Layer pseudospins,exhibiting quantum coherence and precise multistate controllability,present significant potential for the advancement of future computing technologies.In this work,we propose an in-memory probabilist...Layer pseudospins,exhibiting quantum coherence and precise multistate controllability,present significant potential for the advancement of future computing technologies.In this work,we propose an in-memory probabilistic computing scheme based on the electrical manipulation of layer pseudospins in layered materials,by exploiting the interaction between real spins and layer pseudospins.展开更多
Background Postoperative delirium is one of the most common complications in the older surgical population,but its pathogenesis and biomarkers are largely undetermined.Retinal layer thickness has been demonstrated to ...Background Postoperative delirium is one of the most common complications in the older surgical population,but its pathogenesis and biomarkers are largely undetermined.Retinal layer thickness has been demonstrated to be associated with cognitive function in mild cognitive impairment and patients with Alzheimer’s disease.However,relatively little is known about possible retinal layer thickness among patients with postoperative delirium.Aims We aimed to investigate the relationship between retinal layer thickness and postoperative delirium in this cross-sectional study.Methods The participants(≥65 years old)having elective surgery under general anaesthesia were screened via medical records from Shanghai 10th People’s Hospital.Preoperative macular thickness and peripapillary retinal nerve fibre layer(RNFL)thickness were measured using optical coherence tomography(OCT).The Confusion Assessment Method(CAM)algorithm and CAM-Severity(CAM-S)were used to assess the incidence and severity of postoperative delirium on the first,second and third days after surgery.Results Among 169 participants(mean(standard deviation(SD)71.15(4.36)years),40(24%)developed postoperative delirium.Notably,individuals who developed postoperative delirium exhibited thicker preoperative macular thickness in the right eye compared with those who did not(mean(SD)283.35(27.97)µm vs 273.84(20.14)µm,p=0.013).Furthermore,the thicker preoperative macular thickness of the right eye was associated with a higher incidence of postoperative delirium(adjusted odds ratio 1.593,95%confidence interval(CI)1.093 to 2.322,p=0.015)and greater severity(adjusted mean difference(β)=0.256,95%CI 0.037 to 0.476,p=0.022)after adjustment for age,sex and Mini-Mental State Examination(MMSE)scores.However,such a difference or association did not appear in the left macular or bilateral peripapillary RNFL thicknesses.Conclusions Current findings demonstrated that preoperative macular thickness might serve as a potential non-invasive marker for the vulnerability of developing postoperative delirium in older surgical patients.Further large-scale validation studies should be performed to confirm these results.展开更多
Nickel-rich(Ni≥90%)layered oxides materials have emerged as a promising candidate for nextgeneration high-energy-density lithium-ion batteries(LIBs).However,their widespread application is hindered by structural fati...Nickel-rich(Ni≥90%)layered oxides materials have emerged as a promising candidate for nextgeneration high-energy-density lithium-ion batteries(LIBs).However,their widespread application is hindered by structural fatigue and lattice oxygen loss.In this work,an epitaxial surface rock-salt nanolayer is successfully developed on the LiNi_(0.9)Co_(0.1)O_(2)sub-surface via heteroatom anchoring utilizing high-valence element molybdenum modification.This in-situ formed conformal buffer phase with a thickness of 1.2 nm effectively suppresses the continuous interphase side-reactions,and thus maintains the excellent structure integrity at high voltage.Furthermore,theoretical calculations indicate that the lattice oxygen reversibility in the anion framework of the optimized sample is obviously enhanced due to the higher content of O 2p states near the Fermi level than that of the pristine one.Meanwhile,the stronger Mo-O bond further reduces cell volume alteration,which improves the bulk structure stability of modified materials.Besides,the detailed charge compensation mechanism suggests that the average oxidation state of Ni is reduced,which induces more active Li+participating in the redox reactions,boosting the cell energy density.As a result,the uniquely designed cathode materials exhibit an extraordinary discharge capacity of 245.4 mAh g^(-1)at 0.1 C,remarkable rate performance of 169.3 mAh g^(-1)at 10 C at 4.5 V,and a high capacity retention of 70.5% after 1000 cycles in full cells at a high cut-off voltage of 4.4 V.This strategy provides an valuable insight into constructing distinctive heterostructure on highperformance Ni-rich layered cathodes for LIBs.展开更多
