With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based...With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based on GNN can deal with encrypted traffic well. However, existing GNN-based approaches ignore the relationship between client or server packets. In this paper, we design a network traffic topology based on GCN, called Flow Mapping Graph (FMG). FMG establishes sequential edges between vertexes by the arrival order of packets and establishes jump-order edges between vertexes by connecting packets in different bursts with the same direction. It not only reflects the time characteristics of the packet but also strengthens the relationship between the client or server packets. According to FMG, a Traffic Mapping Classification model (TMC-GCN) is designed, which can automatically capture and learn the characteristics and structure information of the top vertex in FMG. The TMC-GCN model is used to classify the encrypted traffic. The encryption stream classification problem is transformed into a graph classification problem, which can effectively deal with data from different data sources and application scenarios. By comparing the performance of TMC-GCN with other classical models in four public datasets, including CICIOT2023, ISCXVPN2016, CICAAGM2017, and GraphDapp, the effectiveness of the FMG algorithm is verified. The experimental results show that the accuracy rate of the TMC-GCN model is 96.13%, the recall rate is 95.04%, and the F1 rate is 94.54%.展开更多
The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and hist...The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and historical context,DL offers a powerful complement by enhancing the speed,objectivity,and precision of the classification process.This research explores the significance of image data augmentation techniques in optimizing the performance of convolutional neural networks(CNNs)for geological image analysis,particularly in the classification of igneous,metamorphic,and sedimentary rock types from rock thin section(RTS)images.This study primarily focuses on classic image augmentation techniques and evaluates their impact on model accuracy and precision.Results demonstrate that augmentation techniques like Equalize significantly enhance the model's classification capabilities,achieving an F1-Score of 0.9869 for igneous rocks,0.9884 for metamorphic rocks,and 0.9929 for sedimentary rocks,representing improvements compared to the baseline original results.Moreover,the weighted average F1-Score across all classes and techniques is 0.9886,indicating an enhancement.Conversely,methods like Distort lead to decreased accuracy and F1-Score,with an F1-Score of 0.949 for igneous rocks,0.954 for metamorphic rocks,and 0.9416 for sedimentary rocks,exacerbating the performance compared to the baseline.The study underscores the practicality of image data augmentation in geological image classification and advocates for the adoption of DL methods in this domain for automation and improved results.The findings of this study can benefit various fields,including remote sensing,mineral exploration,and environmental monitoring,by enhancing the accuracy of geological image analysis both for scientific research and industrial applications.展开更多
Network traffic classification is a crucial research area aimed at improving quality of service,simplifying network management,and enhancing network security.To address the growing complexity of cryptography,researche...Network traffic classification is a crucial research area aimed at improving quality of service,simplifying network management,and enhancing network security.To address the growing complexity of cryptography,researchers have proposed various machine learning and deep learning approaches to tackle this challenge.However,existing mainstream methods face several general issues.On one hand,the widely used Transformer architecture exhibits high computational complexity,which negatively impacts its efficiency.On the other hand,traditional methods are often unreliable in traffic representation,frequently losing important byte information while retaining unnecessary biases.To address these problems,this paper introduces the Swin Transformer architecture into the domain of network traffic classification and proposes the NetST(Network Swin Transformer)model.This model improves the Swin Transformer to better accommodate the characteristics of network traffic,effectively addressing efficiency issues.Furthermore,this paper presents a traffic representation scheme designed to extract meaningful information from large volumes of traffic while minimizing bias.We integrate four datasets relevant to network traffic classification for our experiments,and the results demonstrate that NetST achieves a high accuracy rate while maintaining low memory usage.展开更多
Rapid,accurate seed classification of soybean varieties is needed for product quality control.We describe a hyperspectral image-based deep-learning model called Dual Attention Feature Fusion Networks(DAFFnet),which se...Rapid,accurate seed classification of soybean varieties is needed for product quality control.We describe a hyperspectral image-based deep-learning model called Dual Attention Feature Fusion Networks(DAFFnet),which sequentially applies 3D Convolutional Neural Network(CNN)and 2D CNN.A fusion attention mechanism module in 2D CNN permits the model to capture local and global feature information by combining with Convolution Block Attention Module(CBAM)and Mobile Vision Transformer(MViT),outperforming conventional hyperspectral image classification models in seed classification.展开更多
Hyperspectral image(HSI)classification is crucial for numerous remote sensing applications.Traditional deep learning methods may miss pixel relationships and context,leading to inefficiencies.This paper introduces the...Hyperspectral image(HSI)classification is crucial for numerous remote sensing applications.Traditional deep learning methods may miss pixel relationships and context,leading to inefficiencies.This paper introduces the spectral band graph convolutional and attention-enhanced CNN joint network(SGCCN),a novel approach that harnesses the power of spectral band graph convolutions for capturing long-range relationships,utilizes local perception of attention-enhanced multi-level convolutions for local spatial feature and employs a dynamic attention mechanism to enhance feature extraction.The SGCCN integrates spectral and spatial features through a self-attention fusion network,significantly improving classification accuracy and efficiency.The proposed method outperforms existing techniques,demonstrating its effectiveness in handling the challenges associated with HSI data.展开更多
