期刊文献+
共找到612篇文章
< 1 2 31 >
每页显示 20 50 100
基于改进LeNet-5模型的旋转机械故障诊断研究
1
作者 张玉华 刚润振 《自动化与仪器仪表》 2025年第7期73-78,共6页
旋转机械作为工业中应用最为广泛的机械设备,其运行的稳定可靠程度,直接影响到工业生产效率和质量。针对传统机械故障诊断方法中存在的适应性低以及无法实现对于复杂故障识别的问题。研究提出了基于改进LeNet-5模型的故障诊断模型,改变... 旋转机械作为工业中应用最为广泛的机械设备,其运行的稳定可靠程度,直接影响到工业生产效率和质量。针对传统机械故障诊断方法中存在的适应性低以及无法实现对于复杂故障识别的问题。研究提出了基于改进LeNet-5模型的故障诊断模型,改变卷积形式,加入改进的激活函数融合多传感器;同时为了防止模型过过度拟合,研究在改进模型中引入正则化技术,通过类激活映射技术来展示卷积特征和故障信号。最终实现对转子系统故障的诊断与研究。精度对比实验显示,向量机模型和邻近模型的精度均小于45%,卷积网络模型精度小于50%,随着实验次数的增加,精度也小于60%。改进模型的精度一直处于90%左右。故障分类实验中,改进模型的准确率高达99.16%。因此,研究提出的故障检测方法对故障的检测精度高,准确率有保证,对旋转机的机械故障检验研究应用十分有意义。 展开更多
关键词 lenet-5 多传感器:故障诊断 精度对比
原文传递
Secure Channel Estimation Using Norm Estimation Model for 5G Next Generation Wireless Networks
2
作者 Khalil Ullah Song Jian +4 位作者 Muhammad Naeem Ul Hassan Suliman Khan Mohammad Babar Arshad Ahmad Shafiq Ahmad 《Computers, Materials & Continua》 SCIE EI 2025年第1期1151-1169,共19页
The emergence of next generation networks(NextG),including 5G and beyond,is reshaping the technological landscape of cellular and mobile networks.These networks are sufficiently scaled to interconnect billions of user... The emergence of next generation networks(NextG),including 5G and beyond,is reshaping the technological landscape of cellular and mobile networks.These networks are sufficiently scaled to interconnect billions of users and devices.Researchers in academia and industry are focusing on technological advancements to achieve highspeed transmission,cell planning,and latency reduction to facilitate emerging applications such as virtual reality,the metaverse,smart cities,smart health,and autonomous vehicles.NextG continuously improves its network functionality to support these applications.Multiple input multiple output(MIMO)technology offers spectral efficiency,dependability,and overall performance in conjunctionwithNextG.This article proposes a secure channel estimation technique in MIMO topology using a norm-estimation model to provide comprehensive insights into protecting NextG network components against adversarial attacks.The technique aims to create long-lasting and secure NextG networks using this extended approach.The viability of MIMO applications and modern AI-driven methodologies to combat cybersecurity threats are explored in this research.Moreover,the proposed model demonstrates high performance in terms of reliability and accuracy,with a 20%reduction in the MalOut-RealOut-Diff metric compared to existing state-of-the-art techniques. 展开更多
关键词 Next generation networks massive mimo communication network artificial intelligence 5G adversarial attacks channel estimation information security
在线阅读 下载PDF
Intelligent Management of Resources for Smart Edge Computing in 5G Heterogeneous Networks Using Blockchain and Deep Learning
3
作者 Mohammad Tabrez Quasim Khair Ul Nisa +3 位作者 Mohammad Shahid Husain Abakar Ibraheem Abdalla Aadam Mohammed Waseequ Sheraz Mohammad Zunnun Khan 《Computers, Materials & Continua》 2025年第7期1169-1187,共19页
