期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
边缘智能背景下的手写数字识别 被引量:11
1
作者 王建仁 马鑫 +1 位作者 段刚龙 薛宏全 《计算机应用》 CSCD 北大核心 2019年第12期3548-3555,共8页
随着边缘智能的快速发展,现有手写数字识别卷积网络模型的发展已越来越不适应边缘部署、算力下降的要求,且存在小样本泛化能力较差和网络训练成本较高等问题。借鉴卷积神经网络(CNN)经典结构、Leaky_ReLU算法、dropout算法和遗传算法及... 随着边缘智能的快速发展,现有手写数字识别卷积网络模型的发展已越来越不适应边缘部署、算力下降的要求,且存在小样本泛化能力较差和网络训练成本较高等问题。借鉴卷积神经网络(CNN)经典结构、Leaky_ReLU算法、dropout算法和遗传算法及自适应和混合池化思想构建了基于LeNet-DL改进网络的手写数字识别模型,分别在大样本数据集MNIST和小样本真实数据集REAL上与LeNet、LeNet+sigmoid、AlexNet等算法进行对比实验。改进网络的大样本识别精度可达99.34%,性能提升约0.83%;小样本识别精度可达78.89%,性能提升约8.34%。实验结果表明,LeNet-DL网络相较于传统CNN在大样本和小样本数据集上的训练成本更低、性能更优且模型泛化能力更强。 展开更多
关键词 边缘智能 卷积网络 手写数字识别 leaky_relu 混合池化 自适应 DROPOUT 遗传算法
在线阅读 下载PDF
一种基于Inception-V4的车位状态检测方法 被引量:1
2
作者 王栋 蔡斌斌 宰昶丰 《计算机时代》 2022年第3期5-10,共6页
针对城市停车难,车位检测环境复杂等情况,研究了一种基于Inception-V4算法的车位状态检测方法。在Inception-V4网络结构基础上使用Leaky_ReLU代替ReLU作为激活函数,解决ReLU激活函数引起的神经元失活问题;在网络分类层前添加FReLU激活... 针对城市停车难,车位检测环境复杂等情况,研究了一种基于Inception-V4算法的车位状态检测方法。在Inception-V4网络结构基础上使用Leaky_ReLU代替ReLU作为激活函数,解决ReLU激活函数引起的神经元失活问题;在网络分类层前添加FReLU激活函数层和多个全连接层,使其获得有更丰富语义信息的特征向量,防止了网络过拟合问题,提高车位状态检测模型的整体性能。基于PKLot停车场数据集的实验结果表明,该方法对车位状态检测准确率较原模型有较大程度的提升。 展开更多
关键词 车位检测 深度学习 Inception-V4 leaky_relu FReLU
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部