Optical data storage(ODS)is a low-cost and high-durability counterpart of traditional electronic or mag-netic storage.As a means of enhancing ODS capacity,the multiple recording layer(MRL)method is more promising than...Optical data storage(ODS)is a low-cost and high-durability counterpart of traditional electronic or mag-netic storage.As a means of enhancing ODS capacity,the multiple recording layer(MRL)method is more promising than other approaches such as reducing the recording volume and multiplexing technology.However,the architecture of current MRLs is identical to that of recording data into physical layers with rigid space,which leads to either severe interlayer crosstalk or finite recording layers constrained by the short working distances of the objectives.Here,we propose the concept of hybrid-layer ODS,which can record optical information into a physical layer and multiple virtual layers by using high-orthogonality random meta-channels.In the virtual layer,32 images are experimentally reconstructed through holog-raphy,where their holographic phases are encoded into 16 printed images and complementary images in the physical layer,yielding a capacity of 2.5 Tbit cm^(-3).A higher capacity is achievable with more virtual layers,suggesting hybrid-layer ODS as a possible candidate for next-generation ODS.展开更多
Aqueous zinc batteries offer significant potential for large-scale energy storage,wearable devices,and medium-to low-speed transportation due to their safety,affordability,and environmental friendliness.However,the un...Aqueous zinc batteries offer significant potential for large-scale energy storage,wearable devices,and medium-to low-speed transportation due to their safety,affordability,and environmental friendliness.However,the uneven zinc deposition at the anode side caused by localized reaction activity from the passivation layer presents challenges that significantly impact the battery's stability and lifespan.In this study,we have proposed an expandable and maneuverable gel sustained-release(GSR)treatment to polish the Zn metal,which in situ converts its native passivation layer into a composite interphase layer with nanocrystal zinc phosphate and flexible polyvinyl alcohol.Such a thin and uniform interface contributes to fast and homogeneous Zn ion transport and improved anti-corrosion ability,enabling uniform zinc deposition without dendrite growth and thereby improving the battery performance with high-rate ability and long cycle life.This GSR treatment method,characterized by its simplicity,low cost,and universality,facilitates the widespread application of aqueous zinc batteries.展开更多
Due to the coexistence of compressibility,viscosity,and threedimensional effects,laminar flow is difficult to maintain for high-speed boundary layer on complex geometries.The unstable disturbance waves in the boundary...Due to the coexistence of compressibility,viscosity,and threedimensional effects,laminar flow is difficult to maintain for high-speed boundary layer on complex geometries.The unstable disturbance waves in the boundary layer are excited and rapidly increase during the receptivity process,so sufficiently large Reynolds stress causes the basic flow velocity profile to change,and the formation of turbulence is inevitable.展开更多
Separator modification is an effective approach to suppress dendrite growth to realize high-energy sodium metal batteries(SMBs)in practical applications,however,its success is mainly subject to surface modification.He...Separator modification is an effective approach to suppress dendrite growth to realize high-energy sodium metal batteries(SMBs)in practical applications,however,its success is mainly subject to surface modification.Herein,a separator with multifunctional layers composed of N-doped mesoporous hollow carbon spheres(HCS)as the inner layer and sodium fluoride(NaF)as the outer layer on commercial polypropylene separator(PP)is proposed(PP@HCS-NaF)to achieve stable cycling in SMB.At the molecular level,the inner HCS layer with a high content of pyrrolic-N induces the uniform Na^(+)flux as a potential Na^(+)redistributor for homogenous deposition,whereas its hollow mesoporous structure offers nanoporous buffers and ion channels to regulate Na^(+)ion distribution and uniform deposition.The outer layer(NaF)constructs the NaF-enriched robust solid electrolyte interphase layer,significantly lowering the Na^(+)ions diffusion barrier.Benefiting from these merits,higher electrochemical performances are achieved with multifunctional double-layered PP@HCS-NaF separators compared with single-layered separators(i.e.PP@HCS or PP@NaF)in SMBs.The Na‖Cu half-cell with PP@HCS-NaF offers stable cycling(280 cycles)with a high CE(99.6%),and Na‖Na symmetric cells demonstrate extended lifespans for over 6000 h at 1 mA cm^(-2)with a progressively stable overpotential of 9 mV.Remarkably,in Na‖NVP full-cells,the PP@HCS-NaF separator grants a stable capacity of~81 mA h g^(-1)after 3500 cycles at 1 C and an impressive rate capability performance(~70 mA h g^(-1)at 15 C).展开更多
