌握不足。为加强医药结合、理论联系实际,我校为中医临床专业学生开设《中药学》实践课。授课中发现该教学环节存... 传统中医药遵循“医先识药,识药先懂医,无医不识药,医药不相离”原则,但随着社会分工细化,当下中医师及医学生对中药知识掌握不足。为加强医药结合、理论联系实际,我校为中医临床专业学生开设《中药学》实践课。授课中发现该教学环节存在课时少、学生主动性差、依赖老师讲授和被动记忆等问题。为此,课程组教师经讨论,将“TBL+CBL”双轨教学模式应用于《中药学》实践课教学,通过能力型课堂与学思结合的教学模式,激发学生主动创新热情,鼓励探索创新,促使学生能力进阶。 展开更多
关键词 “TBL+cbl 《中药学》 临床专业 实践教学
在线阅读 下载PDF
基于SPOC的递进式“CBL+TBL”翻转课堂在儿科教学中的应用
7
作者 毛舒婷 鲍俊涛 +1 位作者 孟庆磊 李白 《河南医学研究》 2026年第2期376-379,共4页
目的探讨基于小规模限制性在线课程(SPOC)的递进式“以案例为基础的教学(CBL)+以团队为基础的教学(TBL)”翻转课堂在儿科教学中的应用效果。方法选取2023年10月进入郑州大学第一附属医院儿科的40例本科实习生,随机分为观察组(20例,接受S... 目的探讨基于小规模限制性在线课程(SPOC)的递进式“以案例为基础的教学(CBL)+以团队为基础的教学(TBL)”翻转课堂在儿科教学中的应用效果。方法选取2023年10月进入郑州大学第一附属医院儿科的40例本科实习生,随机分为观察组(20例,接受SPOC的递进式“CBL+TBL”翻转课堂)和对照组(20例,接受传统教学法)。实习结束后以基础理论、病例分析和问卷调查的方式对教学效果进行评价,并采用SPSS 26.0软件分析本研究相关数据。结果观察组理论考试成绩、临床实践操作考试成绩、病历书写考试成绩均优于对照组(P<0.05);观察组学生自主学习性提高,独立思考问题、解决问题能力提高,团队合作意识增强,对教学模式的满意度优于对照组(P<0.05)。结论基于SPOC的递进式“CBL+TBL”翻转课堂能使儿科本科实习生的理论知识、分析问题及解决问题能力得到较大提升,有助于提高实习生的教学满意度及教学质量。 展开更多
关键词 小规模限制性在线课程 以案例为基础的教学 以团队为基础的教学法 儿科学 教学
暂未订购
Predicting lymph node metastasis in colorectal cancer using caselevel multiple instance learning
8
作者 Ling-Feng Zou Xuan-Bing Wang +4 位作者 Jing-Wen Li Xin Ouyang Yi-Ying Luo Yan Luo Cheng-Long Wang 《World Journal of Gastroenterology》 2026年第1期110-125,共16页
BACKGROUND The accurate prediction of lymph node metastasis(LNM)is crucial for managing locally advanced(T3/T4)colorectal cancer(CRC).However,both traditional histopathology and standard slide-level deep learning ofte... BACKGROUND The accurate prediction of lymph node metastasis(LNM)is crucial for managing locally advanced(T3/T4)colorectal cancer(CRC).However,both traditional histopathology and standard slide-level deep learning often fail to capture the sparse and diagnostically critical features of metastatic potential.AIM To develop and validate a case-level multiple-instance learning(MIL)framework mimicking a pathologist's comprehensive review and improve T3/T4 CRC LNM prediction.METHODS The whole-slide images of 130 patients with T3/T4 CRC were retrospectively collected.A case-level MIL framework utilising the CONCH v1.5 and UNI2-h deep learning models was trained on features from all haematoxylin and eosinstained primary tumour slides for each patient.These pathological features were subsequently integrated with clinical data,and model performance was evaluated using the area under the curve(AUC).RESULTS The case-level framework demonstrated superior LNM prediction over slide-level training,with the CONCH v1.5 model achieving a mean AUC(±SD)of 0.899±0.033 vs 0.814±0.083,respectively.Integrating pathology features with clinical data further enhanced performance,yielding a top model with a mean AUC of 0.904±0.047,in sharp contrast to a clinical-only model(mean AUC 0.584±0.084).Crucially,a pathologist’s review confirmed that the model-identified high-attention regions correspond to known high-risk histopathological features.CONCLUSION A case-level MIL framework provides a superior approach for predicting LNM in advanced CRC.This method shows promise for risk stratification and therapy decisions,requiring further validation. 展开更多
关键词 Colorectal cancer Lymph node metastasis Deep learning Multiple instance learning HISTOPATHOLOGY
暂未订购
Forecasting solar cycles using the time-series dense encoder deep learning model
9
作者 Cui Zhao Shangbin Yang +1 位作者 Jianguo Liu Shiyuan Liu 《Astronomical Techniques and Instruments》 2026年第1期43-54,共12页
