Self-trapping excitons(STEs) emission in metal halides has been a matter of interest, correlating with the strength of electron-phonon coupling in the lattice, which are usually caused by ions with ns~2 electronic str...Self-trapping excitons(STEs) emission in metal halides has been a matter of interest, correlating with the strength of electron-phonon coupling in the lattice, which are usually caused by ions with ns~2 electronic structure. In this work, Sb^(3+)/Te^(4+)ions doped Zn-based halide single crystals(SCs) with two STEs emissions have been synthesized and the possibility of its anti-counterfeiting application was explored.Further, the relationship between the strength of electron-phonon coupling and photoluminescence quantum yields(PLQYs) for STEs in a series of metal halides has been studied. And the semi-empirical range of the Huang-Rhys factors(S) for metal halides with excellent photoluminescence(PL) property has been summarized. This work provides ideas for further research into the relationship between luminescence performance and electron-phonon coupling of metal halides, and also provides a reference for designing the metal halides with high PLQYs.展开更多
Mercury removal from coal combustion flue gas remains a significant challenge for environmental protection due to the lack of cost-effective sorbents.In this study,a series of red mud(RM)-based sorbents impregnated wi...Mercury removal from coal combustion flue gas remains a significant challenge for environmental protection due to the lack of cost-effective sorbents.In this study,a series of red mud(RM)-based sorbents impregnated with sodium halides(NaBr and NaI)are presented to capture elemental mercury(Hg^(0))from flue gas.The modified RM underwent comprehensive characterization,including analysis of its textural qualities,crystal structure,chemical composition,and thermal properties.The results indicate that the halide impregnation substantially impacts the surface area and pore size of the RM.Hg^(0) removal performance was evaluated on a fixed-bed reactor in simulated flue gas(consisting of N_(2),O_(2),CO_(2),NO and SO_(2),etc.)on a modified RM.At an optimal adsorption temperature of 160℃,NaI-modified sorbent(RMI5)offers a removal efficiency of 98%in a mixture of gas,including O_(2),NO and HCl.Furthermore,pseudo-second-order model fitting results demonstrate the chemisorption mechanism for the adsorption of Hg^(0) in kinetic investigations.展开更多
Polyfluoroarenes represent an essential group of compounds in the fields of medical and material chemistry.It is still a challenge to synthesize alkylated polyfluoroarenes.Herein,a Ni-catalyzed reductive alkylation of...Polyfluoroarenes represent an essential group of compounds in the fields of medical and material chemistry.It is still a challenge to synthesize alkylated polyfluoroarenes.Herein,a Ni-catalyzed reductive alkylation of polyfluoroarenes with alkyl halides under mild conditions is reported.Polyfluoroarenes(3~6 F)can reacted smoothly with a diverse range of alkyl halides,such as primary,secondary,and tertiary alkyl iodides.The efficient formation of C(sp2)—C(sp3)can be achieved through the combination of Ni catalysis and(Bpin)2/K2CO3 as terminal reductant.展开更多
Low-dimensional hybrid metal halides exhibit broadband emission and high photoluminescence quantum yield(PLQY), making them promising candidates for the next-generation luminescent materials in lighting applications. ...Low-dimensional hybrid metal halides exhibit broadband emission and high photoluminescence quantum yield(PLQY), making them promising candidates for the next-generation luminescent materials in lighting applications. Here,the emission intensity of(C_(12)H_(24)O_(6))_(2)Na_(2)(H_(2)O)_(3)Cu_(4)I_(6) was strengthened between 9.3 GPa and 17.2 GPa, accompanied by the redshift of emission wavelength. The photoluminescence(PL) of Cu(Ⅰ)-based organometallic halides originates from multiple emission states, which are a metal-to-ligand charge transfer or a halide-to-ligand charge transfer(MLCT/HLCT)excited state and a cluster-centered(CC) excited state. MLCT/HLCT-related emission wavelength redshifts while CCrelated emission wavelength remains unchanged, indicating that the rearrangement of different emission states plays a critical role in the changes of luminescence wavelength. This study not only deepens the understanding of the influence of high pressure on(C_(12)H_(24)O_(6))_(2)Na_(2)(H_(2)O)_(3)Cu_(4)I_(6), but also provides valuable insights into the structure–property relationship of zero-dimensional Cu(Ⅰ)-based organometallic halides.展开更多
Existing organic halide synthesis routes typically employ elemental halogens(X_(2),X=Cl or Br),leading to low atom economy and significant environmental pollution.In this work,we developed an atom efficient electrosyn...Existing organic halide synthesis routes typically employ elemental halogens(X_(2),X=Cl or Br),leading to low atom economy and significant environmental pollution.In this work,we developed an atom efficient electrosynthesis and separation strategy for halogenation reagents—N-chlorosuccinimide(NCS)and N-bromosuccinimide(NBS)—at high current densities.Faradic efficiency(FE)of 91.0%and 81.3%was achieved for NCS and NBS generation on RuO_(x)/TiO_(2)/Ti in a batch cell,respectively.Electrosynthesis of NCS likely involves both heterogeneous catalytic and homogeneous tandem pathways,while NBS is likely formed in a Langmuir-Hinshelwood mechanism with a proton-coupled electron transfer as the rate-determining step.A coupled continuous electrocatalytic synthesis and in situ separation setup was developed for the efficient production of NCS and NBS,which yielded 0.77 g of NCS in 12000 s and 0.81 g of NBS in 15000 s,both with relative purity exceeding 95%.The halogenation of acetone using NCS and NBS enabled gram-scale production of the key intermediate in organic synthesis,1-halogenacetone,with over 95%recovery of succinimide.展开更多