Smart edge computing(SEC)is a novel paradigm for computing that could transfer cloud-based applications to the edge network,supporting computation-intensive services like face detection and natural language processing... Smart edge computing(SEC)is a novel paradigm for computing that could transfer cloud-based applications to the edge network,supporting computation-intensive services like face detection and natural language processing.A core feature of mobile edge computing,SEC improves user experience and device performance by offloading local activities to edge processors.In this framework,blockchain technology is utilized to ensure secure and trustworthy communication between edge devices and servers,protecting against potential security threats.Additionally,Deep Learning algorithms are employed to analyze resource availability and optimize computation offloading decisions dynamically.IoT applications that require significant resources can benefit from SEC,which has better coverage.Although access is constantly changing and network devices have heterogeneous resources,it is not easy to create consistent,dependable,and instantaneous communication between edge devices and their processors,specifically in 5G Heterogeneous Network(HN)situations.Thus,an Intelligent Management of Resources for Smart Edge Computing(IMRSEC)framework,which combines blockchain,edge computing,and Artificial Intelligence(AI)into 5G HNs,has been proposed in this paper.As a result,a unique dual schedule deep reinforcement learning(DS-DRL)technique has been developed,consisting of a rapid schedule learning process and a slow schedule learning process.The primary objective is to minimize overall unloading latency and system resource usage by optimizing computation offloading,resource allocation,and application caching.Simulation results demonstrate that the DS-DRL approach reduces task execution time by 32%,validating the method’s effectiveness within the IMRSEC framework. 展开更多
关键词 Smart edge computing heterogeneous networks blockchain 5G network internet of things artificial intelligence
在线阅读 下载PDF
Analysis of Feasible Solutions for Railway 5G Network Security Assessment
4
作者 XU Hang SUN Bin +1 位作者 DING Jianwen WANG Wei 《ZTE Communications》 2025年第3期59-70,共12页
The Fifth Generation of Mobile Communications for Railways(5G-R)brings significant opportunities for the rail industry.However,alongside the potential and benefits of the railway 5G network are complex security challe... The Fifth Generation of Mobile Communications for Railways(5G-R)brings significant opportunities for the rail industry.However,alongside the potential and benefits of the railway 5G network are complex security challenges.Ensuring the security and reliability of railway 5G networks is therefore essential.This paper presents a detailed examination of security assessment techniques for railway 5G networks,focusing on addressing the unique security challenges in this field.In this paper,various security requirements in railway 5G networks are analyzed,and specific processes and methods for conducting comprehensive security risk assessments are presented.This study provides a framework for securing railway 5G network development and ensuring its long-term sustainability. 展开更多
关键词 railway 5G network 5G-R information security risk assessment penetration testing
在线阅读 下载PDF
基于LeNet-5网络的交通路标识别优化算法
5
作者 贾寅成 杨子建 +1 位作者 彭桂力 韩永宁 《物联网技术》 2025年第15期18-22,共5页
交通路标识别作为辅助驾驶与无人驾驶领域的重要技术,在保障汽车行驶安全方面起着重要作用。随着深度学习的发展,卷积神经网络在图像识别领域得到成功应用,其识别精度及效率已远远超过传统图像识别算法。针对恶劣天气不利于交通标志图... 交通路标识别作为辅助驾驶与无人驾驶领域的重要技术,在保障汽车行驶安全方面起着重要作用。随着深度学习的发展,卷积神经网络在图像识别领域得到成功应用,其识别精度及效率已远远超过传统图像识别算法。针对恶劣天气不利于交通标志图像获取、车载摄像头获取的图像清晰度较低等问题,提出了一种基于LeNet-5网络的交通路标识别优化算法。首先对数据集进行尺寸归一化、灰度化和直方图均衡化等预处理;然后对LeNet-5模型结构进行调整,使用4个卷积层、2个池化层和2个全连接层增加模型深度,以提升网络性能;接着使用LeakyReLU激活函数代替Sigmoid激活函数,解决梯度消失现象,同时引入余弦退火学习率策略。通过不断优化模型参数,使得该算法在德国交通标志数据集GTSRB上获得了98.77%的准确率,相较于传统LeNet-5网络,该优化算法在识别性能上展现出显著优势。 展开更多