The solar cycle(SC),a phenomenon caused by the quasi-periodic regular activities in the Sun,occurs approximately every 11 years.Intense solar activity can disrupt the Earth’s ionosphere,affecting communication and na... The solar cycle(SC),a phenomenon caused by the quasi-periodic regular activities in the Sun,occurs approximately every 11 years.Intense solar activity can disrupt the Earth’s ionosphere,affecting communication and navigation systems.Consequently,accurately predicting the intensity of the SC holds great significance,but predicting the SC involves a long-term time series,and many existing time series forecasting methods have fallen short in terms of accuracy and efficiency.The Time-series Dense Encoder model is a deep learning solution tailored for long time series prediction.Based on a multi-layer perceptron structure,it outperforms the best previously existing models in accuracy,while being efficiently trainable on general datasets.We propose a method based on this model for SC forecasting.Using a trained model,we predict the test set from SC 19 to SC 25 with an average mean absolute percentage error of 32.02,root mean square error of 30.3,mean absolute error of 23.32,and R^(2)(coefficient of determination)of 0.76,outperforming other deep learning models in terms of accuracy and training efficiency on sunspot number datasets.Subsequently,we use it to predict the peaks of SC 25 and SC 26.For SC 25,the peak time has ended,but a stronger peak is predicted for SC 26,of 199.3,within a range of 170.8-221.9,projected to occur during April 2034. 展开更多
关键词 Solar cycle Forecasting TIDE Deep learning
在线阅读 下载PDF
基于OBE的CBL-TBL双轨教学法在机械CAD/CAM类课程中的改革与应用
10
作者 周汇洋 《家电维修》 2026年第1期96-98,共3页
在智能制造与工业4.0浪潮下,机械领域对具备实践能力与协同创新素养的CAD/CAM人才需求迫切,而传统课程存在严重的理论与实践脱节问题,难以适配行业发展需求,课程改革刻不容缓。本文构建基于成果导向(OBE)的CBL-TBL双轨教学法,以企业真... 在智能制造与工业4.0浪潮下,机械领域对具备实践能力与协同创新素养的CAD/CAM人才需求迫切,而传统课程存在严重的理论与实践脱节问题,难以适配行业发展需求,课程改革刻不容缓。本文构建基于成果导向(OBE)的CBL-TBL双轨教学法,以企业真实零件设计与加工案例为载体,设计“案例拆解-小组分工协同-成果互评”教学流程,将行业规范融入各环节,并建立涵盖过程表现与工程应用能力的多元评价体系。实践表明,该模式有效打破软件操作导向的教学惯性,强化学生工程思维与团队协作能力,为机械类课程实现“知识-技能-素养”协同育人提供可行路径。 展开更多
关键词 OBE cbl TBL 双轨教学 机械CAD/CAM 教学改革
在线阅读 下载PDF
An Improved Reinforcement Learning-Based 6G UAV Communication for Smart Cities
11
作者 Vi Hoai Nam Chu Thi Minh Hue Dang Van Anh 《Computers, Materials & Continua》 2026年第1期2030-2044,共15页
Unmanned Aerial Vehicles(UAVs)have become integral components in smart city infrastructures,supporting applications such as emergency response,surveillance,and data collection.However,the high mobility and dynamic top... Unmanned Aerial Vehicles(UAVs)have become integral components in smart city infrastructures,supporting applications such as emergency response,surveillance,and data collection.However,the high mobility and dynamic topology of Flying Ad Hoc Networks(FANETs)present significant challenges for maintaining reliable,low-latency communication.Conventional geographic routing protocols often struggle in situations where link quality varies and mobility patterns are unpredictable.To overcome these limitations,this paper proposes an improved routing protocol based on reinforcement learning.This new approach integrates Q-learning with mechanisms that are both link-aware and mobility-aware.The proposed method optimizes the selection of relay nodes by using an adaptive reward function that takes into account energy consumption,delay,and link quality.Additionally,a Kalman filter is integrated to predict UAV mobility,improving the stability of communication links under dynamic network conditions.Simulation experiments were conducted using realistic scenarios,varying the number of UAVs to assess scalability.An analysis was conducted on key performance metrics,including the packet delivery ratio,end-to-end delay,and total energy consumption.The results demonstrate that the proposed approach significantly improves the packet delivery ratio by 12%–15%and reduces delay by up to 25.5%when compared to conventional GEO and QGEO protocols.However,this improvement comes at the cost of higher energy consumption due to additional computations and control overhead.Despite this trade-off,the proposed solution ensures reliable and efficient communication,making it well-suited for large-scale UAV networks operating in complex urban environments. 展开更多
关键词 UAV FANET smart cities reinforcement learning Q-learning
在线阅读 下载PDF
