In this work,a high-performance CuNiAl-LDHs catalyst was innovatively synthesized for electrochemical carbon dioxide reduction(CO_(2)RR)of methanol(CH3OH)through the modulated synthesis of Cu-based layered double hydr...In this work,a high-performance CuNiAl-LDHs catalyst was innovatively synthesized for electrochemical carbon dioxide reduction(CO_(2)RR)of methanol(CH3OH)through the modulated synthesis of Cu-based layered double hydroxide(LDHs).It was found that the optimal CuNiAl-LDHs has superior CH3OH selectivity compared to CuAl-LDHs and CuMgAl-LDHs,with the Faraday efficiency(FE)of 76.4%for CH3OH generation at1.2 V.And their FE and current density(4.8 mA·cm^(2))remained stable during up to 24 h of electrolysis.Meanwhile,this study confirms the significant performance advantages of CuNiAlLDHs over their derived composite oxides.Series characterization further proves that the excellent catalytic performance of CuNiAl-LDHs is importantly associated with their richness in Cu+and hydroxyl group(-OH).The research expands the application fields of LDHs compounds.Meanwhile,the series of discoveries provide a new insight for the preparation of CH3OH by constructing CO_(2)RR.展开更多
In this work,the CuAl-LDO/c-CNTs catalyst was fabricated via in situ oriented assembly of layered-double hydroxides(LDHs)and citric acid-modified carbon nanotubes(c-CNTs)followed by annealing treatment,and evaluated i...In this work,the CuAl-LDO/c-CNTs catalyst was fabricated via in situ oriented assembly of layered-double hydroxides(LDHs)and citric acid-modified carbon nanotubes(c-CNTs)followed by annealing treatment,and evaluated in the selective catalytic oxidation(SCO)of NH_(3)to N_(2).The CuAl-LDO/c-CNTs catalyst presented better catalytic performance(98%NH_(3)conversion with nearly 90%N_(2)selectivity at 513 K)than other catalysts,such as CuAlO_(x)/CNTs,CuAlO_(x)/c-CNTs and CuAl-LDO/CNTs.Multiple characterizations were utilized to analyze the difference of physicochemical properties among four catalysts.XRD,TEM and XPS analyses manifested that CuO and Cu_(2)O nanoparticles dispersed well on the surface of the Cu Al-LDO/c-CNTs catalyst.Compared with other catalysts,larger specific surface area and better dispersion of CuAl-LDO/c-CNTs catalyst were conducive to the exposure of more active sites,thus improving the redox capacity of the active site and NH_(3)adsorption capacity.In-situ DRIFTS results revealed that the internal selective catalytic reduction(iSCR)mechanism was found over CuAl-LDO/c-CNTs catalyst.展开更多
基金the National Natural Science Foundation of China(51978436,22272116).
文摘In this work,a high-performance CuNiAl-LDHs catalyst was innovatively synthesized for electrochemical carbon dioxide reduction(CO_(2)RR)of methanol(CH3OH)through the modulated synthesis of Cu-based layered double hydroxide(LDHs).It was found that the optimal CuNiAl-LDHs has superior CH3OH selectivity compared to CuAl-LDHs and CuMgAl-LDHs,with the Faraday efficiency(FE)of 76.4%for CH3OH generation at1.2 V.And their FE and current density(4.8 mA·cm^(2))remained stable during up to 24 h of electrolysis.Meanwhile,this study confirms the significant performance advantages of CuNiAlLDHs over their derived composite oxides.Series characterization further proves that the excellent catalytic performance of CuNiAl-LDHs is importantly associated with their richness in Cu+and hydroxyl group(-OH).The research expands the application fields of LDHs compounds.Meanwhile,the series of discoveries provide a new insight for the preparation of CH3OH by constructing CO_(2)RR.
基金supported by the National Natural Science Foundation of China(51978436,52000092,22272116)Fundamental Research Program of Shanxi Province(202103021224043)。
文摘In this work,the CuAl-LDO/c-CNTs catalyst was fabricated via in situ oriented assembly of layered-double hydroxides(LDHs)and citric acid-modified carbon nanotubes(c-CNTs)followed by annealing treatment,and evaluated in the selective catalytic oxidation(SCO)of NH_(3)to N_(2).The CuAl-LDO/c-CNTs catalyst presented better catalytic performance(98%NH_(3)conversion with nearly 90%N_(2)selectivity at 513 K)than other catalysts,such as CuAlO_(x)/CNTs,CuAlO_(x)/c-CNTs and CuAl-LDO/CNTs.Multiple characterizations were utilized to analyze the difference of physicochemical properties among four catalysts.XRD,TEM and XPS analyses manifested that CuO and Cu_(2)O nanoparticles dispersed well on the surface of the Cu Al-LDO/c-CNTs catalyst.Compared with other catalysts,larger specific surface area and better dispersion of CuAl-LDO/c-CNTs catalyst were conducive to the exposure of more active sites,thus improving the redox capacity of the active site and NH_(3)adsorption capacity.In-situ DRIFTS results revealed that the internal selective catalytic reduction(iSCR)mechanism was found over CuAl-LDO/c-CNTs catalyst.