期刊文献+
共找到176篇文章
< 1 2 9 >
每页显示 20 50 100
基于改进LeNet-5模型的旋转机械故障诊断研究
1
作者 张玉华 刚润振 《自动化与仪器仪表》 2025年第7期73-78,共6页
旋转机械作为工业中应用最为广泛的机械设备,其运行的稳定可靠程度,直接影响到工业生产效率和质量。针对传统机械故障诊断方法中存在的适应性低以及无法实现对于复杂故障识别的问题。研究提出了基于改进LeNet-5模型的故障诊断模型,改变... 旋转机械作为工业中应用最为广泛的机械设备,其运行的稳定可靠程度,直接影响到工业生产效率和质量。针对传统机械故障诊断方法中存在的适应性低以及无法实现对于复杂故障识别的问题。研究提出了基于改进LeNet-5模型的故障诊断模型,改变卷积形式,加入改进的激活函数融合多传感器;同时为了防止模型过过度拟合,研究在改进模型中引入正则化技术,通过类激活映射技术来展示卷积特征和故障信号。最终实现对转子系统故障的诊断与研究。精度对比实验显示,向量机模型和邻近模型的精度均小于45%,卷积网络模型精度小于50%,随着实验次数的增加,精度也小于60%。改进模型的精度一直处于90%左右。故障分类实验中,改进模型的准确率高达99.16%。因此,研究提出的故障检测方法对故障的检测精度高,准确率有保证,对旋转机的机械故障检验研究应用十分有意义。 展开更多
关键词 lenet-5 多传感器:故障诊断 精度对比
原文传递
基于ICRNN-ILeNet端到端图像处理模型的财务会计票据处理系统研究
2
作者 张丽湘 陶滔 +1 位作者 张懿诺 杨新薇 《微型电脑应用》 2025年第7期14-18,共5页
财务会计票据处理系统为票据处理带来了便捷,但也产生了识别准确率与效率问题。针对现有票据处理系统存在的缺陷,将CRNN算法与LeNet-5网络算法相融合,并对2种算法进行了改进,提出了一种端到端的票据图像处理模型。实验结果表明,与未改... 财务会计票据处理系统为票据处理带来了便捷,但也产生了识别准确率与效率问题。针对现有票据处理系统存在的缺陷,将CRNN算法与LeNet-5网络算法相融合,并对2种算法进行了改进,提出了一种端到端的票据图像处理模型。实验结果表明,与未改进的算法模型相比,所提模型的训练集与测试集识别准确率分别提升了9.67%与9.06%。所提模型的精确率、召回率、F_(1)值和平均检测时间分别达到了97.25%、97.35%、97.29%与35 s。由此可知,所提模型具有较高的鲁棒性和优越性,能够为财务会计票据处理系统的技术发展提供一定的技术支持。 展开更多
关键词 CRNN 端到端图像处理 票据处理 lenet-5
在线阅读 下载PDF
结合递归图与LeNet网络的足底压力身份识别方法
3
作者 袁田 辛义忠 《仪器仪表学报》 北大核心 2025年第6期338-347,共10页
针对身份识别领域足底压力采集设备在传感器数量和位置配置方面存在的差异性,以及足底压力特征通常依赖于对步态周期数据进行完整分割所带来的时间成本增加问题,提出一种基于足底压力信号的无阈值递归图和LeNet网络的身份识别方法。首... 针对身份识别领域足底压力采集设备在传感器数量和位置配置方面存在的差异性,以及足底压力特征通常依赖于对步态周期数据进行完整分割所带来的时间成本增加问题,提出一种基于足底压力信号的无阈值递归图和LeNet网络的身份识别方法。首先使用自制足底压力采集设备,在常规混凝土地面采集28名无足部及下肢疾病的健康成年参与者无负重等干扰状态自然行走过程中的足底压力数据;再经数据重构算法对足底压力数据进行预处理,将其转化为无阈值递归图;最后将生成的图像作为LeNet网络的输入,完成特征提取与身份识别,并对单一区域及多区域组合方案的结果进行分析比较。