RankXLAN:An explainable ensemble-based machine learning framework for biomarker detection,therapeutic target identification,and classification using transcriptomic and epigenomic stomach cancer data
12
作者 Kasmika Borah Himanish Shekhar Das +1 位作者 Mudassir Khan Saurav Mallik 《Medical Data Mining》 2026年第1期13-31,共19页
Background:Stomach cancer(SC)is one of the most lethal malignancies worldwide due to late-stage diagnosis and limited treatment.The transcriptomic,epigenomic,and proteomic,etc.,omics datasets generated by high-through... Background:Stomach cancer(SC)is one of the most lethal malignancies worldwide due to late-stage diagnosis and limited treatment.The transcriptomic,epigenomic,and proteomic,etc.,omics datasets generated by high-throughput sequencing technology have become prominent in biomedical research,and they reveal molecular aspects of cancer diagnosis and therapy.Despite the development of advanced sequencing technology,the presence of high-dimensionality in multi-omics data makes it challenging to interpret the data.Methods:In this study,we introduce RankXLAN,an explainable ensemble-based multi-omics framework that integrates feature selection(FS),ensemble learning,bioinformatics,and in-silico validation for robust biomarker detection,potential therapeutic drug-repurposing candidates’identification,and classification of SC.To enhance the interpretability of the model,we incorporated explainable artificial intelligence(SHapley Additive exPlanations analysis),as well as accuracy,precision,F1-score,recall,cross-validation,specificity,likelihood ratio(LR)+,LR−,and Youden index results.Results:The experimental results showed that the top four FS algorithms achieved improved results when applied to the ensemble learning classification model.The proposed ensemble model produced an area under the curve(AUC)score of 0.994 for gene expression,0.97 for methylation,and 0.96 for miRNA expression data.Through the integration of bioinformatics and ML approach of the transcriptomic and epigenomic multi-omics dataset,we identified potential marker genes,namely,UBE2D2,HPCAL4,IGHA1,DPT,and FN3K.In-silico molecular docking revealed a strong binding affinity between ANKRD13C and the FDA-approved drug Everolimus(binding affinity−10.1 kcal/mol),identifying ANKRD13C as a potential therapeutic drug-repurposing target for SC.Conclusion:The proposed framework RankXLAN outperforms other existing frameworks for serum biomarker identification,therapeutic target identification,and SC classification with multi-omics datasets. 展开更多
关键词 stomach cancer BIOINFORMATICS ensemble learning classifier BIOMARKER targets
在线阅读 下载PDF
GFL-SAR: Graph Federated Collaborative Learning Framework Based on Structural Amplification and Attention Refinement
13
作者 Hefei Wang Ruichun Gu +2 位作者 Jingyu Wang Xiaolin Zhang Hui Wei 《Computers, Materials & Continua》 2026年第1期1683-1702,共20页
Graph Federated Learning(GFL)has shown great potential in privacy protection and distributed intelligence through distributed collaborative training of graph-structured data without sharing raw information.However,exi... Graph Federated Learning(GFL)has shown great potential in privacy protection and distributed intelligence through distributed collaborative training of graph-structured data without sharing raw information.However,existing GFL approaches often lack the capability for comprehensive feature extraction and adaptive optimization,particularly in non-independent and identically distributed(NON-IID)scenarios where balancing global structural understanding and local node-level detail remains a challenge.To this end,this paper proposes a novel framework called GFL-SAR(Graph Federated Collaborative Learning Framework Based on Structural Amplification and Attention Refinement),which enhances the representation learning capability of graph data through a dual-branch collaborative design.Specifically,we propose the Structural Insight Amplifier(SIA),which utilizes an improved Graph Convolutional