AIM:To evaluate parameters measured using the tear film imager(TFI)prototype,a new technology that enables to quantify the tear film thickness of lipid and mucoaqueous layers.METHODS:In this cross-sectional study,pati...AIM:To evaluate parameters measured using the tear film imager(TFI)prototype,a new technology that enables to quantify the tear film thickness of lipid and mucoaqueous layers.METHODS:In this cross-sectional study,patients with dry eye,meibomian gland dysfunction(MGD),and non-dry eye/MGD from February 2020 to January 2021 were analyzed.Quantified TFI outputs included lipid layer thickness(LLT),mucoaqueous layer thickness(MALT),MALT rate of change(MALTR),and lipid breakup time.Two other interferometry devices,LipiView2 and DR-1α,were used for comparison.TFI outputs and other clinical parameters were analyzed using correlation coefficients.Each patient underwent one or several study visits.Baseline values of three device outputs,other clinical parameters,and their changes were examined.RESULTS:This study involved 28 patients(8 patients with dry eyes,13 with MGD,and 7 with non-dry eye/MGD).Baseline TFI,LipiView2,and DR-1αvalues were associated with various clinical parameters.The LLT values estimated using TFI had a correlation with the plugging score in the upper eyelid(r=−0.42).Several TFI values have correlated better than LipiView2 and DR-1α,particularly with questionnaire scores.MALTR by TFI revealed a correlation between standardized patient evaluation on eye dryness(SPEED)and dry eye-related quality of life score(DEQS)scores(r=0.59,0.43),respectively.CONCLUSION:TFI enabled to quantify the LLT and MALT separately over time and shows the moderate correlations between TFI measurements and clinical parameters,which yields the potential for TFI to serve as a complementary tool for assessing dry eye and MGD.展开更多
Rotating Instability (RI) is a typical unsteady flow phenomenon in compressors and may cause severe aerodynamic noise and even potential nonsynchronous vibration. Most studies of RI are based on the uniform inflow, ig...Rotating Instability (RI) is a typical unsteady flow phenomenon in compressors and may cause severe aerodynamic noise and even potential nonsynchronous vibration. Most studies of RI are based on the uniform inflow, ignoring the influence of inlet distortions. This study investigates the mechanism of RI in a transonic rotor through full-annulus unsteady simulations, with a particular focus on the effects of boundary layer ingesting distortions. The results show that at the uniform inflow, the RI fluctuations with the broadband hump can be observed over a relatively wide mass flow rate range, and its origin can be attributed to the coupling effect between the tip leakage flow and shear layer instability. At the inlet distortions, the broadband hump only occurs with partial circumferential locations. This kind of flow phenomenon is defined as Partial Rotating Instability (PRI). The PRI only occurs in a narrower mass flow rate range in which the circumferential range of strong shear is sufficiently large and the self-induced unsteady effects are strong enough. Further, this study confirms that the averaged tip leakage flow axial momentum at the onset of RI or PRI is close, so it can be used as the parameter to determine whether RI or PRI occurs.展开更多
Dear Editor,We present a modified surgical technique to verify the chorion layer of the human amniotic membrane(hAM)in treating retinal detachment(RD)with vitrectomy.RD patients with pathological myopia where the tear...Dear Editor,We present a modified surgical technique to verify the chorion layer of the human amniotic membrane(hAM)in treating retinal detachment(RD)with vitrectomy.RD patients with pathological myopia where the tear is located within the posterior pole choroidal atrophy area are difficult to treat.Surgical procedures such as laser treatments,diathermy,cryopexy applications or long-term silicone oil endotamponade may not only be ineffective but also harmful in these cases^([1]).Amniotic membrane transplantation(AMT)is an effective technique in case of RD recurrences to seal retinal holes over high myopic chorioretinal atrophy^([2]).展开更多
Cowl-induced incident Shock Wave/Boundary Layer Interactions (SWBLI) under the influence of gradual expansion waves are frequently observed in supersonic inlets. However, the analysis and prediction of interaction len...Cowl-induced incident Shock Wave/Boundary Layer Interactions (SWBLI) under the influence of gradual expansion waves are frequently observed in supersonic inlets. However, the analysis and prediction of interaction lengths have not been sufficiently investigated. First, this study presents a theoretical scaling analysis and validates it through wind tunnel experiments. It conducts detailed control volume analysis of mass conservation, considering the differences between inviscid and viscous cases. Then, three models for analysing interaction length under gradual expansion waves are derived. Related experiments using schlieren photography are conducted to validate the models in a Mach 2.73 flow. The interaction scales are captured at various relative distances between the shock impingement location and the expansion regions with wedge angles ranging from 12° to 15° and expansion angles of 9°, 12°, and 15°. Three trend lines are plotted based on different expansion angles to depict the relationship between normalised interaction length and normalised interaction strength metric. In addition, the relationship between the coefficients of the trend line and the expansion angles is introduced to predict the interaction length influenced by gradual expansion waves. Finally, the estimation of normalised interaction length is derived for various coefficients within a unified form.展开更多