关键词 卷积神经网络 深度学习 交通路标识别 lenet-5网络 算法优化 无人驾驶
在线阅读 下载PDF
Research on Railway 5G-R Network Security Technology
6
作者 ZHANG Song WANG Wei +3 位作者 TIAN Zhiji MA Jun SUN Bin SHEN Meiying(Translated) 《Chinese Railways》 2025年第1期29-36,共8页
The 5G-R network is on the verge of entering the construction stage.Given that the dedicated network for railways is closely linked to train operation safety,there are extremely high requirements for network security.... The 5G-R network is on the verge of entering the construction stage.Given that the dedicated network for railways is closely linked to train operation safety,there are extremely high requirements for network security.As a result,there is an urgent need to conduct research on 5G-R network security.To comprehensively enhance the end-to-end security protection of the 5G-R network,this study summarized the security requirements of the GSM-R network,analyzed the security risks and requirements faced by the 5G-R network,and proposed an overall 5G-R network security architecture.The security technical schemes were detailed from various aspects:5G-R infrastructure security,terminal access security,networking security,operation and maintenance security,data security,and network boundary security.Additionally,the study proposed leveraging the 5G-R security situation awareness system to achieve a comprehensive upgrade from basic security technologies to endogenous security capabilities within the 5G-R system. 展开更多
关键词 5G-R network security security risks endogenous security situational awareness
原文传递
5G network planning in connecting urban areas for trains service using a genetic algorithm
7
作者 Evangelos D.Spyrou Vassilios Kappatos 《High-Speed Railway》 2025年第2期155-162,共8页
The adoption of 5G for Railways(5G-R)is expanding,particularly in high-speed trains,due to the benefits offered by 5G technology.High-speed trains must provide seamless connectivity and Quality of Service(QoS)to ensur... The adoption of 5G for Railways(5G-R)is expanding,particularly in high-speed trains,due to the benefits offered by 5G technology.High-speed trains must provide seamless connectivity and Quality of Service(QoS)to ensure passengers have a satisfactory experience throughout their journey.Installing base stations along urban environments can improve coverage but can dramatically reduce the experience of users due to interference.In particular,when a user with a mobile phone is a passenger in a high speed train traversing between urban centres,the coverage and the 5G resources in general need to be adequate not to diminish her experience of the service.The utilization of macro,pico,and femto cells may optimize the utilization of 5G resources.In this paper,a Genetic Algorithm(GA)-based approach to address the challenges of 5G network planning for 5G-R services is presented.The network is divided into three cell types,macro,pico,and femto cells—and the optimization process is designed to achieve a balance between key objectives:providing comprehensive coverage,minimizing interference,and maximizing energy efficiency.The study focuses on environments with high user density,such as high-speed trains,where reliable and high-quality connectivity is critical.Through simulations,the effectiveness of the GA-driven framework in optimizing coverage and performance in such scenarios is demonstrated.The algorithm is compared with the Particle Swarm Optimisation(PSO)and the Simulated Annealing(SA)methods and interesting insights emerged.The GA offers a strong balance between coverage and efficiency,achieving significantly higher coverage than PSO while maintaining competitive energy efficiency and interference levels.Its steady fitness improvement and adaptability make it well-suited for scenarios where wide coverage is a priority alongside acceptable performance trade-offs. 展开更多