Network(GCN)to strengthen structural awareness and improve modeling of topological patterns.In parallel,we propose the Attentive Relational Refiner(ARR),which employs an enhanced Graph Attention Network(GAT)to perform fine-grained modeling of node relationships and neighborhood features,thereby improving the expressiveness of local interactions and preserving critical contextual information.GFL-SAR effectively integrates multi-scale features from every branch via feature fusion and federated optimization,thereby addressing existing GFL limitations in structural modeling and feature representation.Experiments on standard benchmark datasets including Cora,Citeseer,Polblogs,and Cora_ML demonstrate that GFL-SAR achieves superior performance in classification accuracy,convergence speed,and robustness compared to existing methods,confirming its effectiveness and generalizability in GFL tasks. 展开更多
关键词 Graph federated learning GCN GNNs attention mechanism
在线阅读 下载PDF
Deep Learning-Assisted Organogel Pressure Sensor for Alphabet Recognition and Bio-Mechanical Motion Monitoring
14
作者 Kusum Sharma Kousik Bhunia +5 位作者 Subhajit Chatterjee Muthukumar Perumalsamy Anandhan Ayyappan Saj Theophilus Bhatti Yung‑Cheol Byun Sang-Jae Kim 《Nano-Micro Letters》 2026年第2期644-663,共20页
Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,... Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility,adhesion,self-healing,and environmental robustness with excellent sensing metrics.Herein,we report a multifunctional,anti-freezing,selfadhesive,and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes(CoN CNT)embedded in a polyvinyl alcohol-gelatin(PVA/GLE)matrix.Fabricated using a binary solvent system of water and ethylene glycol(EG),the CoN CNT/PVA/GLE organogel exhibits excellent flexibility,biocompatibility,and temperature tolerance with remarkable environmental stability.Electrochemical impedance spectroscopy confirms near-stable performance across a broad humidity range(40%-95%RH).Freeze-tolerant conductivity under sub-zero conditions(-20℃)is attributed to the synergistic role of CoN CNT and EG,preserving mobility and network integrity.The Co N CNT/PVA/GLE organogel sensor exhibits high sensitivity of 5.75 k Pa^(-1)in the detection range from 0 to 20 k Pa,ideal for subtle biomechanical motion detection.A smart human-machine interface for English letter recognition using deep learning achieved 98%accuracy.The organogel sensor utility was extended to detect human gestures like finger bending,wrist motion,and throat vibration during speech. 展开更多
关键词 Wearable ORGANOGEL Deep learning Pressure sensor Bio-mechanical motion
在线阅读 下载PDF
Nondestructive detection of key phenotypes for the canopy of the watermelon plug seedlings based on deep learning
15
作者 Lei Li Zhilong Bie +4 位作者 Yi Zhang Yuan Huang Chengli Peng Binbin Han Shengyong Xu 《Horticultural Plant Journal》 2026年第1期149-160,共12页
Nondestructive measurement technology of phenotype can provide substantial phenotypic data support for applications such as seedling breeding,management,and quality testing.The current method of measuring seedling phe... Nondestructive measurement technology of phenotype can provide substantial phenotypic data support for applications such as seedling breeding,management,and quality testing.The current method of measuring seedling phenotypes mainly relies on manual measurement which is inefficient,subjective and destroys samples.Therefore,the paper proposes a nondestructive measurement method for the canopy phenotype of the watermelon plug seedlings based on deep learning.The Azure Kinect was used to shoot canopy color images,depth images,and RGB-D images of the watermelon plug seedlings.The Mask-RCNN network was used to classify,segment,and count the canopy leaves of the watermelon plug seedlings.To reduce the error of leaf area measurement caused by mutual occlusion of leaves,the leaves were repaired by CycleGAN,and the depth