Schizophrenia(SZ)stands as a severe psychiatric disorder.This study applied diffusion tensor imaging(DTI)data in conjunction with graph neural networks to distinguish SZ patients from normal controls(NCs)and showcases...Schizophrenia(SZ)stands as a severe psychiatric disorder.This study applied diffusion tensor imaging(DTI)data in conjunction with graph neural networks to distinguish SZ patients from normal controls(NCs)and showcases the superior performance of a graph neural network integrating combined fractional anisotropy and fiber number brain network features,achieving an accuracy of 73.79%in distinguishing SZ patients from NCs.Beyond mere discrimination,our study delved deeper into the advantages of utilizing white matter brain network features for identifying SZ patients through interpretable model analysis and gene expression analysis.These analyses uncovered intricate interrelationships between brain imaging markers and genetic biomarkers,providing novel insights into the neuropathological basis of SZ.In summary,our findings underscore the potential of graph neural networks applied to multimodal DTI data for enhancing SZ detection through an integrated analysis of neuroimaging and genetic features.展开更多
Accurate early classification of elephant flows(elephants)is important for network management and resource optimization.Elephant models,mainly based on the byte count of flows,can always achieve high accuracy,but not ...Accurate early classification of elephant flows(elephants)is important for network management and resource optimization.Elephant models,mainly based on the byte count of flows,can always achieve high accuracy,but not in a time-efficient manner.The time efficiency becomes even worse when the flows to be classified are sampled by flow entry timeout over Software-Defined Networks(SDNs)to achieve a better resource efficiency.This paper addresses this situation by combining co-training and Reinforcement Learning(RL)to enable a closed-loop classification approach that divides the entire classification process into episodes,each involving two elephant models.One predicts elephants and is retrained by a selection of flows automatically labeled online by the other.RL is used to formulate a reward function that estimates the values of the possible actions based on the current states of both models and further adjusts the ratio of flows to be labeled in each phase.Extensive evaluation based on real traffic traces shows that the proposed approach can stably predict elephants using the packets received in the first 10% of their lifetime with an accuracy of over 80%,and using only about 10% more control channel bandwidth than the baseline over the evolved SDNs.展开更多
With the rise of encrypted traffic,traditional network analysis methods have become less effective,leading to a shift towards deep learning-based approaches.Among these,multimodal learning-based classification methods...With the rise of encrypted traffic,traditional network analysis methods have become less effective,leading to a shift towards deep learning-based approaches.Among these,multimodal learning-based classification methods have gained attention due to their ability to leverage diverse feature sets from encrypted traffic,improving classification accuracy.However,existing research predominantly relies on late fusion techniques,which hinder the full utilization of deep features within the data.To address this limitation,we propose a novel multimodal encrypted traffic classification model that synchronizes modality fusion with multiscale feature extraction.Specifically,our approach performs real-time fusion of modalities at each stage of feature extraction,enhancing feature representation at each level and preserving inter-level correlations for more effective learning.This continuous fusion strategy improves the model’s ability to detect subtle variations in encrypted traffic,while boosting its robustness and adaptability to evolving network conditions.Experimental results on two real-world encrypted traffic datasets demonstrate that our method achieves a classification accuracy of 98.23% and 97.63%,outperforming existing multimodal learning-based methods.展开更多
This study proposes an efficient traffic classification model to address the growing threat of distributed denial-of-service(DDoS)attacks in 5th generation technology standard(5G)slicing networks.The proposed method u...This study proposes an efficient traffic classification model to address the growing threat of distributed denial-of-service(DDoS)attacks in 5th generation technology standard(5G)slicing networks.The proposed method utilizes an ensemble of encoder components from multiple autoencoders to compress and extract latent representations from high-dimensional traffic data.These representations are then used as input for a support vector machine(SVM)-based metadata classifier,enabling precise detection of attack traffic.This architecture is designed to achieve both high detection accuracy and training efficiency,while adapting flexibly to the diverse service requirements and complexity of 5G network slicing.The model was evaluated using the DDoS Datasets 2022,collected in a simulated 5G slicing environment.Experiments were conducted under both class-balanced and class-imbalanced conditions.In the balanced setting,the model achieved an accuracy of 89.33%,an F1-score of 88.23%,and an Area Under the Curve(AUC)of 89.45%.In the imbalanced setting(attack:normal 7:3),the model maintained strong robustness,=achieving a recall of 100%and an F1-score of 90.91%,demonstrating its effectiveness in diverse real-world scenarios.Compared to existing AI-based detection methods,the proposed model showed higher precision,better handling of class imbalance,and strong generalization performance.Moreover,its modular structure is well-suited for deployment in containerized network function(NF)environments,making it a practical solution for real-world 5G infrastructure.These results highlight the potential of the proposed approach to enhance both the security and operational resilience of 5G slicing networks.展开更多
This study presents CGB-Net,a novel deep learning architecture specifically developed for classifying twelve distinct sleep positions using a single abdominal accelerometer,with direct applicability to gastroesophagea...This study presents CGB-Net,a novel deep learning architecture specifically developed for classifying twelve distinct sleep positions using a single abdominal accelerometer,with direct applicability to gastroesophageal reflux disease(GERD)monitoring.Unlike conventional approaches limited to four basic postures,CGB-Net enables fine-grained classification of twelve clinically relevant sleep positions,providing enhanced resolution for personalized health assessment.The architecture introduces a unique integration of three complementary components:1D Convolutional Neural Networks(1D-CNN)for efficient local spatial feature extraction,Gated Recurrent Units(GRU)to capture short-termtemporal dependencieswith reduced computational complexity,and Bidirectional Long Short-Term Memory(Bi-LSTM)networks for modeling long-term temporal context in both forward and backward directions.This complementary integration allows the model to better represent dynamic and contextual information inherent in the sensor data,surpassing the performance of simpler or previously published hybrid models.Experiments were conducted on a benchmark dataset consisting of 18 volunteers(age range:19–24 years,mean 20.56±1.1 years;height 164.78±8.18 cm;weight 55.39±8.30 kg;BMI 20.24±2.04),monitored via a single abdominal accelerometer.A subjectindependent evaluation protocol with multiple random splits was employed to ensure robustness and generalizability.The proposed model achieves an average Accuracy of 87.60% and F1-score of 83.38%,both reported with standard deviations over multiple runs,outperforming several baseline and state-of-the-art methods.By releasing the dataset publicly and detailing themodel design,this work aims to facilitate reproducibility and advance research in sleep posture classification for clinical applications.展开更多
