期刊文献+
共找到51篇文章
< 1 2 3 >
每页显示 20 50 100
Introducing strong metal–oxygen bonds to suppress the Jahn-Teller effect and enhance the structural stability of Ni/Co-free Mn-based layered oxide cathodes for potassium-ion batteries 被引量:1
1
作者 Yicheng Lin Shaohua Luo +5 位作者 Pengyu Li Jun Cong Wei Zhao Lixiong Qian Qi Sun Shengxue Yan 《Journal of Energy Chemistry》 2025年第2期713-722,I0015,共11页
Mn-based layered oxides(KMO)have emerged as one of the promising low-cost cathodes for potassiumion batteries(PIBs).However,due to the multiple-phase transitions and the distortion in the MnO6structure induced by the ... Mn-based layered oxides(KMO)have emerged as one of the promising low-cost cathodes for potassiumion batteries(PIBs).However,due to the multiple-phase transitions and the distortion in the MnO6structure induced by the Jahn-Teller(JT)effect associated with Mn-ion,the cathode exhibits poor structural stability.Herein,we propose a strategy to enhance structural stability by introducing robust metal-oxygen(M-O)bonds,which can realize the pinning effect to constrain the distortion in the transition metal(TM)layer.Concurrently,all the elements employed have exceptionally high crustal abundance.As a proof of concept,the designed K_(0.5)Mn_(0.9)Mg_(0.025)Ti_(0.025)Al_(0.05)O_(2)cathode exhibited a discharge capacity of approximately 100 mA h g^(-1)at 20 mA g^(-1)with 79%capacity retention over 50 cycles,and 73%capacity retention over 200 cycles at 200 mA g^(-1),showcased much better battery performance than the designed cathode with less robust M-O bonds.The properties of the formed M-O bonds were investigated using theoretical calculations.The enhanced dynamics,mitigated JT effect,and improved structural stability were elucidated through the in-situ X-ray diffractometer(XRD),in-situ electrochemical impedance spectroscopy(EIS)(and distribution of relaxation times(DRT)method),and ex-situ X-ray absorption fine structure(XAFS)tests.This study holds substantial reference value for the future design of costeffective Mn-based layered cathodes for PIBs. 展开更多
关键词 layered oxide cathodes Potassium-ion batteries Robust M-O bonds Low-cost Jahn-Teller effect
在线阅读 下载PDF
Entropy-mediated layered oxide cathodes:Synergistic channel expansion and strain control for sodium-ion batteries at cryogenic conditions
2
作者 Yuzhen Dang Yurong Wu +7 位作者 Zhe Xu Jianxing Wang Runguo Zheng Zhishuang Song Zhiyuan Wang Xiaoping Lin Yanguo Liu Dan Wang 《Journal of Energy Chemistry》 2025年第10期637-648,共12页
O3-type layered oxide cathodes for sodium-ion batteries are promising owing to high theoretical capacity and broad temperature adaptability,yet hindered by structural degradation and sluggish Na^(+)diffusion kinetics.... O3-type layered oxide cathodes for sodium-ion batteries are promising owing to high theoretical capacity and broad temperature adaptability,yet hindered by structural degradation and sluggish Na^(+)diffusion kinetics.Herein,we present a sodium-deficient high-entropy layered oxide cathode(Na_(0.85)Ni_(0.3)Mn_(0.3)Fe_(0.1)Co_(0.15)Ti_(0.1)Cu_(0.05)B_(0.02)O_(2),denoted as Na0.85-HEO),combining sodium content optimization and high-entropy composition design.Incorporating six transition metals and light element boron creates a unique high-entropy configuration,effectively mitigating local lattice distortion and internal strain through chemical disorder effects,thereby enabling highly reversible phase transitions(O3-P3-O3)and smaller volume change(0.6A^(3))during the initial cycle.The sodium-deficient high-entropy design effectively increases the sodium interlayer spacing to 0.322 nm,facilitating the Na^(+)diffusion kinetics.Moreover,this high-entropy strategy enables the cathode to have a completely solid solution charge curve and significantly reduces the proportion of(O_(2))^(n-),thereby suppressing gas release during the cycling process.The resultant cathode demonstrates exceptional cyclability(80% capacity retention after 400 cycles at 100 mA g^(-1)in a full cell),and remarkable low-temperature performance(108.6 mAh g^(-1)at -40℃).This work guides the design of high-entropy electrode materials with tailored ionic transport channels for extreme-temperature energy storage applications. 展开更多
关键词 Sodium-ion batteries layered oxide cathodes High-entropy Low-temperature performance
在线阅读 下载PDF
Scientific challenges faced by Mn-based layered oxide cathodes with anionic redox for sodium-ion batteries
3
作者 Chao Zheng Shengnan He +7 位作者 Jiantuo Gan Zhijun Wu Liaona She Yong Gao YaXiong Yang Jiatao Lou Zhijin Ju Hongge Pan 《Carbon Energy》 2025年第1期188-218,共31页
