期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Construction of CuNiAl-LDHs electrocatalyst with rich-Cu^(+)and—OH for highly selective reduction of CO_(2) to methanol 被引量:1
1
作者 Gaiqin Miao Lifei Liu +1 位作者 Xia An Xu Wu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第12期156-167,共12页
In this work,a high-performance CuNiAl-LDHs catalyst was innovatively synthesized for electrochemical carbon dioxide reduction(CO_(2)RR)of methanol(CH3OH)through the modulated synthesis of Cu-based layered double hydr... In this work,a high-performance CuNiAl-LDHs catalyst was innovatively synthesized for electrochemical carbon dioxide reduction(CO_(2)RR)of methanol(CH3OH)through the modulated synthesis of Cu-based layered double hydroxide(LDHs).It was found that the optimal CuNiAl-LDHs has superior CH3OH selectivity compared to CuAl-LDHs and CuMgAl-LDHs,with the Faraday efficiency(FE)of 76.4%for CH3OH generation at1.2 V.And their FE and current density(4.8 mA·cm^(2))remained stable during up to 24 h of electrolysis.Meanwhile,this study confirms the significant performance advantages of CuNiAlLDHs over their derived composite oxides.Series characterization further proves that the excellent catalytic performance of CuNiAl-LDHs is importantly associated with their richness in Cu+and hydroxyl group(-OH).The research expands the application fields of LDHs compounds.Meanwhile,the series of discoveries provide a new insight for the preparation of CH3OH by constructing CO_(2)RR. 展开更多
关键词 ELECTROCATALYSIS CO_(2)reduction METHANOL CuNiAl layered-double hydroxides Hydroxyl group
在线阅读 下载PDF
Fabrication of highly dispersed carbon doped Cu-based oxides as superior selective catalytic oxidation of ammonia catalysts via employing citric acid-modified carbon nanotubes doping CuAl-LDHs
2
作者 Fengrong Li Xuezhen Liu +3 位作者 ZhengYi Zhao Xia An Yali Du Xu Wu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第11期185-196,共12页
In this work,the CuAl-LDO/c-CNTs catalyst was fabricated via in situ oriented assembly of layered-double hydroxides(LDHs)and citric acid-modified carbon nanotubes(c-CNTs)followed by annealing treatment,and evaluated i... In this work,the CuAl-LDO/c-CNTs catalyst was fabricated via in situ oriented assembly of layered-double hydroxides(LDHs)and citric acid-modified carbon nanotubes(c-CNTs)followed by annealing treatment,and evaluated in the selective catalytic oxidation(SCO)of NH_(3)to N_(2).The CuAl-LDO/c-CNTs catalyst presented better catalytic performance(98%NH_(3)conversion with nearly 90%N_(2)selectivity at 513 K)than other catalysts,such as CuAlO_(x)/CNTs,CuAlO_(x)/c-CNTs and CuAl-LDO/CNTs.Multiple characterizations were utilized to analyze the difference of physicochemical properties among four catalysts.XRD,TEM and XPS analyses manifested that CuO and Cu_(2)O nanoparticles dispersed well on the surface of the Cu Al-LDO/c-CNTs catalyst.Compared with other catalysts,larger specific surface area and better dispersion of CuAl-LDO/c-CNTs catalyst were conducive to the exposure of more active sites,thus improving the redox capacity of the active site and NH_(3)adsorption capacity.In-situ DRIFTS results revealed that the internal selective catalytic reduction(iSCR)mechanism was found over CuAl-LDO/c-CNTs catalyst. 展开更多
关键词 Selective catalytic oxidation of ammonia layered-double hydroxides Cu-based oxides CNTS Citric acid-modified
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部