In modern wireless communication and electromagnetic control,automatic modulationclassification(AMC)of orthogonal frequency division multiplexing(OFDM)signals plays animportant role.However,under Doppler frequency shi...In modern wireless communication and electromagnetic control,automatic modulationclassification(AMC)of orthogonal frequency division multiplexing(OFDM)signals plays animportant role.However,under Doppler frequency shift and complex multipath channel conditions,extracting discriminative features from high-order modulation signals and ensuring model inter-pretability remain challenging.To address these issues,this paper proposes a Fourier attention net-work(FAttNet),which combines an attention mechanism with a Fourier analysis network(FAN).Specifically,the method directly converts the input signal to the frequency domain using the FAN,thereby obtaining frequency features that reflect the periodic variations in amplitude and phase.Abuilt-in attention mechanism then automatically calculates the weights for each frequency band,focusing on the most discriminative components.This approach improves both classification accu-racy and model interpretability.Experimental validation was conducted via high-order modulationsimulation using an RF testbed.The results show that under three different Doppler frequencyshifts and complex multipath channel conditions,with a signal-to-noise ratio of 10 dB,the classifi-cation accuracy can reach 89.1%,90.4%and 90%,all of which are superior to the current main-stream methods.The proposed approach offers practical value for dynamic spectrum access and sig-nal security detection,and it makes important theoretical contributions to the application of deeplearning in complex electromagnetic signal recognition.展开更多
Physiological signals such as electroencephalogram(EEG)signals are often corrupted by artifacts during the acquisition and processing.Some of these artifacts may deteriorate the essential properties of the signal that...Physiological signals such as electroencephalogram(EEG)signals are often corrupted by artifacts during the acquisition and processing.Some of these artifacts may deteriorate the essential properties of the signal that pertains to meaningful information.Most of these artifacts occur due to the involuntary movements or actions the human does during the acquisition process.So,it is recommended to eliminate these artifacts with signal processing approaches.This paper presents two mechanisms of classification and elimination of artifacts.In the first step,a customized deep network is employed to classify clean EEG signals and artifact-included signals.The classification is performed at the feature level,where common space pattern features are extracted with convolutional layers,and these features are later classified with a support vector machine classifier.In the second stage of the work,the artifact signals are decomposed with empirical mode decomposition,and they are then eliminated with the proposed adaptive thresholding mechanism where the threshold value changes for every intrinsic mode decomposition in the iterative mechanism.展开更多
Leaf disease identification is one of the most promising applications of convolutional neural networks(CNNs).This method represents a significant step towards revolutionizing agriculture by enabling the quick and accu...Leaf disease identification is one of the most promising applications of convolutional neural networks(CNNs).This method represents a significant step towards revolutionizing agriculture by enabling the quick and accurate assessment of plant health.In this study,a CNN model was specifically designed and tested to detect and categorize diseases on fig tree leaves.The researchers utilized a dataset of 3422 images,divided into four classes:healthy,fig rust,fig mosaic,and anthracnose.These diseases can significantly reduce the yield and quality of fig tree fruit.The objective of this research is to develop a CNN that can identify and categorize diseases in fig tree leaves.The data for this study was collected from gardens in the Amandi and Mamash Khail Bannu districts of the Khyber Pakhtunkhwa region in Pakistan.To minimize the risk of overfitting and enhance the model’s performance,early stopping techniques and data augmentation were employed.As a result,the model achieved a training accuracy of 91.53%and a validation accuracy of 90.12%,which are considered respectable.This comprehensive model assists farmers in the early identification and categorization of fig tree leaf diseases.Our experts believe that CNNs could serve as valuable tools for accurate disease classification and detection in precision agriculture.We recommend further research to explore additional data sources and more advanced neural networks to improve the model’s accuracy and applicability.Future research will focus on expanding the dataset by including new diseases and testing the model in real-world scenarios to enhance sustainable farming practices.展开更多
In network traffic classification,it is important to understand the correlation between network traffic and its causal application,protocol,or service group,for example,in facilitating lawful interception,ensuring the...In network traffic classification,it is important to understand the correlation between network traffic and its causal application,protocol,or service group,for example,in facilitating lawful interception,ensuring the quality of service,preventing application choke points,and facilitating malicious behavior identification.In this paper,we review existing network classification techniques,such as port-based identification and those based on deep packet inspection,statistical features in conjunction with machine learning,and deep learning algorithms.We also explain the implementations,advantages,and limitations associated with these techniques.Our review also extends to publicly available datasets used in the literature.Finally,we discuss existing and emerging challenges,as well as future research directions.展开更多