实验结果表明,足跟内侧区域、足跟外侧区域、第二跖骨区域和大脚趾区域的组合身份识别性能以最少的传感器数量和高识别精度优于其他方案,其中准确率、精确率、召回率和F 1分数分别达到99.25%、99.22%、99.39%、99.26%。不同区域的身份识别性能受行走过程中不同阶段和受力大小的影响,但随着区域数量的增加,该影响逐渐减弱。此外,实验结果还显示,使用足底压力信号的无阈值递归图进行身份识别的方法无需依赖严格的步态分割,依然能够保持较高的识别精度。为身份识别技术在生物特征识别领域的应用提供了新的思路与技术支持,在公共安全等领域具有潜在的应用价值。 展开更多
关键词 足底压力特征 无阈值递归图 lenet网络 身份识别
原文传递
基于LeNet5like的迁移学习风电机组叶片覆冰故障诊断研究 被引量:11
4
作者 吕游 封烁 +2 位作者 郑茜 邓丹 刘吉臻 《仪器仪表学报》 EI CAS CSCD 北大核心 2024年第3期128-143,共16页
针对海上风电场和高海拔地区风机机组的叶片覆冰故障模型精度低、建模速度慢等问题,提出一种基于LeNet5like的迁移学习风电机组叶片覆冰故障诊断方法。首先,整合监控和数据采集系统的记录数据与风机覆冰情况进行预处理,建立训练数据集;... 针对海上风电场和高海拔地区风机机组的叶片覆冰故障模型精度低、建模速度慢等问题,提出一种基于LeNet5like的迁移学习风电机组叶片覆冰故障诊断方法。首先,整合监控和数据采集系统的记录数据与风机覆冰情况进行预处理,建立训练数据集;其次,基于改进后的LeNet5like网络构建覆冰故障诊断模型,提取数据集中多变量间的相关性特征信息;然后,经网络参数微调迁移学习对模型进行训练,实现对其他风机覆冰故障诊断模型的快速建立;最后,经实验验证,该模型覆冰故障诊断准确率为98.90%,较无迁移模块网络训练时间缩短28 s,提升约15.91%,验证了基于LeNet5like的迁移学习风电机组叶片覆冰故障诊断方法的精确性和快速性。 展开更多
关键词 故障诊断 叶片覆冰 迁移学习 lenet5like网络 SCADA数据
原文传递
一种改进型LeNet的交通标识多分类异构加速器的实现 被引量:1
5
作者 杨永杰 郑君泰 +1 位作者 马立 杨昊 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第6期1001-1008,共8页
提出一种基于改进型LeNet的交通标志多分类异构加速器的实现方案。该加速器利用ARM+FPGA异构平台,将改进型LeNet的前向推理部署到FPGA上,实现并行计算。在FPGA端,采用AXI-Stream协议,通过DMA实现数据高速流转,使用数组分区和多级流水线... 提出一种基于改进型LeNet的交通标志多分类异构加速器的实现方案。该加速器利用ARM+FPGA异构平台,将改进型LeNet的前向推理部署到FPGA上,实现并行计算。在FPGA端,采用AXI-Stream协议,通过DMA实现数据高速流转,使用数组分区和多级流水线等技术实现数据的并行处理。在ARM端使用PYNQ框架进行数据更新和加速器调度。在GTSRB数据集上的实验结果显示,该设计方案在工作时钟频率为50 MHz时,平均推理时间为14.489 ms,在MCU上的推理时间为710 ms,加速比可达49,对于实现交通标识多分类的边缘端应用具有显著的作用。 展开更多
关键词 lenet FPGA PYNQ 异构计算
在线阅读 下载PDF
基于权重分摊的LeNet-5卷积神经网络防御策略 被引量:1
6
作者 陈顺发 刘芬 《测控技术》 2024年第6期33-39,共7页