The demand for neodymium(NdFeB) permanent magnets for electric vehicles and eco-friendly generators is increasing.However,NdFeB magnets contain rare earth elements(REEs),which are limited in supply.In this study,we pe...The demand for neodymium(NdFeB) permanent magnets for electric vehicles and eco-friendly generators is increasing.However,NdFeB magnets contain rare earth elements(REEs),which are limited in supply.In this study,we performed an exchange reaction between magnesium halides(fluoride and chloride) and waste NdFeB scrap and then compared the characteristics of the extracted halides salts.The compositions of the ternary Mg fluoride(LiF:NaF:MgF_(2)=50:40:10 in mole ratio) and chloride(LiCl:NaCl:MgCl_(2)=10:50:40 in mole ratio) salts were thermodynamically determined for achieving low eutectic temperatures.The reactions between the NdFeB scrap powder(1-2 mm) and Mg halide salts were carried out at 1073 and 873 K for the fluoride and chloride systems,respectively,in an argon atmosphere.After the reaction,we separated Nd halide from the residual salt and evaluated the Ndextraction rate.The phase formation of the salt was analyzed using X-ray diffraction(XRD),and the extraction rate of Nd was analyzed using inductively coupled plasma optical emission spectroscopy(ICPOES).Nd was extracted in the form of Nd halide(NdF_(3) or NdCl_(3)),and the extraction rates in the fluoride and chloride systems are 98.64% and 84.59%,respectively.Thus,the fluoride system is more effective than the chloride system for Nd extraction.Our study provides a comprehensive comparative analysis of the effectiveness of fluo ride and chlo ride systems in extracting REEs from NdFeB magnet scrap.Our study findings can be used to develop an effective method for recycling magnet scraps.展开更多
Low-dimensional lead-free metal halides have emerged as promising candidates for anti-counterfeiting applications,characterized by their low toxicity,diverse crystal structures,and exceptional optical properties.Conve...Low-dimensional lead-free metal halides have emerged as promising candidates for anti-counterfeiting applications,characterized by their low toxicity,diverse crystal structures,and exceptional optical properties.Conventional anti-counterfeiting technologies based on low-dimensional metal halides are often constrained by complex and time-consuming heating and solvent treatments that may insufficiently modify the luminescent characteristics of emitters,thus hindering their practical implementation in effective anti-counterfeiting strategies.In this study,we employ an innovative alloying strategy in low-dimensional zinc halides Cs_(2)ZnCl_(4) to enhance their luminescent performance.By introducing self-trapped exciton(STE)states through the alloying of Cu^(+)and Sb^(3+)ions in Cs_(2)ZnCl_(4),we achieve bright blue and red photoluminescence(PL)centered at 492 nm and 744 nm,respectively,under 266 nm excitation,with only red emission observed under 365 nm excitation.This approach enables instant and reliable anti-counterfeiting applications.This work presents new opportunities for developing robust anti-counterfeiting and information encryption/decryption technologies.展开更多
The crystallization of ionic crystals has traditionally been explained by Gibbs's classical nucleation theory.However,recent observations of intermediate phases during nucleation suggest that the process may be mo...The crystallization of ionic crystals has traditionally been explained by Gibbs's classical nucleation theory.However,recent observations of intermediate phases during nucleation suggest that the process may be more complex,necessitating new theoretical frameworks,though key empirical evidence remains elusive.In this study,we used microdroplets to investigate the crystallization of sodium halides(NaCl,NaBr,and NaI)under homogeneous nucleation conditions across a wide range of supersaturations.In the evaporating droplet,NaCl follows the classical nucleation pathway,whereas NaBr and NaI exhibit the formation of an intermediate phase prior to the nucleation of anhydrous and hydrous single crystals,respectively.Optical and computational analyses indicate that these intermediate phases are liquid crystal phases composed of contact ion pairs.These findings establish a new theoretical framework for crystal nucleation and growth and offer methods to control nucleation pathways,enabling us to achieve desired crystals regardless of specific conditions.展开更多