Effective development and utilization of wood resources is critical.Wood modification research has become an integral dimension of wood science research,however,the similarities between modified wood and original wood...Effective development and utilization of wood resources is critical.Wood modification research has become an integral dimension of wood science research,however,the similarities between modified wood and original wood render it challenging for accurate identification and classification using conventional image classification techniques.So,the development of efficient and accurate wood classification techniques is inevitable.This paper presents a one-dimensional,convolutional neural network(i.e.,BACNN)that combines near-infrared spectroscopy and deep learning techniques to classify poplar,tung,and balsa woods,and PVA,nano-silica-sol and PVA-nano silica sol modified woods of poplar.The results show that BACNN achieves an accuracy of 99.3%on the test set,higher than the 52.9%of the BP neural network and 98.7%of Support Vector Machine compared with traditional machine learning methods and deep learning based methods;it is also higher than the 97.6%of LeNet,98.7%of AlexNet and 99.1%of VGGNet-11.Therefore,the classification method proposed offers potential applications in wood classification,especially with homogeneous modified wood,and it also provides a basis for subsequent wood properties studies.展开更多
BACKGROUND with the widespread application of computer network systems in the medical field,the plan-do-check-action(PDCA)and the international classification of diseases tenth edition(ICD-10)coding system have also a...BACKGROUND with the widespread application of computer network systems in the medical field,the plan-do-check-action(PDCA)and the international classification of diseases tenth edition(ICD-10)coding system have also achieved favorable results in clinical medical record management.However,research on their combined application is relatively lacking.Objective:it was to explore the impact of network systems and PDCA management mode on ICD-10 encoding.Material and Method:a retrospective collection of 768 discharged medical records from the Medical Record Management Department of Meishan People’s Hospital was conducted.They were divided into a control group(n=232)and an observation group(n=536)based on whether the PDCA management mode was implemented.The two sets of coding accuracy,time spent,case completion rate,satisfaction,and other indicators were compared.AIM To study the adoption of network and PDCA in the ICD-10.METHODS A retrospective collection of 768 discharged medical records from the Medical Record Management Department of Meishan People’s Hospital was conducted.They were divided into a control group(n=232)and an observation group(n=536)based on whether the PDCA management mode was implemented.The two sets of coding accuracy,time spent,case completion rate,satisfaction,and other indicators were compared.RESULTS In the 3,6,12,18,and 24 months of PDCA cycle management mode,the coding accuracy and medical record completion rate were higher,and the coding time was lower in the observation group as against the controls(P<0.05).The satisfaction of coders(80.22%vs 53.45%)and patients(84.89%vs 51.72%)in the observation group was markedly higher as against the controls(P<0.05).CONCLUSION The combination of computer networks and PDCA can improve the accuracy,efficiency,completion rate,and satisfaction of ICD-10 coding.展开更多
Pattern recognition is critical to map data handling and their applications.This study presents a model that combines the Shape Context(SC)descriptor and Graph Convolutional Neural Network(GCNN)to classify the pattern...Pattern recognition is critical to map data handling and their applications.This study presents a model that combines the Shape Context(SC)descriptor and Graph Convolutional Neural Network(GCNN)to classify the patterns of interchanges,which are indispensable parts of urban road networks.In the SC-GCNN model,an interchange is modeled as a graph,wherein nodes and edges represent the interchange segments and their connections,respectively.Then,a novel SC descriptor is implemented to describe the contextual information of each interchange segment and serve as descriptive features of graph nodes.Finally,a GCNN is designed by combining graph convolution and pooling operations to process the constructed graphs and classify the interchange patterns.The SC-GCNN model was validated using interchange samples obtained from the road networks of 15 cities downloaded from OpenStreetMap.The classification accuracy was 87.06%,which was higher than that of the image-based AlexNet,GoogLeNet,and Random Forest models.展开更多
A classification of multipartite entanglement is introduced for pure and mixed states.The classification is based on the distribution of entanglement between the qubits of a given system,with a mathematical framework ...A classification of multipartite entanglement is introduced for pure and mixed states.The classification is based on the distribution of entanglement between the qubits of a given system,with a mathematical framework used to characterize fully entangled states.Then we use current machine learning and deep learning techniques to automatically classify a random state of two,three,and four qubits without the need to compute the amount of the different types of entanglement in each run;rather this is done only in the learning process.The technique shows high,near-perfect,accuracy in the case of pure states.As expected,this accuracy drops,more or less,when dealing with mixed states and when increasing the number of parties involved.展开更多
Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware reso...Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline.展开更多
Optical and hybrid convolutional neural networks(CNNs)recently have become of increasing interest to achieve low-latency,low-power image classification,and computer-vision tasks.However,implementing optical nonlineari...Optical and hybrid convolutional neural networks(CNNs)recently have become of increasing interest to achieve low-latency,low-power image classification,and computer-vision tasks.However,implementing optical nonlinearity is challenging,and omitting the nonlinear layers in a standard CNN comes with a significant reduction in accuracy.We use knowledge distillation to compress modified AlexNet to a single linear convolutional layer and an electronic backend(two fully connected layers).We obtain comparable performance with a purely electronic CNN with five convolutional layers and three fully connected layers.We implement the convolution optically via engineering the point spread function of an inverse-designed meta-optic.Using this hybrid approach,we estimate a reduction in multiply-accumulate operations from 17M in a conventional electronic modified AlexNet to only 86 K in the hybrid compressed network enabled by the optical front end.This constitutes over 2 orders of magnitude of reduction in latency and power consumption.Furthermore,we experimentally demonstrate that the classification accuracy of the system exceeds 93%on the MNIST dataset of handwritten digits.展开更多
基金supported by the National Key Research and Development Program of China No.2023YFA1009500.