随着神经网络在自动驾驶、医疗诊断等关键领域的应用不断深入,如何确保神经网络的鲁棒性和安全性已成为当前研究的热点和挑战。在对抗攻击、数据中毒攻击、后门攻击等众多攻击方式中,随机翻转攻击是一种对安全性影响极大的攻击,其通过... 随着神经网络在自动驾驶、医疗诊断等关键领域的应用不断深入,如何确保神经网络的鲁棒性和安全性已成为当前研究的热点和挑战。在对抗攻击、数据中毒攻击、后门攻击等众多攻击方式中,随机翻转攻击是一种对安全性影响极大的攻击,其通过改变模型内部的权重参数来攻击网络,以降低网络性能。为应对此攻击方式,研究了一种基于权重分摊的防御策略。通过计算和分析权重的梯度来确定关键神经元,并为这些神经元添加冗余结构,使错误的权重最终被稀释,以提高模型的容错能力。为了验证这一防御策略,以LeNet-5模型为实验对象进行实验。实验表明,在相同的攻击条件下,经过防御后的模型相较于原始LeNet-5模型,容错精度提升了6.5%,相较于Inception-LeNet-5模型在全连接层上容错精度提升了1.9%。 展开更多
关键词 神经网络 防御 权重分摊 lenet-5 容错
在线阅读 下载PDF
基于改进LeNet-5网络的堆芯燃料组件编码识别
7
作者 吕伽奇 丁帅 +1 位作者 庞静珠 许小进 《东华大学学报(自然科学版)》 CAS 北大核心 2024年第2期121-128,共8页
在核电站堆芯核燃料组件水下组装作业中,需要通过视觉技术进行组件编码的识别以便准确定位组件的安装位置。针对水下环境中弱光照等问题导致了图像质量的降低,本文通过乘方增强算法、OSTU算法、CLAHE算法和拉普拉斯变换的方法来实现堆... 在核电站堆芯核燃料组件水下组装作业中,需要通过视觉技术进行组件编码的识别以便准确定位组件的安装位置。针对水下环境中弱光照等问题导致了图像质量的降低,本文通过乘方增强算法、OSTU算法、CLAHE算法和拉普拉斯变换的方法来实现堆芯燃料组件编码字符水下图像的增强。为了提高编码识别效果,提出了一种整合LeNet-5网络和支持向量机(SVM)的模型,在网络中添加BN(Batch Normalization)层与Dropout层来加速网络的运行速度,并改进Sigmoid函数,增加函数的平滑性,以此来减少梯度消失。实验表明,在自定义数据集上的验证准确率为99.82%,识别率为100%,相比于其他模型有显著的提升。 展开更多
关键词 编码识别 图像处理 CLAHE算法 lenet-5 支持向量机(SVM)
在线阅读 下载PDF
联合LeNet和知识图谱的链路建立行为识别方法
8
作者 刘燕澳 孙佳琛 +3 位作者 丁国如 徐以涛 宋叶辉 汤鹏 《航空兵器》 CSCD 北大核心 2024年第6期112-119,共8页
在电磁对抗环境下,通信行为识别是电磁空间信号挖掘利用的重要一环。针对非合作无线网络中链路建立行为识别检测困难以及传统方法特征表征能力弱的问题,本文提出了联合LeNet和知识图谱的链路建立行为识别方法,该方法在数据预处理的基础... 在电磁对抗环境下,通信行为识别是电磁空间信号挖掘利用的重要一环。针对非合作无线网络中链路建立行为识别检测困难以及传统方法特征表征能力弱的问题,本文提出了联合LeNet和知识图谱的链路建立行为识别方法,该方法在数据预处理的基础上,建立了特征数据库,并使用知识图谱(Knowledge Graph,KG)进行特征的可视化。此外,该方法能够对低信噪比条件下的IQ信号也有很好的识别效果,在实测数据的基础上,信噪比为-20 dB的情况下,平均准确率达到90%以上,能够对链路建立行为进行有效识别。 展开更多
关键词 链路建立行为识别 非合作无线网络 lenet 知识图谱 深度学习
在线阅读 下载PDF
研究基于LeNet-5模型对广播电视发射机入射功率图的区分 被引量:1
9