In the realm of sodium-ion batteries(SIBs),Mn-based layered oxide cathodes have garnered considerable attention owing to their anionic redox reactions(ARRs).Compared to other types of popular sodium-ion cathodes,Mn-ba... In the realm of sodium-ion batteries(SIBs),Mn-based layered oxide cathodes have garnered considerable attention owing to their anionic redox reactions(ARRs).Compared to other types of popular sodium-ion cathodes,Mn-based layered oxide cathodes with ARRs exhibit outstanding specific capacity and energy density,making them promising for SIB applications.However,these cathodes still face some scientific challenges that need to be addressed.This review systematically summarizes the composition,structure,oxygen-redox mechanism,and performance of various types of Mn-based cathodes with ARRs,as well as the main scientific challenges they face,including sluggish ion diffusion,cationic migration,O_(2) release,and element dissolution.Currently,to resolve these challenges,efforts mainly focus on six aspects:synthesis methods,structural design,doped modification,electrolyte design,and surface engineering.Finally,this review provides new insights for future direction,encompassing both fundamental research,such as novel cathode types,interface optimization,and interdisciplinary research,and considerations from an industrialization perspective,including scalability,stability,and safety. 展开更多
关键词 anionic redox ELECTROCHEMISTRY layered oxide cathodes sodium-ion batteries
在线阅读 下载PDF
Basicity regulation of Ni-rich layered oxide cathodes for all-solid-state Li-ion batteries
4
作者 Xiao-Zhong Fan Jin-Hao Zhang +6 位作者 Xiao-He Zhou Jin-Xiu Chen Yan-Qin Shi Gulnur Kalimuldina Fang Wang Ayaulym Belgibayeva Long Kong 《Journal of Energy Chemistry》 2025年第6期454-460,I0011,共8页
Ni-rich layered oxide cathode materials such as LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NCM811)face poor interfacial stability and serious side reactions with sulfide solid-state electrolytes.This problem is thought to be exa... Ni-rich layered oxide cathode materials such as LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NCM811)face poor interfacial stability and serious side reactions with sulfide solid-state electrolytes.This problem is thought to be exacerbated by the gradually accumulated basicity of the surface with the Ni content increasing.Herein,the acidic Li_(3)PO_(4)coating layer on NCM811 particles is introduced by ball-milling approach to neutralize the basicity and aggrandize the interfacial stability.The tailored surface structure and components of NCM811 not only suppress the direct contact of cathode particles with sulfide solid-state electrolyte,but also facilitate electrochemical dynamics by driving the Li+migration across the interface and promoting the electron exchange.Thus,cells with Li_(3)PO_(4)coating layer yield 101.3 mAh g^(-1)specific capacity at 2.0 C and highly reversed discharging capacity after suffering from harsh work conditions.Additionally,the stable coating layer broadens the electrochemical windows of cells,delivering long cycle stability(>100 cycles 0.5 C).This contribution highlights the importance of basicity regulation of Ni-rich layered oxide cathode and offers a low-cost and effective approach to design the interfacial structures for the development of all solid-state batteries. 展开更多
关键词 Basicity regulation Cathode coating Interfacial stability Ni-rich layered oxide cathode All-solid-state lithium battery
在线阅读 下载PDF
Recent progress in Li and Mn rich layered oxide cathodes for Li-ion batteries 被引量:1
5
作者 Yiwei Li Zhibo Li +8 位作者 Cong Chen Kai Yang Bo Cao Shenyang Xu Ni Yang Wenguang Zhao Haibiao Chen Mingjian Zhang Feng Pan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第10期368-385,I0011,共19页
Li and Mn rich(LMR)layered oxides,written as xLi_(2) MnO_(3)·(1-x)LiMO_(2)(M=Mn,Ni,Co,Fe,etc.),have been widely reported in recent years due to their high capacity and high energy density.The stable structure and... Li and Mn rich(LMR)layered oxides,written as xLi_(2) MnO_(3)·(1-x)LiMO_(2)(M=Mn,Ni,Co,Fe,etc.),have been widely reported in recent years due to their high capacity and high energy density.The stable structure and superior performance of LMR oxides make them one of the most promising candidates for the next-generation cathode materials.However,the commercialization of these materials is hindered by several drawbacks,such as low initial Coulombic efficiency,the degradation of voltage and capacity during cycling,and poor rate performance.This review summarizes research progress in solving these concerns of LMR cathodes over the past decade by following three classes of strategies:morphology design,bulk design,and surface modification.We elaborate on the processing procedures,electrochemical performance,mechanisms,and limitations of each approach,and finally put forward the concerns left and the possible solutions for the commercialization of LMR cathodes. 展开更多
关键词 Li-ion batteries Li and Mn rich layered oxide cathodes Electrochemical concerns Progress and perspective
在线阅读 下载PDF
Lowering Sodium-Storage Lattice Strains of Layered Oxide Cathodes by Pushing Charge Transfer on Anions
6
作者 Na Li Wen Yin +4 位作者 Baotian Wang Fangwei Wang Xiaoling Xiao Jinkui Zhao Enyue Zhao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期99-106,共8页