文摘With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based on GNN can deal with encrypted traffic well. However, existing GNN-based approaches ignore the relationship between client or server packets. In this paper, we design a network traffic topology based on GCN, called Flow Mapping Graph (FMG). FMG establishes sequential edges between vertexes by the arrival order of packets and establishes jump-order edges between vertexes by connecting packets in different bursts with the same direction. It not only reflects the time characteristics of the packet but also strengthens the relationship between the client or server packets. According to FMG, a Traffic Mapping Classification model (TMC-GCN) is designed, which can automatically capture and learn the characteristics and structure information of the top vertex in FMG. The TMC-GCN model is used to classify the encrypted traffic. The encryption stream classification problem is transformed into a graph classification problem, which can effectively deal with data from different data sources and application scenarios. By comparing the performance of TMC-GCN with other classical models in four public datasets, including CICIOT2023, ISCXVPN2016, CICAAGM2017, and GraphDapp, the effectiveness of the FMG algorithm is verified. The experimental results show that the accuracy rate of the TMC-GCN model is 96.13%, the recall rate is 95.04%, and the F1 rate is 94.54%.
文摘The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and historical context,DL offers a powerful complement by enhancing the speed,objectivity,and precision of the classification process.This research explores the significance of image data augmentation techniques in optimizing the performance of convolutional neural networks(CNNs)for geological image analysis,particularly in the classification of igneous,metamorphic,and sedimentary rock types from rock thin section(RTS)images.This study primarily focuses on classic image augmentation techniques and evaluates their impact on model accuracy and precision.Results demonstrate that augmentation techniques like Equalize significantly enhance the model's classification capabilities,achieving an F1-Score of 0.9869 for igneous rocks,0.9884 for metamorphic rocks,and 0.9929 for sedimentary rocks,representing improvements compared to the baseline original results.Moreover,the weighted average F1-Score across all classes and techniques is 0.9886,indicating an enhancement.Conversely,methods like Distort lead to decreased accuracy and F1-Score,with an F1-Score of 0.949 for igneous rocks,0.954 for metamorphic rocks,and 0.9416 for sedimentary rocks,exacerbating the performance compared to the baseline.The study underscores the practicality of image data augmentation in geological image classification and advocates for the adoption of DL methods in this domain for automation and improved results.The findings of this study can benefit various fields,including remote sensing,mineral exploration,and environmental monitoring,by enhancing the accuracy of geological image analysis both for scientific research and industrial applications.
基金supported by National Natural Science Foundation of China(62473341)Key Technologies R&D Program of Henan Province(242102211071,252102211086,252102210166).
文摘Network traffic classification is a crucial research area aimed at improving quality of service,simplifying network management,and enhancing network security.To address the growing complexity of cryptography,researchers have proposed various machine learning and deep learning approaches to tackle this challenge.However,existing mainstream methods face several general issues.On one hand,the widely used Transformer architecture exhibits high computational complexity,which negatively impacts its efficiency.On the other hand,traditional methods are often unreliable in traffic representation,frequently losing important byte information while retaining unnecessary biases.To address these problems,this paper introduces the Swin Transformer architecture into the domain of network traffic classification and proposes the NetST(Network Swin Transformer)model.This model improves the Swin Transformer to better accommodate the characteristics of network traffic,effectively addressing efficiency issues.Furthermore,this paper presents a traffic representation scheme designed to extract meaningful information from large volumes of traffic while minimizing bias.We integrate four datasets relevant to network traffic classification for our experiments,and the results demonstrate that NetST achieves a high accuracy rate while maintaining low memory usage.
基金supported by Natural Science Foundation of Heilongjiang Province of China(SS2021C005)Province Key Research and Development Program of Heilongjiang Province of China(GZ20220121)the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences.
文摘Rapid,accurate seed classification of soybean varieties is needed for product quality control.We describe a hyperspectral image-based deep-learning model called Dual Attention Feature Fusion Networks(DAFFnet),which sequentially applies 3D Convolutional Neural Network(CNN)and 2D CNN.A fusion attention mechanism module in 2D CNN permits the model to capture local and global feature information by combining with Convolution Block Attention Module(CBAM)and Mobile Vision Transformer(MViT),outperforming conventional hyperspectral image classification models in seed classification.
基金supported in part by the National Natural Science Foundations of China(No.61801214)the Postgraduate Research Practice Innovation Program of NUAA(No.xcxjh20231504)。
文摘Hyperspectral image(HSI)classification is crucial for numerous remote sensing applications.Traditional deep learning methods may miss pixel relationships and context,leading to inefficiencies.This paper introduces the spectral band graph convolutional and attention-enhanced CNN joint network(SGCCN),a novel approach that harnesses the power of spectral band graph convolutions for capturing long-range relationships,utilizes local perception of attention-enhanced multi-level convolutions for local spatial feature and employs a dynamic attention mechanism to enhance feature extraction.The SGCCN integrates spectral and spatial features through a self-attention fusion network,significantly improving classification accuracy and efficiency.The proposed method outperforms existing techniques,demonstrating its effectiveness in handling the challenges associated with HSI data.