作者 董少华 《长江信息通信》 2024年第9期86-88,共3页
为解决发射机入射故障隐患排查难题,提出采用LeNet-5模型加强入射功率图数字符号提取,在加强发射机运行监测的基础上,引入人工智能算法实现故障自动诊断和分析。通过设计发射机入射故障诊断系统,利用入射功率图样本数据优化建立系统模型... 为解决发射机入射故障隐患排查难题,提出采用LeNet-5模型加强入射功率图数字符号提取,在加强发射机运行监测的基础上,引入人工智能算法实现故障自动诊断和分析。通过设计发射机入射故障诊断系统,利用入射功率图样本数据优化建立系统模型,能够成功区分偶发性数据偏移和电压飘动,做到准确识别设备故障,为高质量开展设备检修维护工作提供有力技术支撑。 展开更多
关键词 lenet-5模型 广播电视发射机 入射功率图 人工智能 故障诊断
在线阅读 下载PDF
基于卷积神经网络LeNet-5的车牌字符识别研究 被引量:153
10
作者 赵志宏 杨绍普 马增强 《系统仿真学报》 CAS CSCD 北大核心 2010年第3期638-641,共4页
将卷积神经网络LeNet-5引入到车牌字符识别中。为了适应目前中国车牌字符识别的需要,对传统的卷积神经网络LeNet-5的结构进行了改进,主要是改变输出单元的个数与增加卷积层C5特征图的个数。研究结果表明,改进后的LeNet-5比传统的LeNet-... 将卷积神经网络LeNet-5引入到车牌字符识别中。为了适应目前中国车牌字符识别的需要,对传统的卷积神经网络LeNet-5的结构进行了改进,主要是改变输出单元的个数与增加卷积层C5特征图的个数。研究结果表明,改进后的LeNet-5比传统的LeNet-5的识别率有所提高,识别率达到98.68%。另外,与BP神经网络进行了比较研究,从实验中可以看出在字符识别的正确率和识别速度上都优于BP神经网络。卷积神经网络在车牌识别中具有很好地应用前景。 展开更多
关键词 字符识别 车牌识别 卷积神经网络 lenet-5
原文传递
基于小数据集的改进LeNet图像分类模型研究 被引量:5
11
作者 舒军 杨露 +2 位作者 陈义红 杨莉 邓芳 《中南民族大学学报(自然科学版)》 CAS 2019年第4期605-612,共8页
将传统卷积神经网络应用于小数据集上,LeNet模型准确率低并且收敛速度慢,VggNet等模型存在过拟合问题.针对小数据集提出一种改进LeNet模型,该模型在LeNet基础上使用ReLU函数替换sigmoid来提高收敛速度,加入1*1卷积增加模型深度并利用其... 将传统卷积神经网络应用于小数据集上,LeNet模型准确率低并且收敛速度慢,VggNet等模型存在过拟合问题.针对小数据集提出一种改进LeNet模型,该模型在LeNet基础上使用ReLU函数替换sigmoid来提高收敛速度,加入1*1卷积增加模型深度并利用其改变维度的特点来提高识别准确率,通过分解卷积和提出改进Dropout方法减少过拟合.结果表明:改进LeNet模型分类自制小龙虾数据集,比LeNet收敛速度快6000步并且准确率提高约15%,比VggNet和ResNet过拟合程度明显减少;将改进LeNet模型推广应用于开源数据集MNIST和Fashion-MNIST上,改进模型也有良好的表现. 展开更多
关键词 小数据集 卷积神经网络 改进lenet
在线阅读 下载PDF
基于改进LeNet-5网络的交通标志识别方法 被引量:13
12
作者 汪贵平 盛广峰 +2 位作者 黄鹤 王会峰 王萍 《科学技术与工程》 北大核心 2018年第34期78-84,共7页