Halide perovskites have emerged as promising materials for X-ray detection with exceptional properties and reasonable costs.Among them,heterostructures between 3D perovskites and low-dimensional perovskites attract in...Halide perovskites have emerged as promising materials for X-ray detection with exceptional properties and reasonable costs.Among them,heterostructures between 3D perovskites and low-dimensional perovskites attract intensive studies of their advantages due to low-level ion migration and decent stability.However,there is still a lack of methods to precisely construct heterostructures and a fundamental understanding of their structure-dependent optoelectronic properties.Herein,a gas-phase method was developed to grow 2D perovskites directly on 3D perovskites with nanoscale accuracy.In addition,the larger steric hindrance of organic layers of 2D perovskites was proved to enable slower ion migration,which resulted in reduced trap states and better stability.Based on MAPbBr_(3)single crystals with the(PA)_(2)PbBr_(4)capping layer,the X-ray detector achieved a sensitivity of 22,245μC Gy_(air)^(−1)cm^(−2),a response speed of 240μs,and a dark current drift of 1.17.10^(–4)nA cm^(−1)s^(−1)V^(−1),which were among the highest reported for state-of-the-art perovskite-based X-ray detectors.This study presents a precise synthesis method to construct perovskite-based heterostructures.It also brings an in-depth understanding of the relationship between lattice structures and properties,which are beneficial for advancing high-performance and cost-effective X-ray detectors.展开更多
Metal halide perovskites(MHPs)with striking electrical and optical properties have appeared at the forefront of semiconductor materials for photocatalytic redox reactions but still suffer from some intrinsic drawbacks...Metal halide perovskites(MHPs)with striking electrical and optical properties have appeared at the forefront of semiconductor materials for photocatalytic redox reactions but still suffer from some intrinsic drawbacks such as inferior stability,severe charge-carrier recombination,and limited active sites.Heterojunctions have recently been widely constructed to improve light absorption,passivate surface for enhanced stability,and promote charge-carrier dynamics of MHPs.However,little attention has been paid to the review of MHPs-based heterojunctions for photocatalytic redox reactions.Here,recent advances of MHPs-based heterojunctions for photocatalytic redox reactions are highlighted.The structure,synthesis,and photophysical properties of MHPs-based heterojunctions are first introduced,including basic principles,categories(such as Schottky junction,type-I,type-II,Z-scheme,and S-scheme junction),and synthesis strategies.MHPs-based heterojunctions for photocatalytic redox reactions are then reviewed in four categories:H2evolution,CO_(2)reduction,pollutant degradation,and organic synthesis.The challenges and prospects in solar-light-driven redox reactions with MHPs-based heterojunctions in the future are finally discussed.展开更多
Halide perovskite materials have received considerable attention for solar cells,LEDs,lasers etc.owing to their controllable physicochemical properties and structural advantages.However,little research has focused on ...Halide perovskite materials have received considerable attention for solar cells,LEDs,lasers etc.owing to their controllable physicochemical properties and structural advantages.However,little research has focused on energy storage and conversion applications,such as use as anodes in lithium-ion batteries.In this paper,all-inorganic lead-free halide perovskite Cs_(3)Bi_(2)Cl_(9)powders were synthesized by the grinding method,and the lattice was successfully adjusted via introducing Mn^(2+).The characterization results show that Mn-ion substitution can cause local lattice distortion to restructure the lattice,which will cause a mixed arrangement of[BiCl_(6)]octahedra to improve the performance of the anode material.This new material can provide a feasible solution for solving the problem of low specific capacity anode materials caused by unstable crystal structures,and also indicates that such perovskites with unique crystal structures and lattice tunability have broad application prospects in lithium-ion batteries.展开更多
An efficient and simple protocol of copper-catalyzed C-S bond formation between aryl halides and inexpensive and commercially available aminothiourea is reported.A variety of symmetrical diaryl sulfides can be synthes...An efficient and simple protocol of copper-catalyzed C-S bond formation between aryl halides and inexpensive and commercially available aminothiourea is reported.A variety of symmetrical diaryl sulfides can be synthesized in good to excellent yields up to 94%with the advantage of avoiding foul-smelling thiols.展开更多
10 mol% Cul combined with the DMEDA ligand can efficiently catalyze the N-arylation of 2-arylindoles with aryl iodides and aryl bromides in good to excellent yields. The aryl halides bearing electron-rich or electron-...10 mol% Cul combined with the DMEDA ligand can efficiently catalyze the N-arylation of 2-arylindoles with aryl iodides and aryl bromides in good to excellent yields. The aryl halides bearing electron-rich or electron-deficient functional groups can be well tolerated under this mild reaction conditions.展开更多
The polymerization behaviors of Styrene (St) in the presence of CuX/L [X=Cl or Br; L= 2,2 bipyridine (bpy), 1,10 phenanthroline (phen) or 4,7 diphenyl 1,10 phenanthroline (DPP) ] and R X (R=trichloromethyl, benz...The polymerization behaviors of Styrene (St) in the presence of CuX/L [X=Cl or Br; L= 2,2 bipyridine (bpy), 1,10 phenanthroline (phen) or 4,7 diphenyl 1,10 phenanthroline (DPP) ] and R X (R=trichloromethyl, benzyl or allyl; X=Cl or Br) have been studied and examined. In a CuCl/bpy/RCl/St system, a bimodal GPC peak at the early stage of polymerization was observed, and a concept of multi active species was proposed to explain this phenomenon. In a CuCl/phen (DPP)/RCl/St system, the \%M\%\-n of polystyrene (PS) increased linearly with St conversion and ln[M] o/[M] also increased linearly with time, indicating the living nature of this system. Furthermore, the stability of the propagating active species in a CuBr/phen/RBr/St system is higher than that in the CuBr/phen/RBr/St system.展开更多