基金supported by the National Natural Science Foundation of China(62276049,61701078,61872068,and 62006038)the Natural Science Foundation of Sichuan Province(2025ZNSFSC0487)+3 种基金the Science and Technology Innovation 2030-Brain Science and Brain-Inspired Intelligence Project(2021ZD0200200)the National Key R&D Program of China(2023YFE0118600)Sichuan Province Science and Technology Support Program(2019YJ0193,2021YFG0126,2021YFG0366,and 2022YFS0180)Medico-Engineering Cooperation Funds from the University of Electronic Science and Technology of China(ZYGX2021YGLH014).
文摘Schizophrenia(SZ)stands as a severe psychiatric disorder.This study applied diffusion tensor imaging(DTI)data in conjunction with graph neural networks to distinguish SZ patients from normal controls(NCs)and showcases the superior performance of a graph neural network integrating combined fractional anisotropy and fiber number brain network features,achieving an accuracy of 73.79%in distinguishing SZ patients from NCs.Beyond mere discrimination,our study delved deeper into the advantages of utilizing white matter brain network features for identifying SZ patients through interpretable model analysis and gene expression analysis.These analyses uncovered intricate interrelationships between brain imaging markers and genetic biomarkers,providing novel insights into the neuropathological basis of SZ.In summary,our findings underscore the potential of graph neural networks applied to multimodal DTI data for enhancing SZ detection through an integrated analysis of neuroimaging and genetic features.
基金supported by the National Natural Science Foundation of China(61962016)the Ministry of Science and Technology of China(G2022033002L)+1 种基金National Natural Science Foundation of Guangxi(2022JJA170057)Guangxi Education Department’s Project on Improving the Basic Research Ability of Young and Middleaged Teachers in Universities(2023ky0812,Research on Statistical Network Delay Predictions in Large-scale SDNs).
文摘Accurate early classification of elephant flows(elephants)is important for network management and resource optimization.Elephant models,mainly based on the byte count of flows,can always achieve high accuracy,but not in a time-efficient manner.The time efficiency becomes even worse when the flows to be classified are sampled by flow entry timeout over Software-Defined Networks(SDNs)to achieve a better resource efficiency.This paper addresses this situation by combining co-training and Reinforcement Learning(RL)to enable a closed-loop classification approach that divides the entire classification process into episodes,each involving two elephant models.One predicts elephants and is retrained by a selection of flows automatically labeled online by the other.RL is used to formulate a reward function that estimates the values of the possible actions based on the current states of both models and further adjusts the ratio of flows to be labeled in each phase.Extensive evaluation based on real traffic traces shows that the proposed approach can stably predict elephants using the packets received in the first 10% of their lifetime with an accuracy of over 80%,and using only about 10% more control channel bandwidth than the baseline over the evolved SDNs.
基金supported by the National Key Research and Development Program of China No.2023YFB2705000.
文摘With the rise of encrypted traffic,traditional network analysis methods have become less effective,leading to a shift towards deep learning-based approaches.Among these,multimodal learning-based classification methods have gained attention due to their ability to leverage diverse feature sets from encrypted traffic,improving classification accuracy.However,existing research predominantly relies on late fusion techniques,which hinder the full utilization of deep features within the data.To address this limitation,we propose a novel multimodal encrypted traffic classification model that synchronizes modality fusion with multiscale feature extraction.Specifically,our approach performs real-time fusion of modalities at each stage of feature extraction,enhancing feature representation at each level and preserving inter-level correlations for more effective learning.This continuous fusion strategy improves the model’s ability to detect subtle variations in encrypted traffic,while boosting its robustness and adaptability to evolving network conditions.Experimental results on two real-world encrypted traffic datasets demonstrate that our method achieves a classification accuracy of 98.23% and 97.63%,outperforming existing multimodal learning-based methods.
基金supported by an Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korean government(MSIT)(RS-2024-00438156,Development of Security Resilience Technology Based on Network Slicing Services in a 5G Specialized Network).
文摘This study proposes an efficient traffic classification model to address the growing threat of distributed denial-of-service(DDoS)attacks in 5th generation technology standard(5G)slicing networks.The proposed method utilizes an ensemble of encoder components from multiple autoencoders to compress and extract latent representations from high-dimensional traffic data.These representations are then used as input for a support vector machine(SVM)-based metadata classifier,enabling precise detection of attack traffic.This architecture is designed to achieve both high detection accuracy and training efficiency,while adapting flexibly to the diverse service requirements and complexity of 5G network slicing.The model was evaluated using the DDoS Datasets 2022,collected in a simulated 5G slicing environment.Experiments were conducted under both class-balanced and class-imbalanced conditions.In the balanced setting,the model achieved an accuracy of 89.33%,an F1-score of 88.23%,and an Area Under the Curve(AUC)of 89.45%.In the imbalanced setting(attack:normal 7:3),the model maintained strong robustness,=achieving a recall of 100%and an F1-score of 90.91%,demonstrating its effectiveness in diverse real-world scenarios.Compared to existing AI-based detection methods,the proposed model showed higher precision,better handling of class imbalance,and strong generalization performance.Moreover,its modular structure is well-suited for deployment in containerized network function(NF)environments,making it a practical solution for real-world 5G infrastructure.These results highlight the potential of the proposed approach to enhance both the security and operational resilience of 5G slicing networks.
基金funded by Vietnam National Foundation for Science and Technology Development(NAFOSTED)under grant number:NCUD.02-2024.11.