关键词 High speed train 5G network planning Genetic algorithm
在线阅读 下载PDF
Enhancing Bandwidth Allocation Efficiency in 5G Networks with Artificial Intelligence
8
作者 Sarmad K.Ibrahim Saif A.Abdulhussien +1 位作者 Hazim M.ALkargole Hassan H.Qasim 《Computers, Materials & Continua》 2025年第9期5223-5238,共16页
The explosive growth of data traffic and heterogeneous service requirements of 5G networks—covering Enhanced Mobile Broadband(eMBB),Ultra-Reliable Low Latency Communication(URLLC),and Massive Machine Type Communicati... The explosive growth of data traffic and heterogeneous service requirements of 5G networks—covering Enhanced Mobile Broadband(eMBB),Ultra-Reliable Low Latency Communication(URLLC),and Massive Machine Type Communication(mMTC)—present tremendous challenges to conventional methods of bandwidth allocation.A new deep reinforcement learning-based(DRL-based)bandwidth allocation system for real-time,dynamic management of 5G radio access networks is proposed in this paper.Unlike rule-based and static strategies,the proposed system dynamically updates itself according to shifting network conditions such as traffic load and channel conditions to maximize the achievable throughput,fairness,and compliance with QoS requirements.By using extensive simulations mimicking real-world 5G scenarios,the proposed DRL model outperforms current baselines like Long Short-Term Memory(LSTM),linear regression,round-robin,and greedy algorithms.It attains 90%–95%of the maximum theoretical achievable throughput and nearly twice the conventional equal allocation.It is also shown to react well under delay and reliability constraints,outperforming round-robin(hindered by excessive delay and packet loss)and proving to be more efficient than greedy approaches.In conclusion,the efficiency of DRL in optimizing the allocation of bandwidth is highlighted,and its potential to realize self-optimizing,Artificial Intelligence-assisted(AI-assisted)resource management in 5G as well as upcoming 6G networks is revealed. 展开更多
关键词 5G bandwidth allocation DRL for 5G AI-based resource management QoS optimization for 5G networks dynamic spectrum allocation SON
在线阅读 下载PDF
ScalaDetect-5G:Ultra High-Precision Highly Elastic Deep Intrusion Detection System for 5G Network
9
作者 Shengjia Chang Baojiang Cui Shaocong Feng 《Computer Modeling in Engineering & Sciences》 2025年第9期3805-3827,共23页
With the rapid advancement of mobile communication networks,key technologies such as Multi-access Edge Computing(MEC)and Network Function Virtualization(NFV)have enhanced the quality of service for 5G users but have a... With the rapid advancement of mobile communication networks,key technologies such as Multi-access Edge Computing(MEC)and Network Function Virtualization(NFV)have enhanced the quality of service for 5G users but have also significantly increased the complexity of network threats.Traditional static defense mechanisms are inadequate for addressing the dynamic and heterogeneous nature of modern attack vectors.To overcome these challenges,this paper presents