Microwave-assisted Kornblum oxidation is proved to be an effective way to obtain aldehyde and ketones from their corresponding chlorides. Under microwave irradiation, not only the reaction time was greatly decreased, ...Microwave-assisted Kornblum oxidation is proved to be an effective way to obtain aldehyde and ketones from their corresponding chlorides. Under microwave irradiation, not only the reaction time was greatly decreased, due to avoiding the by-product, the yield was increased. It is noteworthy that the scope of the method was broadly expanded.展开更多
A general synthesis of diaryl ethers via coupling of aryl halides with substituted phenoxytrimethylsilane in the presence of TBAF is described. The protocol is simple and mild, and gives good to excellent yields.
In 2011,the Chinese Academy of Sciences launched an engineering project to develop an acceleratordriven subcritical system(ADS)for nuclear waste transmutation.The China Lead-based Reactor(CLEAR),proposed by the Instit...In 2011,the Chinese Academy of Sciences launched an engineering project to develop an acceleratordriven subcritical system(ADS)for nuclear waste transmutation.The China Lead-based Reactor(CLEAR),proposed by the Institute of Nuclear Energy Safety Technology,was selected as the reference reactor for ADS development,as well as for the technology development of the Generation IV lead-cooled fast reactor.The conceptual design of CLEAR-I with 10 MW thermal power has been completed.KYLIN series lead-bismuth eutectic experimental loops have been constructed to investigate the technologies of the coolant,key components,structural materials,fuel assembly,operation,and control.In order to validate and test the key components and integrated operating technology of the lead-based reactor,the lead alloy-cooled non-nuclear reactor CLEAR-S,the lead-based zero-power nuclear reactor CLEAR-0,and the lead-based virtual reactor CLEAR-V are under realization.展开更多
FeX3(X = Cl, Br) were found to be very effective reagents and powerful catalysts for regioselective ring openings of a variety of N-tosylaziridines with them to afford the corresponding b-haloamines in good to excel...FeX3(X = Cl, Br) were found to be very effective reagents and powerful catalysts for regioselective ring openings of a variety of N-tosylaziridines with them to afford the corresponding b-haloamines in good to excellent yields with high regioselectivity under mild conditions. At the same time, 13 new compounds were obtained firstly. Moreover, the b-bromoamine prepared could be transferred into b-nitroamine with NaNO2 in moderate yield.展开更多
A series of PVP-Pd-Sn/MontK10 catalysts were prepared by immobilization of PVP[poly(N-vinyl-2-pyrrolidone)] supported bimetallic catalyst using MontK10 as carrier. This catalyst has good catalytic activity for hydroge...A series of PVP-Pd-Sn/MontK10 catalysts were prepared by immobilization of PVP[poly(N-vinyl-2-pyrrolidone)] supported bimetallic catalyst using MontK10 as carrier. This catalyst has good catalytic activity for hydrogen transfer dehalogenation of aryl halides. The catalytic reaction was carried out in aqueous system in the presence of phase transfer catalyst and sodium formate as hydrogen source. The catalyst with loading Pd 0.19wt% and molar ratio of Pd/Dn 8:1 gives the highest activity and good stability. This catalyst is more reducible with NaBH4. It is also found that the catalyst is easily separated from the reaction system.展开更多
Photopromoted carbonylation of alkyl halides with carbon monoxide can be carried out under ambient conditions with non-precious transition metal complexes (such as cobalt complexes) catalysts. Our preliminary work sh...Photopromoted carbonylation of alkyl halides with carbon monoxide can be carried out under ambient conditions with non-precious transition metal complexes (such as cobalt complexes) catalysts. Our preliminary work showed that alkyl halides can be transformed into alkene and alkane directly under irradiation, but the esters can not be transformed. It is assumed that the carbonylation of alkyl halides may be proceeded in two ways.展开更多
基金supported by the financial aid from the National Natural Science Foundation of China (No. 22271273)International Partnership Program of Chinese Academy of Sciences (No. 121522KYSB20190022)。
文摘Self-trapping excitons(STEs) emission in metal halides has been a matter of interest, correlating with the strength of electron-phonon coupling in the lattice, which are usually caused by ions with ns~2 electronic structure. In this work, Sb^(3+)/Te^(4+)ions doped Zn-based halide single crystals(SCs) with two STEs emissions have been synthesized and the possibility of its anti-counterfeiting application was explored.Further, the relationship between the strength of electron-phonon coupling and photoluminescence quantum yields(PLQYs) for STEs in a series of metal halides has been studied. And the semi-empirical range of the Huang-Rhys factors(S) for metal halides with excellent photoluminescence(PL) property has been summarized. This work provides ideas for further research into the relationship between luminescence performance and electron-phonon coupling of metal halides, and also provides a reference for designing the metal halides with high PLQYs.