Due to a high energy density,layered transition-metal oxides have gained much attention as the promising sodium-ion batteries cathodes.However,they readily suffer from multiple phase transitions during the Na extracti... Due to a high energy density,layered transition-metal oxides have gained much attention as the promising sodium-ion batteries cathodes.However,they readily suffer from multiple phase transitions during the Na extraction process,resulting in large lattice strains which are the origin of cycledstructure degradations.Here,we demonstrate that the Na-storage lattice strains of layered oxides can be reduced by pushing charge transfer on anions(O^(2-)).Specifically,the designed O3-type Ru-based model compound,which shows an increased charge transfer on anions,displays retarded O3-P3-O1 multiple phase transitions and obviously reduced lattice strains upon cycling as directly revealed by a combination of ex situ X-ray absorption spectroscopy,in situ X-ray diffraction and geometric phase analysis.Meanwhile,the stable Na-storage lattice structure leads to a superior cycling stability with an excellent capacity retention of 84%and ultralow voltage decay of 0.2 mV/cycle after 300 cycles.More broadly,our work highlights an intrinsically structure-regulation strategy to enable a stable cycling structure of layered oxides meanwhile increasing the materials’redox activity and Nadiffusion kinetics. 展开更多
关键词 anionic redox reaction lattice strains layered oxide cathodes phase transitions sodium-ion battery
在线阅读 下载PDF
Cationic ordering transition in oxygen-redox layered oxide cathodes
7
作者 Xinyan Li Ang Gao +10 位作者 Qinghua Zhang Hao Yu Pengxiang Ji Dongdong Xiao Xuefeng Wang Dong Su Xiaohui Rong Xiqian Yu Hong Li Yong-Sheng Hu Lin Gu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期197-206,共10页
Understanding the structural origin of the competition between oxygen 2p and transition-metal 3d orbitals in oxygen-redox(OR)layered oxides is eminently desirable for exploring reversible and high-energy-density Li/Na... Understanding the structural origin of the competition between oxygen 2p and transition-metal 3d orbitals in oxygen-redox(OR)layered oxides is eminently desirable for exploring reversible and high-energy-density Li/Na-ion cathodes.Here,we reveal the correlation between cationic ordering transition and OR degradation in ribbon-ordered P3-Na_(0.6)Li_(0.2)Mn_(0.8)O_(2) via in situ structural analysis.Comparing two different voltage windows,the OR capacity can be improved approximately twofold when suppressing the in-plane cationic ordering transition.We find that the intralayer cationic migration is promoted by electrochemical reduction from Mn^(4+)to Jahn–Teller Mn^(3+)and the concomitant NaO_(6) stacking transformation from triangular prisms to octahedra,resulting in the loss of ribbon ordering and electrochemical decay.First-principles calculations reveal that Mn^(4+)/Mn^(3+)charge ordering and alignment of the degenerate eg orbital induce lattice-level collective Jahn–Teller distortion,which favors intralayer Mn-ion migration and thereby accelerates OR degradation.These findings unravel the relationship between in-plane cationic ordering and OR reversibility and highlight the importance of superstructure protection for the rational design of reversible OR-active layered oxide cathodes. 展开更多
关键词 cationic ordering layered oxide cathodes oxygen redox sodium-ion batteries
在线阅读 下载PDF
Emerging modification strategies for layered Fe-based oxide cathodes toward high-performance sodium-ion batteries
8
作者 Zheng-Xiao Li Yi-Meng Wu +6 位作者 Jun-Wei Yin Peng-Fei Wang Zong-Lin Liu Yan-Xuan Wen Jun-Hong Zhang Yan-Rong Zhu Ting-Feng Yi 《Journal of Energy Chemistry》 2025年第8期122-147,共26页
Sodium-ion batteries(SIBs)have the advantages of environmental friendliness,cost-effectiveness,and high energy density,which are considered one of the most promising candidates for lithium-ion batteries(LIBs).The cath... Sodium-ion batteries(SIBs)have the advantages of environmental friendliness,cost-effectiveness,and high energy density,which are considered one of the most promising candidates for lithium-ion batteries(LIBs).The cathode materials influence the cost and energy output of SIBs.Therefore,the development of advanced cathode materials is crucial for the practical application of SIBs.Among various cathode materials,layered transition metal oxides(LTMOs)have received widespread attention owing to their straightforward preparation,abundant availability,and cost-competitiveness.Notably,layered Fe-based oxide cathodes are deemed to be one of the most promising candidates for the lowest price and easy-to-improve performance.Nevertheless,the challenges such as severe phase transitions,sluggish diffusion kinetics and interfacial degradation pose significant hurdles in achieving high-performance cathodes for SIBs.This review first briefly outlines the classification of layered structures and the working principle of layered oxides.Then,recent advances in modification strategies employed to address current issues with layered iron-based oxide cathodes are systematically reviewed,including ion doping,biphasic engineering and surface modification.Furthermore,the review not only outlines the prospects and development directions for layered Fe-based oxide cathodes but also provides novel insights and directions for future research endeavors for SIBs. 展开更多