a novel algorithmic framework,SD-5G,designed for high-precision intrusion detection in 5G environments.SD-5G adopts a three-stage architecture comprising traffic feature extraction,elastic representation,and adaptive classification.Specifically,an enhanced Concrete Autoencoder(CAE)is employed to reconstruct and compress high-dimensional network traffic features,producing compact and expressive representations suitable for large-scale 5G deployments.To further improve accuracy in ambiguous traffic classification,a Residual Convolutional Long Short-Term Memory model with an attention mechanism(ResCLA)is introduced,enabling multi-level modeling of spatial–temporal dependencies and effective detection of subtle anomalies.Extensive experiments on benchmark datasets—including 5G-NIDD,CIC-IDS2017,ToN-IoT,and BoT-IoT—demonstrate that SD-5G consistently achieves F1 scores exceeding 99.19%across diverse network environments,indicating strong generalization and real-time deployment capabilities.Overall,SD-5G achieves a balance between detection accuracy and deployment efficiency,offering a scalable,flexible,and effective solution for intrusion detection in 5G and next-generation networks. 展开更多
关键词 5G security network intrusion detection feature engineering deep learning
在线阅读 下载PDF
Attention Driven YOLOv5 Network for Enhanced Landslide Detection Using Satellite Imagery of Complex Terrain
10
作者 Naveen Chandra Himadri Vaidya +2 位作者 Suraj Sawant Shilpa Gite Biswajeet Pradhan 《Computer Modeling in Engineering & Sciences》 2025年第6期3351-3375,共25页
Landslide hazard detection is a prevalent problem in remote sensing studies,particularly with the technological advancement of computer vision.With the continuous and exceptional growth of the computational environmen... Landslide hazard detection is a prevalent problem in remote sensing studies,particularly with the technological advancement of computer vision.With the continuous and exceptional growth of the computational environment,the manual and partially automated procedure of landslide detection from remotely sensed images has shifted toward automatic methods with deep learning.Furthermore,attention models,driven by human visual procedures,have become vital in natural hazard-related studies.Hence,this paper proposes an enhanced YOLOv5(You Only Look Once version 5)network for improved satellite-based landslide detection,embedded with two popular attention modules:CBAM(Convolutional Block Attention Module)and ECA(Efficient Channel Attention).These attention mechanisms are incorporated into the backbone and neck of the YOLOv5 architecture,distinctly,and evaluated across three YOLOv5 variants:nano(n),small(s),and medium(m).The experiments use opensource satellite images from three distinct regions with complex terrain.The standard metrics,including F-score,precision,recall,and mean average precision(mAP),are computed for quantitative assessment.The YOLOv5n+CBAM demonstrates the most optimal results with an F-score of 77.2%,confirming its effectiveness.The suggested attention-driven architecture augments detection accuracy,supporting post-landslide event assessment and recovery. 展开更多
关键词 Attention mechanism convolutional neural networks LANDSLIDES remote sensing images YOLOv5
在线阅读 下载PDF
Ensemble Encoder-Based Attack Traffic Classification for Secure 5G Slicing Networks
11
作者 Min-Gyu Kim Hwankuk Kim 《Computer Modeling in Engineering & Sciences》 2025年第5期2391-2415,共25页