基金supported by the National Natural Science Foundation of China(22278066,21776039)the National Key R&D Program of China(2023YFB4103001)The Fundamental Research Funds for the Central Universities(DUT2021TB03).
文摘Mercury removal from coal combustion flue gas remains a significant challenge for environmental protection due to the lack of cost-effective sorbents.In this study,a series of red mud(RM)-based sorbents impregnated with sodium halides(NaBr and NaI)are presented to capture elemental mercury(Hg^(0))from flue gas.The modified RM underwent comprehensive characterization,including analysis of its textural qualities,crystal structure,chemical composition,and thermal properties.The results indicate that the halide impregnation substantially impacts the surface area and pore size of the RM.Hg^(0) removal performance was evaluated on a fixed-bed reactor in simulated flue gas(consisting of N_(2),O_(2),CO_(2),NO and SO_(2),etc.)on a modified RM.At an optimal adsorption temperature of 160℃,NaI-modified sorbent(RMI5)offers a removal efficiency of 98%in a mixture of gas,including O_(2),NO and HCl.Furthermore,pseudo-second-order model fitting results demonstrate the chemisorption mechanism for the adsorption of Hg^(0) in kinetic investigations.
文摘Polyfluoroarenes represent an essential group of compounds in the fields of medical and material chemistry.It is still a challenge to synthesize alkylated polyfluoroarenes.Herein,a Ni-catalyzed reductive alkylation of polyfluoroarenes with alkyl halides under mild conditions is reported.Polyfluoroarenes(3~6 F)can reacted smoothly with a diverse range of alkyl halides,such as primary,secondary,and tertiary alkyl iodides.The efficient formation of C(sp2)—C(sp3)can be achieved through the combination of Ni catalysis and(Bpin)2/K2CO3 as terminal reductant.
基金Project supported by the National Key R&D Program of China (Grant No. 2023YFA1406200)the National Natural Science Foundation of China (Grant Nos. 12174144 and 12474009)the Graduate Innovation Fund of Jilin University (Grant No. 2024CX201)。
文摘Low-dimensional hybrid metal halides exhibit broadband emission and high photoluminescence quantum yield(PLQY), making them promising candidates for the next-generation luminescent materials in lighting applications. Here,the emission intensity of(C_(12)H_(24)O_(6))_(2)Na_(2)(H_(2)O)_(3)Cu_(4)I_(6) was strengthened between 9.3 GPa and 17.2 GPa, accompanied by the redshift of emission wavelength. The photoluminescence(PL) of Cu(Ⅰ)-based organometallic halides originates from multiple emission states, which are a metal-to-ligand charge transfer or a halide-to-ligand charge transfer(MLCT/HLCT)excited state and a cluster-centered(CC) excited state. MLCT/HLCT-related emission wavelength redshifts while CCrelated emission wavelength remains unchanged, indicating that the rearrangement of different emission states plays a critical role in the changes of luminescence wavelength. This study not only deepens the understanding of the influence of high pressure on(C_(12)H_(24)O_(6))_(2)Na_(2)(H_(2)O)_(3)Cu_(4)I_(6), but also provides valuable insights into the structure–property relationship of zero-dimensional Cu(Ⅰ)-based organometallic halides.