images were restored by image processing.Then,the Delaunay triangulation was adopted to measure the leaf area in the leaf point cloud.The YOLOX target detection network was used to identify the growing point position of each seedling on the plug tray.Then the depth differences between the growing point and the upper surface of the plug tray were calculated to obtain plant height.The experiment results show that the nondestructive measurement algorithm proposed in this paper achieves good measurement performance for the watermelon plug seedlings from the 1 true-leaf to 3 true-leaf stages.The average relative error of measurement is 2.33%for the number of true leaves,4.59%for the number of cotyledons,8.37%for the leaf area,and 3.27%for the plant height.The experiment results demonstrate that the proposed algorithm in this paper provides an effective solution for the nondestructive measurement of the canopy phenotype of the plug seedlings. 展开更多
关键词 Watermelon seedlings Azure Kinect CANOPY Phenotype detection Deep learning
在线阅读 下载PDF
FedCW: Client Selection with Adaptive Weight in Heterogeneous Federated Learning
16
作者 Haotian Wu Jiaming Pei Jinhai Li 《Computers, Materials & Continua》 2026年第1期1551-1570,共20页
With the increasing complexity of vehicular networks and the proliferation of connected vehicles,Federated Learning(FL)has emerged as a critical framework for decentralized model training while preserving data privacy... With the increasing complexity of vehicular networks and the proliferation of connected vehicles,Federated Learning(FL)has emerged as a critical framework for decentralized model training while preserving data privacy.However,efficient client selection and adaptive weight allocation in heterogeneous and non-IID environments remain challenging.To address these issues,we propose Federated Learning with Client Selection and Adaptive Weighting(FedCW),a novel algorithm that leverages adaptive client selection and dynamic weight allocation for optimizing model convergence in real-time vehicular networks.FedCW selects clients based on their Euclidean distance from the global model and dynamically adjusts aggregation weights to optimize both data diversity and model convergence.Experimental results show that FedCW significantly outperforms existing FL algorithms such as FedAvg,FedProx,and SCAFFOLD,particularly in non-IID settings,achieving faster convergence,higher accuracy,and reduced communication overhead.These findings demonstrate that FedCW provides an effective solution for enhancing the performance of FL in heterogeneous,edge-based computing environments. 展开更多
关键词 Federated learning non-IID client selection weight allocation vehicular networks
在线阅读 下载PDF
Landslide susceptibility on the Qinghai-Tibet Plateau:Key driving factors identified through machine learning
17
作者 YANG Wanqing GE Quansheng +3 位作者 TAO Zexing XU Duanyang WANG Yuan HAO Zhixin 《Journal of Geographical Sciences》 2026年第1期199-218,共20页
Landslides pose a formidable natural hazard across the Qinghai-Tibet Plateau(QTP),endangering both ecosystems and human life.Identifying the driving factors behind landslides and accurately assessing susceptibility ar... Landslides pose a formidable natural hazard across the Qinghai-Tibet Plateau(QTP),endangering both ecosystems and human life.Identifying the driving factors behind landslides and accurately assessing susceptibility are key to mitigating disaster risk.This study integrated multi-source historical landslide data with 15 predictive factors and used several machine learning models—Random Forest(RF),Gradient Boosting Regression Trees(GBRT),Extreme Gradient Boosting(XGBoost),and Categorical Boosting(CatBoost)—to generate susceptibility maps.The Shapley additive explanation(SHAP)method was applied to quantify factor importance and explore their nonlinear effects.The results showed that:(1)CatBoost was the best-performing model(CA=0.938,AUC=0.980)in