关键词 layered Fe-based oxide cathodes lon doping Biphasic engineering Surface modification Sodium-ion batteries
在线阅读 下载PDF
Layered oxide cathodes for sodium-ion batteries: From air stability, interface chemistry to phase transition 被引量:12
9
作者 Yi-Feng Liu Kai Han +13 位作者 Dan-Ni Peng Ling-Yi Kong Yu Su Hong-Wei Li Hai-Yan Hu Jia-Yang Li Hong-Rui Wang Zhi-Qiang Fu Qiang Ma Yan-Fang Zhu Rui-Ren Tang Shu-Lei Chou Yao Xiao Xiong-Wei Wu 《InfoMat》 SCIE CSCD 2023年第6期1-43,共43页
Sodium-ion batteries(SIBs)are considered as a low-cost complementary or alternative system to prestigious lithium-ion batteries(LIBs)because of their similar working principle to LIBs,cost-effectiveness,and sustainabl... Sodium-ion batteries(SIBs)are considered as a low-cost complementary or alternative system to prestigious lithium-ion batteries(LIBs)because of their similar working principle to LIBs,cost-effectiveness,and sustainable availability of sodium resources,especially in large-scale energy storage systems(EESs).Among various cathode candidates for SIBs,Na-based layered transition metal oxides have received extensive attention for their relatively large specific capacity,high operating potential,facile synthesis,and environmental benignity.However,there are a series of fatal issues in terms of poor air stability,unstable cathode/electrolyte interphase,and irreversible phase transition that lead to unsatisfactory battery performance from the perspective of preparation to application,outside to inside of layered oxide cathodes,which severely limit their practical application.This work is meant to review these critical problems associated with layered oxide cathodes to understand their fundamental roots and degradation mechanisms,and to provide a comprehensive summary of mainstream modification strategies including chemical substitution,surface modification,structure modulation,and so forth,concentrating on how to improve air stability,reduce interfacial side reaction,and suppress phase transition for realizing high structural reversibility,fast Na+kinetics,and superior comprehensive electrochemical performance.The advantages and disadvantages of different strategies are discussed,and insights into future challenges and opportunities for layered oxide cathodes are also presented. 展开更多
关键词 air stability interface chemistry layered oxide cathodes phase transition sodium-ion batteries
原文传递
Layered oxide cathodes for sodium-ion batteries:microstructure design,local chemistry and structural unit 被引量:6
10
作者 Ling-Yi Kong Han-Xiao Liu +10 位作者 Yan-Fang Zhu Jia-Yang Li Yu Su Hong-Wei Li Hai-Yan Hu Yi-Feng Liu Ming-Jing Yang Zhuang-Chun Jian Xin-Bei Jia Shu-Lei Chou Yao Xiao 《Science China Chemistry》 SCIE EI CSCD 2024年第1期191-213,共23页
Because of the low price and abundant reserves of sodium compared with lithium,the research of sodium-ion batteries(SIBs)in the field of large-scale energy storage has returned to the research spotlight.Layered oxides... Because of the low price and abundant reserves of sodium compared with lithium,the research of sodium-ion batteries(SIBs)in the field of large-scale energy storage has returned to the research spotlight.Layered oxides distinguish themselves from the mains cathode materials of SIBs owing to their advantages such as high specific capacity,simple synthesis route,and environmental benignity.However,the commercial development of the layered oxides is limited by sluggish kinetics,complex phase transition and poor air stability.Based on the research ideas from macro-to micro-scale,this review systematically summarizes the current optimization strategies of sodium-ion layered oxide cathodes(SLOC)from different dimensions:microstructure design,local chemistry regulation and structural unit construction.In the dimension of microstructure design,the various structures such as the microspheres,nanoplates,nanowires and exposed active facets are prepared to improve the slow kinetics and electrochemical performance.Besides,from the view of local chemistry regulation by chemical element substitution,the intrinsic electron/ion properties of SLOC have been enhanced to strengthen the structural stability.Furthermore,the optimization idea of endeavors to regulate the physical and chemical properties of cathode materials essentially is put forward from the dimension of structural unit construction.The opinions and strategies proposed in this review will provide some inspirations for the design of new SLOC in the future. 展开更多