文摘Existing organic halide synthesis routes typically employ elemental halogens(X_(2),X=Cl or Br),leading to low atom economy and significant environmental pollution.In this work,we developed an atom efficient electrosynthesis and separation strategy for halogenation reagents—N-chlorosuccinimide(NCS)and N-bromosuccinimide(NBS)—at high current densities.Faradic efficiency(FE)of 91.0%and 81.3%was achieved for NCS and NBS generation on RuO_(x)/TiO_(2)/Ti in a batch cell,respectively.Electrosynthesis of NCS likely involves both heterogeneous catalytic and homogeneous tandem pathways,while NBS is likely formed in a Langmuir-Hinshelwood mechanism with a proton-coupled electron transfer as the rate-determining step.A coupled continuous electrocatalytic synthesis and in situ separation setup was developed for the efficient production of NCS and NBS,which yielded 0.77 g of NCS in 12000 s and 0.81 g of NBS in 15000 s,both with relative purity exceeding 95%.The halogenation of acetone using NCS and NBS enabled gram-scale production of the key intermediate in organic synthesis,1-halogenacetone,with over 95%recovery of succinimide.
基金supported by the Technology Innovation (20010817,Technology for the ecofriendly rare earth refining from used motors and manufacture of permanent magnet materials) funded by the Ministry of Trade,Industry & Energy (MOTIE),Korea。
文摘The demand for neodymium(NdFeB) permanent magnets for electric vehicles and eco-friendly generators is increasing.However,NdFeB magnets contain rare earth elements(REEs),which are limited in supply.In this study,we performed an exchange reaction between magnesium halides(fluoride and chloride) and waste NdFeB scrap and then compared the characteristics of the extracted halides salts.The compositions of the ternary Mg fluoride(LiF:NaF:MgF_(2)=50:40:10 in mole ratio) and chloride(LiCl:NaCl:MgCl_(2)=10:50:40 in mole ratio) salts were thermodynamically determined for achieving low eutectic temperatures.The reactions between the NdFeB scrap powder(1-2 mm) and Mg halide salts were carried out at 1073 and 873 K for the fluoride and chloride systems,respectively,in an argon atmosphere.After the reaction,we separated Nd halide from the residual salt and evaluated the Ndextraction rate.The phase formation of the salt was analyzed using X-ray diffraction(XRD),and the extraction rate of Nd was analyzed using inductively coupled plasma optical emission spectroscopy(ICPOES).Nd was extracted in the form of Nd halide(NdF_(3) or NdCl_(3)),and the extraction rates in the fluoride and chloride systems are 98.64% and 84.59%,respectively.Thus,the fluoride system is more effective than the chloride system for Nd extraction.Our study provides a comprehensive comparative analysis of the effectiveness of fluo ride and chlo ride systems in extracting REEs from NdFeB magnet scrap.Our study findings can be used to develop an effective method for recycling magnet scraps.
基金supported by Chongqing Natural Science Foundation Innovation and Development Joint Fund(CSTB2025NSCQ-LZX0001)Ongoing Research Funding Program,(ORF-2025-762)King Saud University,Riyadh,Saudi Arabia,National Natural Science Foundationof China(11974063).
文摘Low-dimensional lead-free metal halides have emerged as promising candidates for anti-counterfeiting applications,characterized by their low toxicity,diverse crystal structures,and exceptional optical properties.Conventional anti-counterfeiting technologies based on low-dimensional metal halides are often constrained by complex and time-consuming heating and solvent treatments that may insufficiently modify the luminescent characteristics of emitters,thus hindering their practical implementation in effective anti-counterfeiting strategies.In this study,we employ an innovative alloying strategy in low-dimensional zinc halides Cs_(2)ZnCl_(4) to enhance their luminescent performance.By introducing self-trapped exciton(STE)states through the alloying of Cu^(+)and Sb^(3+)ions in Cs_(2)ZnCl_(4),we achieve bright blue and red photoluminescence(PL)centered at 492 nm and 744 nm,respectively,under 266 nm excitation,with only red emission observed under 365 nm excitation.This approach enables instant and reliable anti-counterfeiting applications.This work presents new opportunities for developing robust anti-counterfeiting and information encryption/decryption technologies.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2021R1C1C2006535)supported by the Korea Basic Science Institute(National Research Facilities and Equipment Center)grant funded by the Korea government(MSIT)(No.RS-2024-00403164)supported by the National Research Foundation of Korea grant funded by the Korea government,Ministry of Science and ICT(Development of Nanofiber Yarn Based Compound Sensor as a Comprehensive Wearable Healthcare Solution)(Grant No.RS-2024-00357296).