Modulating the interface between the electron transport layer(ETL)and perovskite to minimize interfacial recombination is pivotal for developing efficient and stable perovskite solar cells.Here,we introduce an ultra-t...Modulating the interface between the electron transport layer(ETL)and perovskite to minimize interfacial recombination is pivotal for developing efficient and stable perovskite solar cells.Here,we introduce an ultra-thin ZrO_(2)insulating interface layer onto the inner surface of the mesoporous TiO_(2)ETL via the chemical bath deposition in the zirconium n-butoxide solution,which alters the interface characteristics between TiO_(2)and perovskite for the printable hole-conductor-free mesoscopic perovskite solar cells(p-MPSCs).The insulating ZrO_(2)interface layer reduces interface defects and suppresses interfacial non-radiative recombination.Furthermore,the ZrO_(2)interface layer improves the wettability of the mesoporous TiO_(2)ETL,which favors the crystallization of perovskite within the mesoporous scaffold.Meanwhile,the device performance presents thickness dependence on the interface layer.While increased thickness improves the open-circuit voltage,excessive thickness negatively impacts both the short-circuit current density and fill factor.Consequently,an improved power conversion efficiency of 19.9% was achieved for p-MPSCs with the ZrO_(2)interface layer at its optimized thickness.展开更多
In the multilayer film-substrate system,thermal stress concentration and stress mutations cause film buckling,delamination and cracking,leading to device failure.In this paper,we investigated a multilayer film system ...In the multilayer film-substrate system,thermal stress concentration and stress mutations cause film buckling,delamination and cracking,leading to device failure.In this paper,we investigated a multilayer film system composed of a substrate and three film layers.The thermal stress distribution inside the structure was calculated by the finite element method,revealing significant thermal stress differences between the layers.This is mainly due to the mismatch of the coefficient of thermal expansion between materials.Different materials respond differently to changes in external temperature,leading to compression between layers.There are obvious thermal stress concentration points at the corners of the base layer and the transition layer,which is due to the sudden change of the shape at the geometric section of the structure,resulting in a sudden increase in local stress.To address this issue,we chamfered the substrate and added an intermediate layer between the substrate and the transition layer to assess whether these modifications could reduce or eliminate the thermal stress concentration points and extend the service life of the multilayer structure.The results indicate that chamfering and adding the intermediate layer effectively reduce stress discontinuities and mitigate thermal stress concentration points,thereby improving interlayer bonding strength.展开更多
Rationally design the morphology and structure of electroactive nanomaterials is an effective approach to enhance the performance of aqueous batteries.Herein,we co-engineered the hollow architecture and interlayer spa...Rationally design the morphology and structure of electroactive nanomaterials is an effective approach to enhance the performance of aqueous batteries.Herein,we co-engineered the hollow architecture and interlayer spacing of layered double hydroxides(LDH)to achieve high electrochemical activity.The hierarchical hollow LDH was prepared from bimetallic zeolitic imidazolate frameworks(ZIF)by a facile cation exchange strategy.Zn and Cu elements were selected as the second metals incorporated in Co-ZIF.The characteristics of the corresponding derivatives were studied.Besides,the transformation mechanism of CoZn-ZIF into nanosheet-assembled hollow Co Zn Ni LDH(denoted as CoZnNi-OH)was systematically investigated.Importantly,the interlayer spacing of CoZnNi-OH expands due to Zn^(2+)incorporation.The prepared CoZnNi-OH offers large surface area,exposed active sites,and rapid mass transfer/diffusion rate,which lead to a significant enhancement in the specific capacitance,rate performance,and cycle stability of CoZnNi-OH electrode.In addition,the aqueous alkaline CoZnNi-OH//Zn showed a maximum energy density/power density of 0.924 m Wh/cm^(2),8.479 m W/cm^(2).This work not only raises an insightful strategy for regulating the morphology and interlayer spacing of LDH,but also provides a reference of designing hollow nickel-based nanomaterials for aqueous batteries.展开更多