文摘This study presents CGB-Net,a novel deep learning architecture specifically developed for classifying twelve distinct sleep positions using a single abdominal accelerometer,with direct applicability to gastroesophageal reflux disease(GERD)monitoring.Unlike conventional approaches limited to four basic postures,CGB-Net enables fine-grained classification of twelve clinically relevant sleep positions,providing enhanced resolution for personalized health assessment.The architecture introduces a unique integration of three complementary components:1D Convolutional Neural Networks(1D-CNN)for efficient local spatial feature extraction,Gated Recurrent Units(GRU)to capture short-termtemporal dependencieswith reduced computational complexity,and Bidirectional Long Short-Term Memory(Bi-LSTM)networks for modeling long-term temporal context in both forward and backward directions.This complementary integration allows the model to better represent dynamic and contextual information inherent in the sensor data,surpassing the performance of simpler or previously published hybrid models.Experiments were conducted on a benchmark dataset consisting of 18 volunteers(age range:19–24 years,mean 20.56±1.1 years;height 164.78±8.18 cm;weight 55.39±8.30 kg;BMI 20.24±2.04),monitored via a single abdominal accelerometer.A subjectindependent evaluation protocol with multiple random splits was employed to ensure robustness and generalizability.The proposed model achieves an average Accuracy of 87.60% and F1-score of 83.38%,both reported with standard deviations over multiple runs,outperforming several baseline and state-of-the-art methods.By releasing the dataset publicly and detailing themodel design,this work aims to facilitate reproducibility and advance research in sleep posture classification for clinical applications.
基金supported by the National Natural Science Foundation of China(No.62027801).
文摘In modern wireless communication and electromagnetic control,automatic modulationclassification(AMC)of orthogonal frequency division multiplexing(OFDM)signals plays animportant role.However,under Doppler frequency shift and complex multipath channel conditions,extracting discriminative features from high-order modulation signals and ensuring model inter-pretability remain challenging.To address these issues,this paper proposes a Fourier attention net-work(FAttNet),which combines an attention mechanism with a Fourier analysis network(FAN).Specifically,the method directly converts the input signal to the frequency domain using the FAN,thereby obtaining frequency features that reflect the periodic variations in amplitude and phase.Abuilt-in attention mechanism then automatically calculates the weights for each frequency band,focusing on the most discriminative components.This approach improves both classification accu-racy and model interpretability.Experimental validation was conducted via high-order modulationsimulation using an RF testbed.The results show that under three different Doppler frequencyshifts and complex multipath channel conditions,with a signal-to-noise ratio of 10 dB,the classifi-cation accuracy can reach 89.1%,90.4%and 90%,all of which are superior to the current main-stream methods.The proposed approach offers practical value for dynamic spectrum access and sig-nal security detection,and it makes important theoretical contributions to the application of deeplearning in complex electromagnetic signal recognition.
文摘Physiological signals such as electroencephalogram(EEG)signals are often corrupted by artifacts during the acquisition and processing.Some of these artifacts may deteriorate the essential properties of the signal that pertains to meaningful information.Most of these artifacts occur due to the involuntary movements or actions the human does during the acquisition process.So,it is recommended to eliminate these artifacts with signal processing approaches.This paper presents two mechanisms of classification and elimination of artifacts.In the first step,a customized deep network is employed to classify clean EEG signals and artifact-included signals.The classification is performed at the feature level,where common space pattern features are extracted with convolutional layers,and these features are later classified with a support vector machine classifier.In the second stage of the work,the artifact signals are decomposed with empirical mode decomposition,and they are then eliminated with the proposed adaptive thresholding mechanism where the threshold value changes for every intrinsic mode decomposition in the iterative mechanism.
基金the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2025).
文摘Leaf disease identification is one of the most promising applications of convolutional neural networks(CNNs).This method represents a significant step towards revolutionizing agriculture by enabling the quick and accurate assessment of plant health.In this study,a CNN model was specifically designed and tested to detect and categorize diseases on fig tree leaves.The researchers utilized a dataset of 3422 images,divided into four classes:healthy,fig rust,fig mosaic,and anthracnose.These diseases can significantly reduce the yield and quality of fig tree fruit.The objective of this research is to develop a CNN that can identify and categorize diseases in fig tree leaves.The data for this study was collected from gardens in the Amandi and Mamash Khail Bannu districts of the Khyber Pakhtunkhwa region in Pakistan.To minimize the risk of overfitting and enhance the model’s performance,early stopping techniques and data augmentation were employed.As a result,the model achieved a training accuracy of 91.53%and a validation accuracy of 90.12%,which are considered respectable.This comprehensive model assists farmers in the early identification and categorization of fig tree leaf diseases.Our experts believe that CNNs could serve as valuable tools for accurate disease classification and detection in precision agriculture.We recommend further research to explore additional data sources and more advanced neural networks to improve the model’s accuracy and applicability.Future research will focus on expanding the dataset by including new diseases and testing the model in real-world scenarios to enhance sustainable farming practices.
文摘In network traffic classification,it is important to understand the correlation between network traffic and its causal application,protocol,or service group,for example,in facilitating lawful interception,ensuring the quality of service,preventing application choke points,and facilitating malicious behavior identification.In this paper,we review existing network classification techniques,such as port-based identification and those based on deep packet inspection,statistical features in conjunction with machine learning,and deep learning algorithms.We also explain the implementations,advantages,and limitations associated with these techniques.Our review also extends to publicly available datasets used in the literature.Finally,we discuss existing and emerging challenges,as well as future research directions.
基金This study was supported by the Fundamental Research Funds for the Central Universities(No.2572023DJ02).