This study proposes an efficient traffic classification model to address the growing threat of distributed denial-of-service(DDoS)attacks in 5th generation technology standard(5G)slicing networks.The proposed method u... This study proposes an efficient traffic classification model to address the growing threat of distributed denial-of-service(DDoS)attacks in 5th generation technology standard(5G)slicing networks.The proposed method utilizes an ensemble of encoder components from multiple autoencoders to compress and extract latent representations from high-dimensional traffic data.These representations are then used as input for a support vector machine(SVM)-based metadata classifier,enabling precise detection of attack traffic.This architecture is designed to achieve both high detection accuracy and training efficiency,while adapting flexibly to the diverse service requirements and complexity of 5G network slicing.The model was evaluated using the DDoS Datasets 2022,collected in a simulated 5G slicing environment.Experiments were conducted under both class-balanced and class-imbalanced conditions.In the balanced setting,the model achieved an accuracy of 89.33%,an F1-score of 88.23%,and an Area Under the Curve(AUC)of 89.45%.In the imbalanced setting(attack:normal 7:3),the model maintained strong robustness,=achieving a recall of 100%and an F1-score of 90.91%,demonstrating its effectiveness in diverse real-world scenarios.Compared to existing AI-based detection methods,the proposed model showed higher precision,better handling of class imbalance,and strong generalization performance.Moreover,its modular structure is well-suited for deployment in containerized network function(NF)environments,making it a practical solution for real-world 5G infrastructure.These results highlight the potential of the proposed approach to enhance both the security and operational resilience of 5G slicing networks. 展开更多
关键词 5G slicing networks attack traffic classification ensemble encoders autoencoder AI-based security
在线阅读 下载PDF
Key Agreement and Management Scheme Based on Blockchain for 5G-Enabled Vehicular Networks
12
作者 Wang Zhihua Wang Shuaibo +4 位作者 Wang Haofan Li Jiaze Yao Yizhe Wang Yongjian Yang Xiaolong 《China Communications》 2025年第3期270-287,共18页
5G technology has endowed mobile communication terminals with features such as ultrawideband access,low latency,and high reliability transmission,which can complete the network access and interconnection of a large nu... 5G technology has endowed mobile communication terminals with features such as ultrawideband access,low latency,and high reliability transmission,which can complete the network access and interconnection of a large number of devices,thus realizing richer application scenarios and constructing 5G-enabled vehicular networks.However,due to the vulnerability of wireless communication,vehicle privacy and communication security have become the key problems to be solved in vehicular networks.Moreover,the large-scale communication in the vehicular networks also makes the higher communication efficiency an inevitable requirement.In order to achieve efficient and secure communication while protecting vehicle privacy,this paper proposes a lightweight key agreement and key update scheme for 5G vehicular networks based on blockchain.Firstly,the key agreement is accomplished using certificateless public key cryptography,and based on the aggregate