Novel and promising chloride ion batteries(CIBs)that can operate at room temperature have attracted great attentions,due to the sustainable chloride-containing resources and high theoretical energy density.To achieve ...Novel and promising chloride ion batteries(CIBs)that can operate at room temperature have attracted great attentions,due to the sustainable chloride-containing resources and high theoretical energy density.To achieve the superior electrochemical properties of CIBs,the structure design of electrode materials is essential.Herein,2D NiAl-layered double hydroxide(NiAl-LDH)nanoarrays derived from Al2O3 are in-situ grafted to graphene(G)by atomic layer deposition(ALD)and hydrothermal method.The achieved NiAl-LDH@G hybrids with 2D NiAl-LDH arrays grown perpendicularly on graphene surface,can efficiently prevent the stacking of LDHs and enlarge specific surface area to provide more active sites.The NiAl-LDH@G cathode exhibits a maximum discharge capacity of 223.3 mA h g^(-1)and an excellent reversible capacity of 107 mA h g^(-1)over 500 cycles at 100 mA g^(-1)with a high coulombic efficiency around 96%,whereas pure NiAl-LDH has a discharge capacity of only 48.8 mA h g^(-1)and a coulombic efficiency(CE)of about 78%.More importantly,the NiAl-LDH@G electrode has a stable voltage at 1.9 V and an outstanding discharge capacity of higher than 72 mA h g^(-1)after 120 days.Additionally,XRD,XPS,and EDS have been employed to unveil the electrochemical reaction and Cl-storage mechanism of the NiAlLDH@G cathode in CIBs.This work opens a facile and reasonable way for improving electrochemical performance at anion-type rechargeable batteries in terms of cathode material design and mechanism interpretation.展开更多
We investigate the energy bands,magnetism,and superconductivity of bilayer octagraphene with A-A stackingunder a perpendicular electric field.A tight-binding model is used to analyze the band structure of the system.T...We investigate the energy bands,magnetism,and superconductivity of bilayer octagraphene with A-A stackingunder a perpendicular electric field.A tight-binding model is used to analyze the band structure of the system.The doubling of the unit cell results in each band of the single layer splitting into two.We find that applyinga perpendicular electric field increases the band splitting.As the electric field strength increases,the nestingof the Fermi surface(FS)weakens,eventually disrupting the antiferromagnetic order,and bilayer octagrapheneexhibits superconductivity.Spin fluctuations can induce unconventional superconductivity with s±-wave pairing.Applying a perpendicular electric field to bilayer octagraphene parent weakens the nesting of the FS,ultimatelykilling the spin-density-wave(SDW)ordered state and transitioning it into the superconducting state,whichworks as a doping effect.We use the random-phase approximation approach to obtain the pairing eigenvaluesand pairing symmetries of the perpendicular electric field-tuned bilayer octagraphene in the weak coupling limit.By tuning the strength of the perpendicular electric field,the critical interaction strength for SDW order can bemodified,which in turn may promote the emergence of unconventional superconductivity.展开更多
Self-assembled monolayers(SAMs)have been commonly employed as hole-selective layers(HSLs)in inverted(p-i-n)perovskite solar cells(PSCs),and typically only a single-component SAM is applied,which plays limited role in ...Self-assembled monolayers(SAMs)have been commonly employed as hole-selective layers(HSLs)in inverted(p-i-n)perovskite solar cells(PSCs),and typically only a single-component SAM is applied,which plays limited role in selective hole transport.Herein,we synthesize a novel SAM,(4-(3,11-dibro mo-7H-dibenzo[c,g]carbazol-7-yl)butyl)phosphonic acid(Br-4PADBC),and apply it as a complementary component to the commonly used[2-(3,6-dimeth oxy-9H-carbazol-9-yl)ethyl]phosphonic acid(MeO-2PACz)SAM,accomplishing boosted hole transport in inverted PSCs.A series of characterizations and theoretical calculations are employed to unravel the roles of each components within the binary SAM(bi-SAM).The involvements of the non-planar dibenzo[c,g]carbazole unit and electron-withdrawing Br atoms induce larger dipole moment of Br-4PADBC than MeO-2PACz,resulting in much deeper work function of ITO and consequently improved alignment with the valence band energy level of perovskite.Besides,the introduced Br atoms improve the quality of perovskite crystals and help passivate defects of perovskite.On the other hand,the existence of the conventional MeO-2PACz SAM ensures the considerable conductivity of the bi-SAM and thus efficient hole extraction from the perovskite layer.As a result,inverted PSC devices based on bi-SAM HSL deliver a decent power conversion efficiency(PCE)of 24.52%as well as dramatically improved thermal and operational stabilities.展开更多