关键词 sodium-ion batteries layered oxide cathodes microstructure design local chemistry structural unit
原文传递
A comprehensive understanding of the anionic redox chemistry in layered oxide cathodes for sodium-ion batteries 被引量:5
11
作者 Junteng Jin Yongchang Liu +3 位作者 Xuelu Pang Yao Wang Xianran Xing Jun Chen 《Science China Chemistry》 SCIE EI CAS CSCD 2021年第3期385-402,共18页
Sodium-ion batteries(SIBs) have demonstrated great application prospects in large-scale energy storage systems and low-speed electric vehicles due to the cost effectiveness and abundant resources. Layered transition-m... Sodium-ion batteries(SIBs) have demonstrated great application prospects in large-scale energy storage systems and low-speed electric vehicles due to the cost effectiveness and abundant resources. Layered transition-metal oxides are recognized as one of the most attractive sodium-ion storage cathode candidates by virtue of their high compositional diversity, environmental friendliness, ease of synthesis, and promising theoretical capacities. The practicability, however, is still limited by the fact that the energy densities of most Na-storage layered oxide cathodes solely using the conventional cationic redox are not comparable to those of the lithium-ion storage counterparts. Recently, the strategy of activating anionic redox(O^(2-)/O^(n-)) which is popular in Li-rich layered materials has been successfully applied in oxide cathodes of SIBs to promote the energy density to a new level. It is interesting to note that excess Na is not the prerequisite to induce anionic redox in sodium oxides, indicating a new mechanism underlying Na-ion materials. Herein, the latest advances on the anionic redox chemistry in layered oxide cathodes for SIBs,including the fundamental theories, triggering strategies, and applicable cathode materials, are comprehensively reviewed.Moreover, the challenges(mainly O_(2) release) facing anionic redox are discussed, and the possible remedies are outlined for future developments toward a highly reversible oxygen usage. We believe that this review can provide a valuable guidance for the exploration of high-energy layered oxide cathode materials of SIBs. 展开更多
关键词 sodium-ion batteries layered oxide cathodes anionic redox high energy density charge compensation mechanism
原文传递
Entropy tuning and artificial CEI synergistically enhance the stability and kinetics of P2-type layered oxide cathode for high-voltage sodium-ion batteries
12
作者 Yingxinjie Wang Ziying Zhang +6 位作者 Kejian Tang Yongchun Li Guohao Li Jie Wang Zhenjun Wu Nan Zhang Xiuqiang Xie 《Journal of Energy Chemistry》 2025年第8期241-251,共11页
P2-type layered oxide Na_(2/3)Ni_(1/3)Mn_(2/3)O_(2)(NM)is a promising cathode material for sodium-ion batteries(SIBs).However,the severe irreversible phase transition,sluggish Na+diffusion kinetics,and interfacial sid... P2-type layered oxide Na_(2/3)Ni_(1/3)Mn_(2/3)O_(2)(NM)is a promising cathode material for sodium-ion batteries(SIBs).However,the severe irreversible phase transition,sluggish Na+diffusion kinetics,and interfacial side reactions at high-voltage result in grievous capacity degradation and inferior electrochemical performance.Herein,a dual-function strategy of entropy tuning and artificial cathode electrolyte interface(CEI)layer construction is reported to generate a novel P2-type medium-entropy Na_(0.75)Li_(0.1)Mg_(0.05)Ni_(0.18)Mn_(0.66)Ta_(0.01)O_(2)with NaTaO_(3)surface modification(LMNMT)to address the aforementioned issues.In situ X-ray diffraction reveals that LMNMT exhibits a near zero-strain phase transition with a volume change of only 1.4%,which is significantly lower than that of NM(20.9%),indicating that entropy tuning effectively suppresses irreversible phase transitions and enhances ion diffusion.Kinetic analysis and post-cycling interfacial characterization further confirm that the artificial CEI layer promotes the formation of a stable,thin NaF-rich CEI and reduces interfacial side reactions,thereby further enhancing ion transport kinetics and surface/interface stability.Consequently,the LMNMT electrode exhibits outstanding rate capability(46 mA h g^(−1)at 20 C)and cycling stability(89.5%capacity retention after 200 cycles at 2 C)within the voltage range of 2–4.35 V.The LMNMT also exhibits superior all-climate performance and air stability.This study provides a novel path for the design of high-voltage cathode materials for SIBs. 展开更多
关键词 layered oxide cathodes Entropy tuning Artificial CEl HIGH-VOLTAGE Sodium-ion batteries
在线阅读 下载PDF
Manganese-based oxides cathodes for potassium-ion batteries:A review
13
作者 Qinggang Yue Maoting Xia +2 位作者 Jiang Zhou Juanjuan Cheng Bingan Lu 《Journal of Energy Chemistry》 2025年第9期1-18,I0002,共19页