signature and the cooperation between the vehicle and the trusted authority,an efficient key updating method is proposed,which reduces the overhead and protects the privacy of the vehicle while ensuring the communication security.Secondly,by introducing blockchain and using smart contracts to load the vehicle public key table for key management,this meets the requirements of vehicle traceability and can dynamically track and revoke misbehaving vehicles.Finally,the formal security proof under the eck security model and the informal security analysis is conducted,it turns out that our scheme is more secure than other authentication schemes in the vehicular networks.Performance analysis shows that our scheme has lower overhead than existing schemes in terms of communication and computation. 展开更多
关键词 blockchain certificateless public key cryptography 5G vehicular networks key agreement key management
在线阅读 下载PDF
Learning-Based Delay Sensitive and Reliable Traffic Adaptation for DC-PLC and 5G Integrated Multi-Mode Heterogeneous Networks
13
作者 Tian Gexing Wang Ruiqiuyu +6 位作者 Pan Chao Zhou Zhenyu Yang Junzhong Zhao Chenkai Chen Bei Yang Sen Shahid Mumtaz 《China Communications》 2025年第4期65-80,共16页
Low-carbon smart parks achieve selfbalanced carbon emission and absorption through the cooperative scheduling of direct current(DC)-based distributed photovoltaic,energy storage units,and loads.Direct current power li... Low-carbon smart parks achieve selfbalanced carbon emission and absorption through the cooperative scheduling of direct current(DC)-based distributed photovoltaic,energy storage units,and loads.Direct current power line communication(DC-PLC)enables real-time data transmission on DC power lines.With traffic adaptation,DC-PLC can be integrated with other complementary media such as 5G to reduce transmission delay and improve reliability.However,traffic adaptation for DC-PLC and 5G integration still faces the challenges such as coupling between traffic admission control and traffic partition,dimensionality curse,and the ignorance of extreme event occurrence.To address these challenges,we propose a deep reinforcement learning(DRL)-based delay sensitive and reliable traffic adaptation algorithm(DSRTA)to minimize the total queuing delay under the constraints of traffic admission control,queuing delay,and extreme events occurrence probability.DSRTA jointly optimizes traffic admission control and traffic partition,and enables learning-based intelligent traffic adaptation.The long-term constraints are incorporated into both state and bound of drift-pluspenalty to achieve delay awareness and enforce reliability guarantee.Simulation results show that DSRTA has lower queuing delay and more reliable quality of service(QoS)guarantee than other state-of-the-art algorithms. 展开更多
关键词 DC-PLC and 5G integration multi-mode heterogeneous networks traffic adaptation traffic admission control traffic partition
在线阅读 下载PDF
基于卷积神经网络LeNet-5的车牌字符识别研究 被引量:154
14
作者 赵志宏 杨绍普 马增强 《系统仿真学报》 CAS CSCD 北大核心 2010年第3期638-641,共4页
将卷积神经网络LeNet-5引入到车牌字符识别中。为了适应目前中国车牌字符识别的需要,对传统的卷积神经网络LeNet-5的结构进行了改进,主要是改变输出单元的个数与增加卷积层C5特征图的个数。研究结果表明,改进后的LeNet-5比传统的LeNet-... 将卷积神经网络LeNet-5引入到车牌字符识别中。为了适应目前中国车牌字符识别的需要,对传统的卷积神经网络LeNet-5的结构进行了改进,主要是改变输出单元的个数与增加卷积层C5特征图的个数。研究结果表明,改进后的LeNet-5比传统的LeNet-5的识别率有所提高,识别率达到98.68%。另外,与BP神经网络进行了比较研究,从实验中可以看出在字符识别的正确率和识别速度上都优于BP神经网络。卷积神经网络在车牌识别中具有很好地应用前景。 展开更多
关键词 字符识别 车牌识别 卷积神经网络 lenet-5
原文传递
基于改进LeNet-5网络的交通标志识别方法 被引量:13