assessing landslide susceptibility,with altitude emerging as the most significant factor,followed by distance to roads and earthquake sites,precipitation,and slope;(2)the SHAP method revealed critical nonlinear thresholds,demonstrating that historical landslides were concentrated at mid-altitudes(1400-4000 m)and decreased markedly above 4000 m,with a parallel reduction in probability beyond 700 m from roads;and(3)landslide-prone areas,comprising 13%of the QTP,were concentrated in the southeastern and northeastern parts of the plateau.By integrating machine learning and SHAP analysis,this study revealed landslide hazard-prone areas and their driving factors,providing insights to support disaster management strategies and sustainable regional planning. 展开更多
关键词 landslide susceptibility machine learning SHAP driving factors nonlinear effects
原文传递
DPIL-Traj: Differential Privacy Trajectory Generation Framework with Imitation Learning
18
作者 Huaxiong Liao Xiangxuan Zhong +4 位作者 Xueqi Chen Yirui Huang Yuwei Lin Jing Zhang Bruce Gu 《Computers, Materials & Continua》 2026年第1期1530-1550,共21页
The generation of synthetic trajectories has become essential in various fields for analyzing complex movement patterns.However,the use of real-world trajectory data poses significant privacy risks,such as location re... The generation of synthetic trajectories has become essential in various fields for analyzing complex movement patterns.However,the use of real-world trajectory data poses significant privacy risks,such as location reidentification and correlation attacks.To address these challenges,privacy-preserving trajectory generation methods are critical for applications relying on sensitive location data.This paper introduces DPIL-Traj,an advanced framework designed to generate synthetic trajectories while achieving a superior balance between data utility and privacy preservation.Firstly,the framework incorporates Differential Privacy Clustering,which anonymizes trajectory data by applying differential privacy techniques that add noise,ensuring the protection of sensitive user information.Secondly,Imitation Learning is used to replicate decision-making behaviors observed in real-world trajectories.By learning from expert trajectories,this component generates synthetic data that closely mimics real-world decision-making processes while optimizing the quality of the generated trajectories.Finally,Markov-based Trajectory Generation is employed to capture and maintain the inherent temporal dynamics of movement patterns.Extensive experiments conducted on the GeoLife trajectory dataset show that DPIL-Traj improves utility performance by an average of 19.85%,and in terms of privacy performance by an average of 12.51%,compared to state-of-the-art approaches.Ablation studies further reveal that DP clustering effectively safeguards privacy,imitation learning enhances utility under noise,and the Markov module strengthens temporal coherence. 展开更多
关键词 PRIVACY-PRESERVING trajectory generation differential privacy imitation learning Markov chain
在线阅读 下载PDF
Advances in Machine Learning for Explainable Intrusion Detection Using Imbalance Datasets in Cybersecurity with Harris Hawks Optimization
19
作者 Amjad Rehman Tanzila Saba +2 位作者 Mona M.Jamjoom Shaha Al-Otaibi Muhammad I.Khan 《Computers, Materials & Continua》 2026年第1期1804-1818,共15页