针对传统LeNet-5卷积神经网络用于交通标志等多种类识别任务中,存在识别正确率低、网络容易过拟合以及梯度消失等问题进行改进。引入Inception卷积模块组来提取目标丰富的特征,同时增加网络的深度。引入BN (batch normalization)层对输... 针对传统LeNet-5卷积神经网络用于交通标志等多种类识别任务中,存在识别正确率低、网络容易过拟合以及梯度消失等问题进行改进。引入Inception卷积模块组来提取目标丰富的特征,同时增加网络的深度。引入BN (batch normalization)层对输入批量样本进行规范化处理;同时改用性能更好的Relu激活函数,并使用全局池化层代替全连接层,合理改变卷积核的大小和数目。研究结果表明,改进LeNet-5网络能够有效解决过拟合和梯度消失等问题,具有较好的鲁棒性;网络识别率达到98. 5%以上,相比CNN (convolutional neural network)+SVM (support vector machine)提高了约5%,比传统的LeNet-5网络提高了3%。可见,改进后的LeNet-5网络图像识别的准确率得到显著提高。 展开更多
关键词 交通标志 lenet-5网络 卷积神经网络 准确率
在线阅读 下载PDF
自然场景下基于改进LeNet卷积神经网络的苹果图像识别技术 被引量:9
13
作者 程鸿芳 张春友 《食品与机械》 北大核心 2019年第3期155-158,共4页
针对传统基于内容的识别方法在特征提取方面存在计算复杂、特征不可迁移等问题,为避免光照条件、重叠及其他遮挡等因素对图像识别的影响,以LeNet卷积神经网络作为基础,对其结构进行改进,设计了一种基于改进LeNet卷积神经网络的苹果目标... 针对传统基于内容的识别方法在特征提取方面存在计算复杂、特征不可迁移等问题,为避免光照条件、重叠及其他遮挡等因素对图像识别的影响,以LeNet卷积神经网络作为基础,对其结构进行改进,设计了一种基于改进LeNet卷积神经网络的苹果目标识别模型,并利用该模型对不同场景的苹果图像进行识别训练与验证。结果表明:该网络模型可有效实现苹果图像的识别,对独立果实、遮挡果实、重叠果实以及相邻果实的识别率分别为96.25%,91.37%,94.91%,89.56%,综合识别率达到93.79%。与其他方法相比,该算法具有较强的抗干扰能力,图像识别速度快、识别率更高。 展开更多
关键词 图像识别 目标识别 卷积神经网络 lenet
在线阅读 下载PDF
基于LeNet-5模型的太阳能电池板缺陷识别分类 被引量:15
14
作者 吴涛 赖菲 《热力发电》 CAS 北大核心 2019年第3期120-125,共6页
太阳能电池板是光伏发电组件的核心部件,其质量的优劣直接关系安全发电和发电效率。因此,对太阳能电池板进行缺陷检测具有重要的实际价值。考虑到人工检测的低效性和高成本,本文提出利用在深度学习领域图像分类性能良好的卷积神经网络... 太阳能电池板是光伏发电组件的核心部件,其质量的优劣直接关系安全发电和发电效率。因此,对太阳能电池板进行缺陷检测具有重要的实际价值。考虑到人工检测的低效性和高成本,本文提出利用在深度学习领域图像分类性能良好的卷积神经网络对太阳能电池板图像进行自动识别分类。利用Tensorflow平台Tensorboard的可视化性能,对经典卷积神经网络Le Net-5模型进行结构改善和超参数的调整,并将改进LeNet-5模型与经典LeNet-5模型和支持向量机的分类结果互相对比,结果表明改进LeNet-5模型的分类效果最优。 展开更多
关键词 太阳能电池板 lenet-5模型 图像分类 卷积神经网络 超参数 Tensorboard
在线阅读 下载PDF
基于卷积神经网络LeNet-5的货运列车车号识别研究 被引量:10
15
作者 王晓锋 马钟 《现代电子技术》 北大核心 2016年第13期63-66,71,共5页