Synchrotron method of resonant X-ray reflectivity 2D mapping has been applied to study ultrathin epitaxial layers of WS_(2)grown by pulsed laser deposition on Al_(2)O_(3)(0001)substrates.The measurements were carried ...Synchrotron method of resonant X-ray reflectivity 2D mapping has been applied to study ultrathin epitaxial layers of WS_(2)grown by pulsed laser deposition on Al_(2)O_(3)(0001)substrates.The measurements were carried out across the L absorption edge of tungsten to perform depth-dependent element-selective analysis sensitive to potential chemical modification of the WS_(2)layer in ambient conditions.Despite the few monolayer thickness of the studied film,the experimentally measured maps of reflectance as a function of incident angle and photon energy turned out to be quite informative showing well-pronounced interference effects near W absorption edge at 10210 eV.The synchrotron studies were complemented with conventional non-resonant reflectance measurements carried out in the laboratory at a fixed photon energy corresponding to Cu Kαemission.The reconstruction of the depth and energy dependent scattering length density within the studied multilayers was carried out using the OpenCL empowered fitting software utilizing spectral shaping algorithm which does not rely on the pre-measured reference absorption spectra.A thin WO_(x) layer has been revealed at the surface of the WS_(2)layer pointing out to the effect of water assisted photo-oxidation reported in a number of works related to ultrathin layers of transition metal dichalcogenides.展开更多
In this work,we design and fabricate AlGaN/GaN-based Schottky barrier diodes(SBDs)on a silicon substrate with a trenched n^(+)-GaN cap layer.With the developed physical models,we find that the n^(+)-GaN cap layer prov...In this work,we design and fabricate AlGaN/GaN-based Schottky barrier diodes(SBDs)on a silicon substrate with a trenched n^(+)-GaN cap layer.With the developed physical models,we find that the n^(+)-GaN cap layer provides more electrons into the AlGaN/GaN channel,which is further confirmed experimentally.When compared with the reference device,this increases the two-dimensional electron gas(2DEG)density by two times and leads to a reduced specific ON-resistance(Ron,sp)of~2.4 mΩ·cm^(2).We also adopt the trenched n^(+)-GaN structure such that partial of the n^(+)-GaN is removed by using dry etching process to eliminate the surface electrical conduction when the device is set in the off-state.To suppress the surface defects that are caused by the dry etching process,we also deposit Si_(3)N_(4)layer prior to the deposition of field plate(FP),and we obtain a reduced leakage current of~8×10^(−5)A·cm^(−2)and breakdown voltage(BV)of 876 V.The Baliga’s figure of merit(BFOM)for the proposed structure is increased to~319 MW·cm^(−2).Our investigations also find that the pre-deposited Si_(3)N_(4)layer helps suppress the electron capture and transport processes,which enables the reduced dynamic R_(on,sp).展开更多
Layered vanadates are ideal energy storage materials due to their multielectron redox reactions and excellent cation storage capacity.However,their practical application still faces challenges,such as slow reaction ki...Layered vanadates are ideal energy storage materials due to their multielectron redox reactions and excellent cation storage capacity.However,their practical application still faces challenges,such as slow reaction kinetics and poor structural stability.In this study,we synthesized[Me_(2)NH_(2)]V_(3)O_(7)(MNVO),a layered vanadate with expended layer spacing and enhanced pH resistance,using a one-step simple hydrothermal gram-scale method.Experimental analyses and density functional theory(DFT)calculations revealed supportive ionic and hydrogen bonding interactions between the thin-layered[Me_(2)NH_(2)]+cation and[V_(3)O_(7)]-anion layers,clarifying the energy storage mechanism of the H^(+)/Zn^(2+)co-insertion.The synergistic effect of these bonds and oxygen vacancies increased the electronic conductivity and significantly reduced the diffusion energy barrier of the insertion ions,thereby improving the rate capability of the material.In an acidic electrolyte,aqueous zinc-ion batteries employing MNVO as the cathode exhibited a high specific capacity of 433 mAh g^(-1)at 0.1 A g^(-1).The prepared electrodes exhibited a maximum specific capacity of 237 mAh g^(-1)at 5 A g^(-1)and maintained a capacity retention of 83.5%after 10,000 cycles.This work introduces a novel approach for advancing layered cathodes,paving the way for their practical application in energy storage devices.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12322407,62122036,and 62034004)the Natural Science Foundation of Jiangsu Province(Grant No.BK20233001)+5 种基金the National Key R&D Program of China(Grant Nos.2023YFF0718400 and 2023YFF1203600)the Leading-edge Technology Program of Jiangsu Natural Science Foundation(Grant No.BK20232004)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB44000000)Innovation Program for Quantum Science and Technologysupport from the Fundamental Research Funds for the Central Universities(Grant Nos.020414380227,020414380240,and 020414380242)the e-Science Center of Collaborative Innovation Center of Advanced Microstructures。
文摘Layer pseudospins,exhibiting quantum coherence and precise multistate controllability,present significant potential for the advancement of future computing technologies.In this work,we propose an in-memory probabilistic computing scheme based on the electrical manipulation of layer pseudospins in layered materials,by exploiting the interaction between real spins and layer pseudospins.