文摘The crystallization of ionic crystals has traditionally been explained by Gibbs's classical nucleation theory.However,recent observations of intermediate phases during nucleation suggest that the process may be more complex,necessitating new theoretical frameworks,though key empirical evidence remains elusive.In this study,we used microdroplets to investigate the crystallization of sodium halides(NaCl,NaBr,and NaI)under homogeneous nucleation conditions across a wide range of supersaturations.In the evaporating droplet,NaCl follows the classical nucleation pathway,whereas NaBr and NaI exhibit the formation of an intermediate phase prior to the nucleation of anhydrous and hydrous single crystals,respectively.Optical and computational analyses indicate that these intermediate phases are liquid crystal phases composed of contact ion pairs.These findings establish a new theoretical framework for crystal nucleation and growth and offer methods to control nucleation pathways,enabling us to achieve desired crystals regardless of specific conditions.
基金support from National Key Research and Development Program of China(2024YFE0217100)the National Natural Science Foundation of China(21905006,22261160370,and 62105075)+7 种基金the Guangdong Provincial Science and Technology Plan(2021A0505110003)the Natural Science Foundation of Hunan Province,China(2023JJ50132)Guangxi Department of Science and Technology(2020GXNSFBA159049 and AD19110030)the Shenzhen Science and Technology Program(SGDX20230116093205009,JCYJ20220818100211025 and 2022378670)the Natural Science Foundation of Top Talent of SZTU(GDRC202343)financial support of Innovation and Technology Fund(#GHP/245/22SZ)The University Grant Council of the University of Hong Kong(grant No.2302101786)General Research Fund(grant Nos.17200823 and 17310624)from the Research Grants Council.
文摘Halide perovskites have emerged as promising materials for X-ray detection with exceptional properties and reasonable costs.Among them,heterostructures between 3D perovskites and low-dimensional perovskites attract intensive studies of their advantages due to low-level ion migration and decent stability.However,there is still a lack of methods to precisely construct heterostructures and a fundamental understanding of their structure-dependent optoelectronic properties.Herein,a gas-phase method was developed to grow 2D perovskites directly on 3D perovskites with nanoscale accuracy.In addition,the larger steric hindrance of organic layers of 2D perovskites was proved to enable slower ion migration,which resulted in reduced trap states and better stability.Based on MAPbBr_(3)single crystals with the(PA)_(2)PbBr_(4)capping layer,the X-ray detector achieved a sensitivity of 22,245μC Gy_(air)^(−1)cm^(−2),a response speed of 240μs,and a dark current drift of 1.17.10^(–4)nA cm^(−1)s^(−1)V^(−1),which were among the highest reported for state-of-the-art perovskite-based X-ray detectors.This study presents a precise synthesis method to construct perovskite-based heterostructures.It also brings an in-depth understanding of the relationship between lattice structures and properties,which are beneficial for advancing high-performance and cost-effective X-ray detectors.
基金financially supported by National Natural Science Foundation of China(No.22302155)the Fundamental Research Funds of the Center Universities(No.D5000240188)the research program of ZJUT(YJY-ZS-20240001)。
文摘Metal halide perovskites(MHPs)with striking electrical and optical properties have appeared at the forefront of semiconductor materials for photocatalytic redox reactions but still suffer from some intrinsic drawbacks such as inferior stability,severe charge-carrier recombination,and limited active sites.Heterojunctions have recently been widely constructed to improve light absorption,passivate surface for enhanced stability,and promote charge-carrier dynamics of MHPs.However,little attention has been paid to the review of MHPs-based heterojunctions for photocatalytic redox reactions.Here,recent advances of MHPs-based heterojunctions for photocatalytic redox reactions are highlighted.The structure,synthesis,and photophysical properties of MHPs-based heterojunctions are first introduced,including basic principles,categories(such as Schottky junction,type-I,type-II,Z-scheme,and S-scheme junction),and synthesis strategies.MHPs-based heterojunctions for photocatalytic redox reactions are then reviewed in four categories:H2evolution,CO_(2)reduction,pollutant degradation,and organic synthesis.The challenges and prospects in solar-light-driven redox reactions with MHPs-based heterojunctions in the future are finally discussed.
基金supported by the Foundation of Yunnan Province(Nos.202301AU070021,202201BE070001-027)the Test Foundation of KUST(No.2022T20210208).
文摘Halide perovskite materials have received considerable attention for solar cells,LEDs,lasers etc.owing to their controllable physicochemical properties and structural advantages.However,little research has focused on energy storage and conversion applications,such as use as anodes in lithium-ion batteries.In this paper,all-inorganic lead-free halide perovskite Cs_(3)Bi_(2)Cl_(9)powders were synthesized by the grinding method,and the lattice was successfully adjusted via introducing Mn^(2+).The characterization results show that Mn-ion substitution can cause local lattice distortion to restructure the lattice,which will cause a mixed arrangement of[BiCl_(6)]octahedra to improve the performance of the anode material.This new material can provide a feasible solution for solving the problem of low specific capacity anode materials caused by unstable crystal structures,and also indicates that such perovskites with unique crystal structures and lattice tunability have broad application prospects in lithium-ion batteries.