针对货运列车车号字符识别,提出了基于卷积神经网络Le Net-5的改进识别方法,考虑到卷积神经网络的层次化以及局部领域等结构特点,对网络中各层特征图的数量及大小等参数进行相应的改进,形成了适用于货运车号识别的新网络模型。实验结果... 针对货运列车车号字符识别,提出了基于卷积神经网络Le Net-5的改进识别方法,考虑到卷积神经网络的层次化以及局部领域等结构特点,对网络中各层特征图的数量及大小等参数进行相应的改进,形成了适用于货运车号识别的新网络模型。实验结果表明,该方法对车号的断裂、污损等问题的解决有较强的鲁棒性,达到了较高的识别率,为整个车号识别系统的精确性提供了保障。 展开更多
关键词 列车车号 车号识别 卷积神经网络 lenet-5
在线阅读 下载PDF
基于EEMD和LeNet-5的脑电信号情绪识别 被引量:4
16
作者 蔡靖 周云鹏 +2 位作者 程晓宇 辛佳雯 孙慧慧 《电子技术应用》 2022年第5期98-103,共6页
随着科学技术的进步,人们对情绪这一概念有了全新的认识,从过去认为情绪来源于“心”逐渐发展到了当下普遍认为情绪来源于“脑”。针对脑电信号所具有的诸多特性,首先通过去除心电、肌电噪声,滤波提取脑电信号中的有用波段;再利用集合... 随着科学技术的进步,人们对情绪这一概念有了全新的认识,从过去认为情绪来源于“心”逐渐发展到了当下普遍认为情绪来源于“脑”。针对脑电信号所具有的诸多特性,首先通过去除心电、肌电噪声,滤波提取脑电信号中的有用波段;再利用集合经验模态分解算法(Ensemble Empirical Mode Decomposition,EEMD)对脑电信号进行特征提取,利用提取特征通过空间插值法绘制脑电地形图;接着利用LeNet-5算法开展具体情绪识别,并建立模型。最终通过不断地改进模型,显著提高了情绪识别准确率,准确率最高可达80.1%。 展开更多
关键词 EEG EEMD lenet-5 情绪识别
在线阅读 下载PDF
基于改进LeNet-5网络的车牌字符识别 被引量:12
17
作者 张秀玲 魏其珺 +2 位作者 周凯旋 董逍鹏 马锴 《沈阳大学学报(自然科学版)》 CAS 2020年第4期312-317,共6页
引入了Inception-SE卷积模块组来提升LeNet-5网络的广度与深度,运用SE模块增强了有用的特征并抑制了对当前任务用处不大的特征;使用BN层和Dropout优化网络,防止梯度弥散,提升精度;使用全局池化层(global average pooling,GAP)代替全连... 引入了Inception-SE卷积模块组来提升LeNet-5网络的广度与深度,运用SE模块增强了有用的特征并抑制了对当前任务用处不大的特征;使用BN层和Dropout优化网络,防止梯度弥散,提升精度;使用全局池化层(global average pooling,GAP)代替全连接层来减少网络计算参数.研究结果表明:改进后网络的识别精度达到了99.88%,比传统的LeNet-5网络提高了1.71%. 展开更多
关键词 卷积神经网络 车牌字符识别 lenet-5网络 Inception-SE卷积模块 识别精度
在线阅读 下载PDF
基于LeNet模型的游梁式抽油机工况诊断研究 被引量:4
18
作者 叶哲伟 易钦珏 罗良 《西南石油大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第6期164-174,共11页