基金supported by grants from National Natural Science Foundation of China(81720108012,82001118)Ministry of Science and Technology of China(2021ZD0202003)+1 种基金Shanghai‘Rising Stars of Medical Talents’Youth Development Program(SHWSRS(2023)-62)Henry K.Beecher Professorship from Harvard University。
文摘Background Postoperative delirium is one of the most common complications in the older surgical population,but its pathogenesis and biomarkers are largely undetermined.Retinal layer thickness has been demonstrated to be associated with cognitive function in mild cognitive impairment and patients with Alzheimer’s disease.However,relatively little is known about possible retinal layer thickness among patients with postoperative delirium.Aims We aimed to investigate the relationship between retinal layer thickness and postoperative delirium in this cross-sectional study.Methods The participants(≥65 years old)having elective surgery under general anaesthesia were screened via medical records from Shanghai 10th People’s Hospital.Preoperative macular thickness and peripapillary retinal nerve fibre layer(RNFL)thickness were measured using optical coherence tomography(OCT).The Confusion Assessment Method(CAM)algorithm and CAM-Severity(CAM-S)were used to assess the incidence and severity of postoperative delirium on the first,second and third days after surgery.Results Among 169 participants(mean(standard deviation(SD)71.15(4.36)years),40(24%)developed postoperative delirium.Notably,individuals who developed postoperative delirium exhibited thicker preoperative macular thickness in the right eye compared with those who did not(mean(SD)283.35(27.97)µm vs 273.84(20.14)µm,p=0.013).Furthermore,the thicker preoperative macular thickness of the right eye was associated with a higher incidence of postoperative delirium(adjusted odds ratio 1.593,95%confidence interval(CI)1.093 to 2.322,p=0.015)and greater severity(adjusted mean difference(β)=0.256,95%CI 0.037 to 0.476,p=0.022)after adjustment for age,sex and Mini-Mental State Examination(MMSE)scores.However,such a difference or association did not appear in the left macular or bilateral peripapillary RNFL thicknesses.Conclusions Current findings demonstrated that preoperative macular thickness might serve as a potential non-invasive marker for the vulnerability of developing postoperative delirium in older surgical patients.Further large-scale validation studies should be performed to confirm these results.
基金financially supported by the National Natural Science Foundation of China(No.52202228,52402298)funded by the Science Research Project of Hebei Education Department(No.BJK2022011)+3 种基金the Central Funds Guiding the Local Science and Technology Development of Hebei Province(No.236Z4404G)the Beijing Tianjin Hebei Basic Research Cooperation Special Project(No.E2024202273)the Science and Technology Correspondent Project of Tianjin(24YDTPJC00240)supported by the U.S.Department of Energy’s Office of Science,Office of Basic Energy Science,Materials Sciences and Engineering Division。
文摘Nickel-rich(Ni≥90%)layered oxides materials have emerged as a promising candidate for nextgeneration high-energy-density lithium-ion batteries(LIBs).However,their widespread application is hindered by structural fatigue and lattice oxygen loss.In this work,an epitaxial surface rock-salt nanolayer is successfully developed on the LiNi_(0.9)Co_(0.1)O_(2)sub-surface via heteroatom anchoring utilizing high-valence element molybdenum modification.This in-situ formed conformal buffer phase with a thickness of 1.2 nm effectively suppresses the continuous interphase side-reactions,and thus maintains the excellent structure integrity at high voltage.Furthermore,theoretical calculations indicate that the lattice oxygen reversibility in the anion framework of the optimized sample is obviously enhanced due to the higher content of O 2p states near the Fermi level than that of the pristine one.Meanwhile,the stronger Mo-O bond further reduces cell volume alteration,which improves the bulk structure stability of modified materials.Besides,the detailed charge compensation mechanism suggests that the average oxidation state of Ni is reduced,which induces more active Li+participating in the redox reactions,boosting the cell energy density.As a result,the uniquely designed cathode materials exhibit an extraordinary discharge capacity of 245.4 mAh g^(-1)at 0.1 C,remarkable rate performance of 169.3 mAh g^(-1)at 10 C at 4.5 V,and a high capacity retention of 70.5% after 1000 cycles in full cells at a high cut-off voltage of 4.4 V.This strategy provides an valuable insight into constructing distinctive heterostructure on highperformance Ni-rich layered cathodes for LIBs.