基金supported by the Natural Science Foundation of Zhejiang Province(No.Y407240)
文摘An efficient and simple protocol of copper-catalyzed C-S bond formation between aryl halides and inexpensive and commercially available aminothiourea is reported.A variety of symmetrical diaryl sulfides can be synthesized in good to excellent yields up to 94%with the advantage of avoiding foul-smelling thiols.
基金supported by the National Natural Science Foundation of China (No.21102036)Plan for Scientific Innovation Talent of Henan University of Technology (No.11CXRC02)startup fund from HAUT (No.2010BS042)
文摘10 mol% Cul combined with the DMEDA ligand can efficiently catalyze the N-arylation of 2-arylindoles with aryl iodides and aryl bromides in good to excellent yields. The aryl halides bearing electron-rich or electron-deficient functional groups can be well tolerated under this mild reaction conditions.
文摘The polymerization behaviors of Styrene (St) in the presence of CuX/L [X=Cl or Br; L= 2,2 bipyridine (bpy), 1,10 phenanthroline (phen) or 4,7 diphenyl 1,10 phenanthroline (DPP) ] and R X (R=trichloromethyl, benzyl or allyl; X=Cl or Br) have been studied and examined. In a CuCl/bpy/RCl/St system, a bimodal GPC peak at the early stage of polymerization was observed, and a concept of multi active species was proposed to explain this phenomenon. In a CuCl/phen (DPP)/RCl/St system, the \%M\%\-n of polystyrene (PS) increased linearly with St conversion and ln[M] o/[M] also increased linearly with time, indicating the living nature of this system. Furthermore, the stability of the propagating active species in a CuBr/phen/RBr/St system is higher than that in the CuBr/phen/RBr/St system.
文摘Microwave-assisted Kornblum oxidation is proved to be an effective way to obtain aldehyde and ketones from their corresponding chlorides. Under microwave irradiation, not only the reaction time was greatly decreased, due to avoiding the by-product, the yield was increased. It is noteworthy that the scope of the method was broadly expanded.
文摘A general synthesis of diaryl ethers via coupling of aryl halides with substituted phenoxytrimethylsilane in the presence of TBAF is described. The protocol is simple and mild, and gives good to excellent yields.
文摘In 2011,the Chinese Academy of Sciences launched an engineering project to develop an acceleratordriven subcritical system(ADS)for nuclear waste transmutation.The China Lead-based Reactor(CLEAR),proposed by the Institute of Nuclear Energy Safety Technology,was selected as the reference reactor for ADS development,as well as for the technology development of the Generation IV lead-cooled fast reactor.The conceptual design of CLEAR-I with 10 MW thermal power has been completed.KYLIN series lead-bismuth eutectic experimental loops have been constructed to investigate the technologies of the coolant,key components,structural materials,fuel assembly,operation,and control.In order to validate and test the key components and integrated operating technology of the lead-based reactor,the lead alloy-cooled non-nuclear reactor CLEAR-S,the lead-based zero-power nuclear reactor CLEAR-0,and the lead-based virtual reactor CLEAR-V are under realization.
基金the Natural Science Foundation of Shanxi Province (Nos. 2012021007-2, 2011011010-2) for financial supportsupported by Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No. 20120006)
文摘FeX3(X = Cl, Br) were found to be very effective reagents and powerful catalysts for regioselective ring openings of a variety of N-tosylaziridines with them to afford the corresponding b-haloamines in good to excellent yields with high regioselectivity under mild conditions. At the same time, 13 new compounds were obtained firstly. Moreover, the b-bromoamine prepared could be transferred into b-nitroamine with NaNO2 in moderate yield.
文摘A series of PVP-Pd-Sn/MontK10 catalysts were prepared by immobilization of PVP[poly(N-vinyl-2-pyrrolidone)] supported bimetallic catalyst using MontK10 as carrier. This catalyst has good catalytic activity for hydrogen transfer dehalogenation of aryl halides. The catalytic reaction was carried out in aqueous system in the presence of phase transfer catalyst and sodium formate as hydrogen source. The catalyst with loading Pd 0.19wt% and molar ratio of Pd/Dn 8:1 gives the highest activity and good stability. This catalyst is more reducible with NaBH4. It is also found that the catalyst is easily separated from the reaction system.
基金We are indebted to the National Natural Science Foundations of China(No.20172010,20242004),for the generous financial support
文摘Photopromoted carbonylation of alkyl halides with carbon monoxide can be carried out under ambient conditions with non-precious transition metal complexes (such as cobalt complexes) catalysts. Our preliminary work showed that alkyl halides can be transformed into alkene and alkane directly under irradiation, but the esters can not be transformed. It is assumed that the carbonylation of alkyl halides may be proceeded in two ways.