15
作者 汪贵平 盛广峰 +2 位作者 黄鹤 王会峰 王萍 《科学技术与工程》 北大核心 2018年第34期78-84,共7页
针对传统LeNet-5卷积神经网络用于交通标志等多种类识别任务中,存在识别正确率低、网络容易过拟合以及梯度消失等问题进行改进。引入Inception卷积模块组来提取目标丰富的特征,同时增加网络的深度。引入BN (batch normalization)层对输... 针对传统LeNet-5卷积神经网络用于交通标志等多种类识别任务中,存在识别正确率低、网络容易过拟合以及梯度消失等问题进行改进。引入Inception卷积模块组来提取目标丰富的特征,同时增加网络的深度。引入BN (batch normalization)层对输入批量样本进行规范化处理;同时改用性能更好的Relu激活函数,并使用全局池化层代替全连接层,合理改变卷积核的大小和数目。研究结果表明,改进LeNet-5网络能够有效解决过拟合和梯度消失等问题,具有较好的鲁棒性;网络识别率达到98. 5%以上,相比CNN (convolutional neural network)+SVM (support vector machine)提高了约5%,比传统的LeNet-5网络提高了3%。可见,改进后的LeNet-5网络图像识别的准确率得到显著提高。 展开更多
关键词 交通标志 lenet-5网络 卷积神经网络 准确率
在线阅读 下载PDF
基于LeNet-5模型的太阳能电池板缺陷识别分类 被引量:15
16
作者 吴涛 赖菲 《热力发电》 CAS 北大核心 2019年第3期120-125,共6页
太阳能电池板是光伏发电组件的核心部件,其质量的优劣直接关系安全发电和发电效率。因此,对太阳能电池板进行缺陷检测具有重要的实际价值。考虑到人工检测的低效性和高成本,本文提出利用在深度学习领域图像分类性能良好的卷积神经网络... 太阳能电池板是光伏发电组件的核心部件,其质量的优劣直接关系安全发电和发电效率。因此,对太阳能电池板进行缺陷检测具有重要的实际价值。考虑到人工检测的低效性和高成本,本文提出利用在深度学习领域图像分类性能良好的卷积神经网络对太阳能电池板图像进行自动识别分类。利用Tensorflow平台Tensorboard的可视化性能,对经典卷积神经网络Le Net-5模型进行结构改善和超参数的调整,并将改进LeNet-5模型与经典LeNet-5模型和支持向量机的分类结果互相对比,结果表明改进LeNet-5模型的分类效果最优。 展开更多
关键词 太阳能电池板 lenet-5模型 图像分类 卷积神经网络 超参数 Tensorboard
在线阅读 下载PDF
基于改进LeNet-5网络的车牌字符识别 被引量:12
17
作者 张秀玲 魏其珺 +2 位作者 周凯旋 董逍鹏 马锴 《沈阳大学学报(自然科学版)》 CAS 2020年第4期312-317,共6页
引入了Inception-SE卷积模块组来提升LeNet-5网络的广度与深度,运用SE模块增强了有用的特征并抑制了对当前任务用处不大的特征;使用BN层和Dropout优化网络,防止梯度弥散,提升精度;使用全局池化层(global average pooling,GAP)代替全连... 引入了Inception-SE卷积模块组来提升LeNet-5网络的广度与深度,运用SE模块增强了有用的特征并抑制了对当前任务用处不大的特征;使用BN层和Dropout优化网络,防止梯度弥散,提升精度;使用全局池化层(global average pooling,GAP)代替全连接层来减少网络计算参数.研究结果表明:改进后网络的识别精度达到了99.88%,比传统的LeNet-5网络提高了1.71%. 展开更多
关键词 卷积神经网络 车牌字符识别 lenet-5网络 Inception-SE卷积模块 识别精度
在线阅读 下载PDF
基于卷积神经网络LeNet-5的货运列车车号识别研究 被引量:10
18
作者 王晓锋 马钟 《现代电子技术》 北大核心 2016年第13期63-66,71,共5页
针对货运列车车号字符识别,提出了基于卷积神经网络Le Net-5的改进识别方法,考虑到卷积神经网络的层次化以及局部领域等结构特点,对网络中各层特征图的数量及大小等参数进行相应的改进,形成了适用于货运车号识别的新网络模型。实验结果... 针对货运列车车号字符识别,提出了基于卷积神经网络Le Net-5的改进识别方法,考虑到卷积神经网络的层次化以及局部领域等结构特点,对网络中各层特征图的数量及大小等参数进行相应的改进,形成了适用于货运车号识别的新网络模型。实验结果表明,该方法对车号的断裂、污损等问题的解决有较强的鲁棒性,达到了较高的识别率,为整个车号识别系统的精确性提供了保障。 展开更多
关键词 列车车号 车号识别 卷积神经网络 lenet-5
在线阅读 下载PDF
改进卷积Lenet-5神经网络的轴承故障诊断方法 被引量:19
19
作者 赵小强 罗维兰 《电子测量与仪器学报》 CSCD 北大核心 2022年第6期113-125,共13页
针对滚动轴承微弱信号在强噪声、变工况复杂环境下,难以实现有效的故障诊断问题,提出了一种改进卷积Lenet-5神经网络的轴承故障诊断方法。首先,对采集的一维时域轴承振动信号进行预处理转化成便于卷积操作的二维灰度图;其次,将最基本的L... 针对滚动轴承微弱信号在强噪声、变工况复杂环境下,难以实现有效的故障诊断问题,提出了一种改进卷积Lenet-5神经网络的轴承故障诊断方法。首先,对采集的一维时域轴承振动信号进行预处理转化成便于卷积操作的二维灰度图;其次,将最基本的Lenet-5模型中的连续单向的传统卷积层改进为Block1模块、Block2模块、Block3模块,提取到更完整、更精准的特征信息;最后,为了防止网络出现过拟合现象,采用L2正则化和Dropout优化网络。为了验证本文所提方法在复杂工况环境的鲁棒和泛化性能,利用滚动轴承数据集和变速箱实验数据集进行实验验证。轴承数据集实验结果表明,本文所提出的方法在变噪声实验中准确率平均值都在99.3%;在变负荷实验中,故障诊断准确率都高于90.26%;在变工况实验中,故障诊断准确率平均值都高于89.01%;在变速箱数据集实验中,抗噪性故障诊断准确率高达96.3%。采用改进的Lenet-5方法对滚动轴承12种故障类型具有更好的分辨能力,在变工况下具有更好的抗干扰性和泛化性能。 展开更多
关键词 滚动轴承 故障诊断 复杂工况 lenet-5网络 网络优化
原文传递
基于贝叶斯优化与改进LeNet-5的滚动轴承故障诊断 被引量:10
20
作者 汤亮 凡焱峰 +1 位作者 徐适斐 蔡凯翼 《计量学报》 CSCD 北大核心 2022年第7期913-919,共7页
考虑到卷积神经网络在滚动轴承故障诊断中存在网络结构难以确定、训练次数过多、时间过长等问题,设计了一种贝叶斯优化改进LeNet-5算法,以及采用该算法构建的轴承故障诊断模型。采用贝叶斯优化训练过程中学习率等超参数,多种故障轴承的... 考虑到卷积神经网络在滚动轴承故障诊断中存在网络结构难以确定、训练次数过多、时间过长等问题,设计了一种贝叶斯优化改进LeNet-5算法,以及采用该算法构建的轴承故障诊断模型。采用贝叶斯优化训练过程中学习率等超参数,多种故障轴承的振动信号直接作为改进LeNet-5网络的输入,对池化输出采用批归一化处理和改进池化层激活函数防止过拟合,利用全局平均池化层替代全连接层提高改进LeNet-5网络的泛化能力,用Softmax分类器实现滚动轴承故障的分类。通过轴承数据库开展实验,实验表明,该算法构建的轴承故障诊断模型在训练集上准确率为99.94%,验证集上的准确率为99.89%,测试集准确率也达到99.65%,与一维卷积神经网络和二维卷积神经网络对比分析,基于贝叶斯优化改进LeNet-5算法构建的轴承故障诊断模型在滚动轴承的故障诊断模型具有更高的准确率,更少的训练次数和训练时间。 展开更多
关键词 计量学 滚动轴承 故障诊断 改进lenet-5网络 贝叶斯优化 深度学习
在线阅读 下载PDF
上一页 1 2 31 下一页 到第
使用帮助 返回顶部