Potassium-ion batteries(PIBs)were recognized for their natural abunda nce,high theoretical output voltage,and the availability of commercialized graphite anodes.However,the development of highperformance manganese-bas... Potassium-ion batteries(PIBs)were recognized for their natural abunda nce,high theoretical output voltage,and the availability of commercialized graphite anodes.However,the development of highperformance manganese-based layered oxide cathodes-a leading candidate for PIB systems-has been fundamentally constrained by irreversible phase transitions(PT)during the cycling process,manifesting as severe structural degradation and capacity fading.This review presents a transformative paradigm integrating machine learning(ML)with multiscale characterization to analyse the complex phase transition mechanisms in Mn-based cathodes.Through systematic ML-driven interrogation of structure-property relationships,we establish quantitative descriptors for phase stability and develop predictive models for transition dynamics.Furthermore,we highlight recent breakthroughs in cross-disciplinary approaches,enabling the rational design of PT-mitigated cathode architectures.By consolidating these insights into a unified knowledge framework,this work provides strategic guidelines for developing structurally robust Mn-based cathodes and outlines future research directions for next-generation PIB systems. 展开更多
关键词 Potassium-ion batteries Manganese-based layered oxide cathodes Phase transition Machine learning
在线阅读 下载PDF
Achievable dual-strategy to stabilize Li-rich layered oxide interface by a one-step wet chemical reaction towards long oxygen redox reversibility 被引量:2
14
作者 Bin He Yujie Dai +7 位作者 Shuai Jiang Dawei Chen Xilong Wang Jie Song Dan Xiao Qian Zhao Yan Meng Wei Feng 《Journal of Energy Chemistry》 2025年第2期120-131,I0004,共13页
Oxygen release and electrolyte decomposition under high voltage endlessly exacerbate interfacial ramifications and structu ral degradation of high energy-density Li-rich layered oxide(LLO),leading to voltage and capac... Oxygen release and electrolyte decomposition under high voltage endlessly exacerbate interfacial ramifications and structu ral degradation of high energy-density Li-rich layered oxide(LLO),leading to voltage and capacity fading.Herein,the dual-strategy of Cr,B complex coating and local gradient doping is simultaneously achieved on LLO surface by a one-step wet chemical reaction at room temperature.Density functional theory(DFT)calculations prove that stable B-O and Cr-O bonds through the local gradient doping can significantly reduce the high-energy O 2p states of interfacial lattice O,which is also effective for the near-surface lattice O,thus greatly stabilizing the LLO surface,Besides,differential electrochemical mass spectrometry(DEMS)indicates that the Cr_(x)B complex coating can adequately inhibit oxygen release and prevents the migration or dissolution of transition metal ions,including allowing speedy Li^(+)migration,The voltage and capacity fading of the modified cathode(LLO-C_(r)B)are adequately suppressed,which are benefited from the uniformly dense cathode electrolyte interface(CEI)composed of balanced organic/inorganic composition.Therefore,the specific capacity of LLO-CrB after 200 cycles at 1C is 209.3 mA h g^(-1)(with a retention rate of 95.1%).This dual-strategy through a one-step wet chemical reaction is expected to be applied in the design and development of other anionic redox cathode materials. 展开更多
关键词 Lithium-rich layered oxide cathode One-step wet chemical reaction Surface coating Local gradient doping Interfacial oxygen
在线阅读 下载PDF
Elements gradient doping in Mn-based Li-rich layered oxides for long-life lithium-ion batteries 被引量:2
15
作者 Yinzhong Wang Shiqi Liu +7 位作者 Xianwei Guo Boya Wang Qinghua Zhang Yuqiang Li Yulong Wang Guoqing Wang Lin Gu Haijun Yu 《Journal of Materials Science & Technology》 2025年第4期266-273,共8页
The cobalt-free Mn-based Li-rich layered oxide material has the advantages of low cost,high energy density,and good performance at low temperatures,and is the promising choice for energy storage batteries.However,the ... The cobalt-free Mn-based Li-rich layered oxide material has the advantages of low cost,high energy density,and good performance at low temperatures,and is the promising choice for energy storage batteries.However,the long-cycling stability of batteries needs to be improved.Herein,the Mn-based Li-rich cathode materials with small amounts of Li2 MnO3 crystal domains and gradient doping of Al and Ti elements from the surface to the bulk have been developed to improve the structure and interface stability.Then the batteries with a high energy density of 600 Wh kg^(-1),excellent capacity retention of 99.7%with low voltage decay of 0.03 mV cycle^(-1) after 800 cycles,and good rates performances can be achieved.Therefore,the structure and cycling stability of low voltage Mn-based Li-rich cathode materials can be significantly improved by the bulk structure design and interface regulation,and this work has paved the way for developing low-cost and high-energy Mn-based energy storage batteries with long lifetime. 展开更多