游梁式抽油机是有杆泵系统中应用最广泛的部件,分析有杆泵的示功图是判断抽油机井下工况的重要手段。针对传统示功图识别方法存在依靠专家经验以及需要人工进行特征提取,导致出现相似示功图时识别准确度低的问题开展研究。通过深度学习... 游梁式抽油机是有杆泵系统中应用最广泛的部件,分析有杆泵的示功图是判断抽油机井下工况的重要手段。针对传统示功图识别方法存在依靠专家经验以及需要人工进行特征提取,导致出现相似示功图时识别准确度低的问题开展研究。通过深度学习卷积神经网络在图像识别领域的应用,提出了一种基于LeNet的卷积神经网络模型,实现了示功图的自动识别,所搭建的模型在简化模型结构的同时考虑了抽油机常见的15种井下工况,并引入了Dropout层以及局部响应归一化层防止模型过拟合的同时提高模型的泛化能力。实验结果表明,该模型不仅收敛速度快,而且对于工况进行诊断的准确度平均为94.68%,满足抽油机工况检测的诊断精度要求。该研究为抽油机井工况智能监控预警系统的构建提供了依据,对建设智慧油田以及油田的高效生产具有重要意义。 展开更多
关键词 抽油机 示功图 卷积神经网络 lenet 工况诊断
在线阅读 下载PDF
改进卷积Lenet-5神经网络的轴承故障诊断方法 被引量:18
19
作者 赵小强 罗维兰 《电子测量与仪器学报》 CSCD 北大核心 2022年第6期113-125,共13页
针对滚动轴承微弱信号在强噪声、变工况复杂环境下,难以实现有效的故障诊断问题,提出了一种改进卷积Lenet-5神经网络的轴承故障诊断方法。首先,对采集的一维时域轴承振动信号进行预处理转化成便于卷积操作的二维灰度图;其次,将最基本的L... 针对滚动轴承微弱信号在强噪声、变工况复杂环境下,难以实现有效的故障诊断问题,提出了一种改进卷积Lenet-5神经网络的轴承故障诊断方法。首先,对采集的一维时域轴承振动信号进行预处理转化成便于卷积操作的二维灰度图;其次,将最基本的Lenet-5模型中的连续单向的传统卷积层改进为Block1模块、Block2模块、Block3模块,提取到更完整、更精准的特征信息;最后,为了防止网络出现过拟合现象,采用L2正则化和Dropout优化网络。为了验证本文所提方法在复杂工况环境的鲁棒和泛化性能,利用滚动轴承数据集和变速箱实验数据集进行实验验证。轴承数据集实验结果表明,本文所提出的方法在变噪声实验中准确率平均值都在99.3%;在变负荷实验中,故障诊断准确率都高于90.26%;在变工况实验中,故障诊断准确率平均值都高于89.01%;在变速箱数据集实验中,抗噪性故障诊断准确率高达96.3%。采用改进的Lenet-5方法对滚动轴承12种故障类型具有更好的分辨能力,在变工况下具有更好的抗干扰性和泛化性能。 展开更多
关键词 滚动轴承 故障诊断 复杂工况 lenet-5网络 网络优化
原文传递
基于改进LeNet-5的交通标志识别算法研究 被引量:7
20
作者 褚莹 陶纪宇 凌力 《微型电脑应用》 2019年第9期58-61,共4页
交通标志识别作为自动驾驶系统和驾驶员辅助系统中的重要组成部分,对行车安全有着直接的影响。以真实场景下采集的比利时交通标志数据集为研究对象,通过对交通标志图像特点的研究,对轻量级经典卷积神经网络Lenet-5进行四大改进,包括为... 交通标志识别作为自动驾驶系统和驾驶员辅助系统中的重要组成部分,对行车安全有着直接的影响。以真实场景下采集的比利时交通标志数据集为研究对象,通过对交通标志图像特点的研究,对轻量级经典卷积神经网络Lenet-5进行四大改进,包括为适应交通标志图像进行的基础结构调整、提升数据集平衡性的数据增广、加入改善过拟合的Dropout策略以及加入批量归一化层。实验结果表明,由此得到的TSRCNN模型能够有效提取交通标志的特征,在比利时交通标志数据集上识别准确率达98.56%。 展开更多
关键词 交通标志识别 卷积神经网络 lenet网络模型
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部