Modern intrusion detection systems(MIDS)face persistent challenges in coping with the rapid evolution of cyber threats,high-volume network traffic,and imbalanced datasets.Traditional models often lack the robustness a... Modern intrusion detection systems(MIDS)face persistent challenges in coping with the rapid evolution of cyber threats,high-volume network traffic,and imbalanced datasets.Traditional models often lack the robustness and explainability required to detect novel and sophisticated attacks effectively.This study introduces an advanced,explainable machine learning framework for multi-class IDS using the KDD99 and IDS datasets,which reflects real-world network behavior through a blend of normal and diverse attack classes.The methodology begins with sophisticated data preprocessing,incorporating both RobustScaler and QuantileTransformer to address outliers and skewed feature distributions,ensuring standardized and model-ready inputs.Critical dimensionality reduction is achieved via the Harris Hawks Optimization(HHO)algorithm—a nature-inspired metaheuristic modeled on hawks’hunting strategies.HHO efficiently identifies the most informative features by optimizing a fitness function based on classification performance.Following feature selection,the SMOTE is applied to the training data to resolve class imbalance by synthetically augmenting underrepresented attack types.The stacked architecture is then employed,combining the strengths of XGBoost,SVM,and RF as base learners.This layered approach improves prediction robustness and generalization by balancing bias and variance across diverse classifiers.The model was evaluated using standard classification metrics:precision,recall,F1-score,and overall accuracy.The best overall performance was recorded with an accuracy of 99.44%for UNSW-NB15,demonstrating the model’s effectiveness.After balancing,the model demonstrated a clear improvement in detecting the attacks.We tested the model on four datasets to show the effectiveness of the proposed approach and performed the ablation study to check the effect of each parameter.Also,the proposed model is computationaly efficient.To support transparency and trust in decision-making,explainable AI(XAI)techniques are incorporated that provides both global and local insight into feature contributions,and offers intuitive visualizations for individual predictions.This makes it suitable for practical deployment in cybersecurity environments that demand both precision and accountability. 展开更多
关键词 Intrusion detection XAI machine learning ensemble method CYBERSECURITY imbalance data
在线阅读 下载PDF
Machine learning facilitated gesture recognition using structural optimized wearable yarn-based strain sensor
20
作者 Xiaoyan Yue Qingtao Li +6 位作者 Ziqi Wang Lingmeihui Duan Wenke Yang Duo Pan Hu Liu Chuntai Liu Changyu Shen 《Nano Research》 2026年第1期1200-1212,共13页
The advancement of wearable sensing technologies demands multifunctional materials that integrate high sensitivity,environmental resilience,and intelligent signal processing.In this work,a flexible hydrophobic conduct... The advancement of wearable sensing technologies demands multifunctional materials that integrate high sensitivity,environmental resilience,and intelligent signal processing.In this work,a flexible hydrophobic conductive yarn(FCB@SY)featuring a controllable microcrack structure is developed via a synergistic approach combining ultrasonic swelling and non-solvent induced phase separation(NIPS).By embedding a robust conductive network and engineering microcrack morphology,the resulting sensor achieves an ultrahigh gauge factor(GF≈12,670),an ultrabroad working range(0%-547%),a low detection limit(0.5%),rapid response/recovery time(140 ms/140 ms),and outstanding durability over 10,000 cycles.Furthermore,the hydrophobic surface endowed by conductive coatings imparts exceptional chemical stability against acidic and alkaline environments,as well as reliable waterproof performance.This enables consistent functionality under harsh conditions,including underwater operation.Integrated with machine learning algorithms,the FCB@SY-based intelligent sensing system demonstrates dualmode capabilities in human motion tracking and gesture recognition,offering significant potential for applications in wearable electronics,human-machine interfaces,and soft robotics. 展开更多
关键词 wearable electronic device machine learning gesture recognition strain sensors HYDROPHOBIC
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部