关键词 Mn-based Li-rich layered oxide cathode Li_(2)MnO_(3)crystal domain Elemental gradient Lithium-ion batteries Energy storage
原文传递
Insights into chemical-mechanical degradation and modification strategies of layered oxide cathode materials of sodium ion batteries 被引量:1
16
作者 Tong Zhang Yuesen Li +4 位作者 Zihao Song Yaohui Huang Fei Li Shaoan Cheng Fujun Li 《Journal of Energy Chemistry》 2025年第4期294-315,共22页
Sodium-ion batteries(SIBs)have attracted significant attention in large-scale energy storage system because of their abundant sodium resource and cost-effectiveness.Layered oxide materials are particularly promising a... Sodium-ion batteries(SIBs)have attracted significant attention in large-scale energy storage system because of their abundant sodium resource and cost-effectiveness.Layered oxide materials are particularly promising as SIBs cathodes due to their high theoretical capacities and facile synthesis.However,their practical applications are hindered by the limitations in energy density and cycling stability.The comprehensive understanding of failure mechanisms within bulk structure and at the cathode/electrolyte interface of cathodes is still lacking.In this review,the issues related to bulk phase degradation and surface degradation,such as irreversible phase transitions,cation migration,transition metal dissolution,air/moisture instability,intergranular cracking,interfacial reactions,and reactive oxygen loss,are discussed.The latest advances and strategies to improve the stability of layered oxide cathodes and full cells are provided,as well as our perspectives on the future development of SIBs. 展开更多
关键词 layered oxide cathode Failure mechanism Intercalation chemistry Sodium-ion batteries Sustainability
在线阅读 下载PDF
Medium-entropy configuration enabling reversible P2-OP4 phase transition in layered oxides for high-rate sodium-ion batteries 被引量:1
17
作者 Fei-Fei Hong Xin Zhou +9 位作者 Hao Liu Gui-Lin Feng Xiao-Hong Liu Heng Zhang Wei-Feng Fan Bin Zhang Mei-Hua Zuo Wang-Yan Xing Ping Zhang Wei Xiang 《Rare Metals》 2025年第5期2997-3007,共11页
Layered transition metal oxides have emerged as promising cathode materials for sodium ion batteries.However,irreversible phase transitions cause structural distortion and cation rearrangement,leading to sluggish Na+d... Layered transition metal oxides have emerged as promising cathode materials for sodium ion batteries.However,irreversible phase transitions cause structural distortion and cation rearrangement,leading to sluggish Na+dynamics and rapid capacity decay.In this study,we propose a medium-entropy cathode by simultaneously introducing Fe,Mg,and Li dopants into a typical P2-type Na_(0.75)Ni_(0.25)Mn_(0.75)O_(2)cathode.The modified Na_(0.75)Ni_(0.2125)Mn_(0.6375)Fe_(0.05)Mg_(0.05)Li_(0.05)O_(2)cathode predominantly exhibits a main P2 phase(93.5%)with a minor O3 phase(6.5%).Through spectroscopy techniques and electrochemical investigations,we elucidate the redox mechanisms of Ni^(2+/3+/4+),Mn^(3+/4+),Fe^(3+/4+),and O_(2)-/O_(2)^(n-)during charging/discharging.The medium-entropy doping mitigates the detrimental P2-O_(2)phase transition at high-voltage,replacing it with a moderate and reversible structural evolution(P2-OP4),thereby enhancing structural stability.Consequently,the modified cathode exhibits a remarkable rate capacity of 108.4 mAh·g^(-1)at 10C,with a capacity retention of 99.0%after 200 cycles at 1C,82.5%after 500 cycles at 5C,and 76.7%after 600 cycles at 10C.Furthermore,it also demonstrates superior electrochemical performance at high cutoff voltage of 4.5 V and extreme temperature(55 and 0℃).This work offers solutions to critical challenges in sodium ion batteries cathode materials. 展开更多
关键词 layered oxide cathode Sodium ion batteries Phase transition Medium-entropy P2/O3 biphasic structure
原文传递
Addressing cation mixing in layered structured cathodes for lithium-ion batteries:A critical review 被引量:5
18
作者 Jingxi Li Gemeng Liang +4 位作者 Wei Zheng Shilin Zhang Kenneth Davey Wei Kong Pang Zaiping Guo 《Nano Materials Science》 EI CAS CSCD 2023年第4期404-420,共17页
High-performance lithium-ion batteries(LIB)are important in powering emerging technologies.Cathodes are regarded as the bottleneck of increasing battery energy density,among which layered oxides are the most promising... High-performance lithium-ion batteries(LIB)are important in powering emerging technologies.Cathodes are regarded as the bottleneck of increasing battery energy density,among which layered oxides are the most promising candidates for LIB.However,a limitation with layered oxides cathodes is the transition metal and Li site mixing,which significantly impacts battery capacity and cycling stability.Despite recent research on Li/Ni mixing,there is a lack of comprehensive understanding of the origin of cation mixing between the transition metal and