文摘Effective development and utilization of wood resources is critical.Wood modification research has become an integral dimension of wood science research,however,the similarities between modified wood and original wood render it challenging for accurate identification and classification using conventional image classification techniques.So,the development of efficient and accurate wood classification techniques is inevitable.This paper presents a one-dimensional,convolutional neural network(i.e.,BACNN)that combines near-infrared spectroscopy and deep learning techniques to classify poplar,tung,and balsa woods,and PVA,nano-silica-sol and PVA-nano silica sol modified woods of poplar.The results show that BACNN achieves an accuracy of 99.3%on the test set,higher than the 52.9%of the BP neural network and 98.7%of Support Vector Machine compared with traditional machine learning methods and deep learning based methods;it is also higher than the 97.6%of LeNet,98.7%of AlexNet and 99.1%of VGGNet-11.Therefore,the classification method proposed offers potential applications in wood classification,especially with homogeneous modified wood,and it also provides a basis for subsequent wood properties studies.
文摘BACKGROUND with the widespread application of computer network systems in the medical field,the plan-do-check-action(PDCA)and the international classification of diseases tenth edition(ICD-10)coding system have also achieved favorable results in clinical medical record management.However,research on their combined application is relatively lacking.Objective:it was to explore the impact of network systems and PDCA management mode on ICD-10 encoding.Material and Method:a retrospective collection of 768 discharged medical records from the Medical Record Management Department of Meishan People’s Hospital was conducted.They were divided into a control group(n=232)and an observation group(n=536)based on whether the PDCA management mode was implemented.The two sets of coding accuracy,time spent,case completion rate,satisfaction,and other indicators were compared.AIM To study the adoption of network and PDCA in the ICD-10.METHODS A retrospective collection of 768 discharged medical records from the Medical Record Management Department of Meishan People’s Hospital was conducted.They were divided into a control group(n=232)and an observation group(n=536)based on whether the PDCA management mode was implemented.The two sets of coding accuracy,time spent,case completion rate,satisfaction,and other indicators were compared.RESULTS In the 3,6,12,18,and 24 months of PDCA cycle management mode,the coding accuracy and medical record completion rate were higher,and the coding time was lower in the observation group as against the controls(P<0.05).The satisfaction of coders(80.22%vs 53.45%)and patients(84.89%vs 51.72%)in the observation group was markedly higher as against the controls(P<0.05).CONCLUSION The combination of computer networks and PDCA can improve the accuracy,efficiency,completion rate,and satisfaction of ICD-10 coding.
基金supported by the National Natural Science Foundation of China[grant numbers 42071450 and 42001415].
文摘Pattern recognition is critical to map data handling and their applications.This study presents a model that combines the Shape Context(SC)descriptor and Graph Convolutional Neural Network(GCNN)to classify the patterns of interchanges,which are indispensable parts of urban road networks.In the SC-GCNN model,an interchange is modeled as a graph,wherein nodes and edges represent the interchange segments and their connections,respectively.Then,a novel SC descriptor is implemented to describe the contextual information of each interchange segment and serve as descriptive features of graph nodes.Finally,a GCNN is designed by combining graph convolution and pooling operations to process the constructed graphs and classify the interchange patterns.The SC-GCNN model was validated using interchange samples obtained from the road networks of 15 cities downloaded from OpenStreetMap.The classification accuracy was 87.06%,which was higher than that of the image-based AlexNet,GoogLeNet,and Random Forest models.
基金supported through computational resources of HPC-MARWAN(www.marwan.ma/hpc)provided by CNRST,Rabat,Morocco。
文摘A classification of multipartite entanglement is introduced for pure and mixed states.The classification is based on the distribution of entanglement between the qubits of a given system,with a mathematical framework used to characterize fully entangled states.Then we use current machine learning and deep learning techniques to automatically classify a random state of two,three,and four qubits without the need to compute the amount of the different types of entanglement in each run;rather this is done only in the learning process.The technique shows high,near-perfect,accuracy in the case of pure states.As expected,this accuracy drops,more or less,when dealing with mixed states and when increasing the number of parties involved.
文摘Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline.
基金supported by the National Science Foundation(Grant Nos.NSF-ECCS-2127235 and EFRI-BRAID-2223495)Part of this work was conducted at the Washington Nanofabrication Facility/Molecular Analysis Facility,a National Nanotechnology Coordinated Infrastructure(NNCI)site at the University of Washington with partial support from the National Science Foundation(Grant Nos.NNCI-1542101 and NNCI-2025489).
文摘Optical and hybrid convolutional neural networks(CNNs)recently have become of increasing interest to achieve low-latency,low-power image classification,and computer-vision tasks.However,implementing optical nonlinearity is challenging,and omitting the nonlinear layers in a standard CNN comes with a significant reduction in accuracy.We use knowledge distillation to compress modified AlexNet to a single linear convolutional layer and an electronic backend(two fully connected layers).We obtain comparable performance with a purely electronic CNN with five convolutional layers and three fully connected layers.We implement the convolution optically via engineering the point spread function of an inverse-designed meta-optic.Using this hybrid approach,we estimate a reduction in multiply-accumulate operations from 17M in a conventional electronic modified AlexNet to only 86 K in the hybrid compressed network enabled by the optical front end.This constitutes over 2 orders of magnitude of reduction in latency and power consumption.Furthermore,we experimentally demonstrate that the classification accuracy of the system exceeds 93%on the MNIST dataset of handwritten digits.