Li;therefore,practical means to address it.Here,a critical review of cation mixing in layered cathodes has been provided,emphasising the understanding of cation mixing mechanisms and their impact on cathode material design.We list and compare advanced characterisation techniques to detect cation mixing in the material structure;examine methods to regulate the degree of cation mixing in layered oxides to boost battery capacity and cycling performance,and critically assess how these can be applied practically.An appraisal of future research directions,including superexchange interaction to stabilise structures and boost capacity retention has also been concluded.Findings will be of immediate benefit in the design of layered cathodes for high-performance rechargeable LIB and,therefore,of interest to researchers and manufacturers. 展开更多
关键词 Cation mixing layered oxide cathodes Lithium-ion batteries Electrochemical performance
在线阅读 下载PDF
High‑Entropy Layered Oxide Cathode Enabling High‑Rate for Solid‑State Sodium‑Ion Batteries 被引量:4
19
作者 Tianxun Cai Mingzhi Cai +5 位作者 Jinxiao Mu Siwei Zhao Hui Bi Wei Zhao Wujie Dong Fuqiang Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期160-171,共12页
Na-ion O3-type layered oxides are prospective cathodes for Na-ion batteries due to high energy density and low-cost.Nevertheless,such cathodes usually suffer from phase transitions,sluggish kinetics and air instabilit... Na-ion O3-type layered oxides are prospective cathodes for Na-ion batteries due to high energy density and low-cost.Nevertheless,such cathodes usually suffer from phase transitions,sluggish kinetics and air instability,making it difficult to achieve high performance solid-state sodium-ion batteries.Herein,the high-entropy design and Li doping strategy alleviate lattice stress and enhance ionic conductivity,achieving high-rate performance,air stability and electrochemically thermal stability for Na_(0.95)Li_(0.06)Ni_(0.25)Cu_(0.05)Fe_(0.15)Mn_(0.49)O_(2).This cathode delivers a high reversible capacity(141 mAh g^(−1)at 0.2C),excellent rate capability(111 mAh g^(−1)at 8C,85 mAh g^(−1)even at 20C),and long-term stability(over 85%capacity retention after 1000 cycles),which is attributed to a rapid and reversible O3–P3 phase transition in regions of low voltage and suppresses phase transition.Moreover,the compound remains unchanged over seven days and keeps thermal stability until 279℃.Remarkably,the polymer solid-state sodium battery assembled by this cathode provides a capacity of 92 mAh g^(−1)at 5C and keeps retention of 96%after 400 cycles.This strategy inspires more rational designs and could be applied to a series of O3 cathodes to improve the performance of solid-state Na-ion batteries. 展开更多
关键词 High-entropy High-rate performance Li-TM interaction Air stability O3 layered oxide cathode
在线阅读 下载PDF
Recent progress on electrolyte functional additives for protection of nickel-rich layered oxide cathode materials 被引量:3
20
作者 Longshan Li Dingming Wang +7 位作者 Gaojie Xu Qian Zhou Jun Ma Jianjun Zhang Aobing Du Zili Cui Xinhong Zhou Guanglei Cui 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期280-292,共13页
In advantages of their high capacity and high operating voltage,the nickel(Ni)-rich layered transition metal oxide cathode materials(LiNi_(x)Co_(y)Mn_(z)O_(2)(NCMxyz,x+y+z=1,x≥0.5)and LiNi_(0.8)Co_(0.15)Al_(0.05)O_(2... In advantages of their high capacity and high operating voltage,the nickel(Ni)-rich layered transition metal oxide cathode materials(LiNi_(x)Co_(y)Mn_(z)O_(2)(NCMxyz,x+y+z=1,x≥0.5)and LiNi_(0.8)Co_(0.15)Al_(0.05)O_(2)(NCA))have been arousing great interests to improve the energy density of LIBs.However,these Nirich cathodes always suffer from rapid capacity degradation induced by unstable cathode-electrolyte interphase(CEI)layer and destruction of bulk crystal structure.Therefore,varied electrode/electrolyte interface engineering strategies(such as electrolyte formulation,material coating or doping)have been developed for Ni-rich cathodes protection.Among them,developing electrolyte functional additives has been proven to be a simple,effective,and economic method to improve the cycling stability of Nirich cathodes.This is achieved by removing unfavorable species(such as HF,H_(2)O)or constructing a stable and protective CEI layer against unfavorable reactive species(such as HF,H_(2)O).Herein,this review mainly introduces the varied classes of electrolyte functional additives and their working mechanism for interfacial engineering of Ni-rich cathodes.Especially,key favorable species for stabilizing CEI layer are summarized.More importantly,we put forward perspectives for screening and customizing ideal functional additives for high performance Ni-rich cathodes based LIBs. 展开更多
关键词 Nickel-rich layered oxide cathode Electrolyte additive Functional group Working mechanism Cathode-electrolyte interphase(CEI)
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部