基金the National Key Research and Development Program of China(2022YFB3607300)the National Natural Science Foundation of China(62322512 and 12134013)+3 种基金the Chinese Acad-emy of Sciences Project for Young Scientists in Basic Research(YSBR-049)support from the University of Science and Technology of China’s Center for Micro and Nanoscale Research and Fabricationsupported by the China Postdoctoral Science Foundation(2023M743364)supercomputing system in Hefei Advanced Computing Center and the Supercomputing Center of University of Science and Technology of China.
文摘Optical data storage(ODS)is a low-cost and high-durability counterpart of traditional electronic or mag-netic storage.As a means of enhancing ODS capacity,the multiple recording layer(MRL)method is more promising than other approaches such as reducing the recording volume and multiplexing technology.However,the architecture of current MRLs is identical to that of recording data into physical layers with rigid space,which leads to either severe interlayer crosstalk or finite recording layers constrained by the short working distances of the objectives.Here,we propose the concept of hybrid-layer ODS,which can record optical information into a physical layer and multiple virtual layers by using high-orthogonality random meta-channels.In the virtual layer,32 images are experimentally reconstructed through holog-raphy,where their holographic phases are encoded into 16 printed images and complementary images in the physical layer,yielding a capacity of 2.5 Tbit cm^(-3).A higher capacity is achievable with more virtual layers,suggesting hybrid-layer ODS as a possible candidate for next-generation ODS.
基金supported by the National Key R&D Program of China(Grant 2022YFB2402200)National Natural Science Foundation of China(Grant 92372206,52271140,52171194)+2 种基金Jilin Province Science and Technology Development Plan Funding Project(Grant YDZJ202301-ZYTS545)National Natural Science Foundation of China Excellent Young Scientists(Overseas)Youth Innovation Promotion Association CAS(Grant 2020230)。
文摘Aqueous zinc batteries offer significant potential for large-scale energy storage,wearable devices,and medium-to low-speed transportation due to their safety,affordability,and environmental friendliness.However,the uneven zinc deposition at the anode side caused by localized reaction activity from the passivation layer presents challenges that significantly impact the battery's stability and lifespan.In this study,we have proposed an expandable and maneuverable gel sustained-release(GSR)treatment to polish the Zn metal,which in situ converts its native passivation layer into a composite interphase layer with nanocrystal zinc phosphate and flexible polyvinyl alcohol.Such a thin and uniform interface contributes to fast and homogeneous Zn ion transport and improved anti-corrosion ability,enabling uniform zinc deposition without dendrite growth and thereby improving the battery performance with high-rate ability and long cycle life.This GSR treatment method,characterized by its simplicity,low cost,and universality,facilitates the widespread application of aqueous zinc batteries.
文摘Due to the coexistence of compressibility,viscosity,and threedimensional effects,laminar flow is difficult to maintain for high-speed boundary layer on complex geometries.The unstable disturbance waves in the boundary layer are excited and rapidly increase during the receptivity process,so sufficiently large Reynolds stress causes the basic flow velocity profile to change,and the formation of turbulence is inevitable.
基金supported by the National Natural Science Foundation of China(Grant Number 22350410379)Zhejiang Provincial Natural Science Foundation of China(LZ23B030003)+1 种基金the Fundamental Research Funds for the Central Universities(226-202400075)Ten Thousand Talent Program of Zhejiang Province.
文摘Separator modification is an effective approach to suppress dendrite growth to realize high-energy sodium metal batteries(SMBs)in practical applications,however,its success is mainly subject to surface modification.Herein,a separator with multifunctional layers composed of N-doped mesoporous hollow carbon spheres(HCS)as the inner layer and sodium fluoride(NaF)as the outer layer on commercial polypropylene separator(PP)is proposed(PP@HCS-NaF)to achieve stable cycling in SMB.At the molecular level,the inner HCS layer with a high content of pyrrolic-N induces the uniform Na^(+)flux as a potential Na^(+)redistributor for homogenous deposition,whereas its hollow mesoporous structure offers nanoporous buffers and ion channels to regulate Na^(+)ion distribution and uniform deposition.The outer layer(NaF)constructs the NaF-enriched robust solid electrolyte interphase layer,significantly lowering the Na^(+)ions diffusion barrier.Benefiting from these merits,higher electrochemical performances are achieved with multifunctional double-layered PP@HCS-NaF separators compared with single-layered separators(i.e.PP@HCS or PP@NaF)in SMBs.The Na‖Cu half-cell with PP@HCS-NaF offers stable cycling(280 cycles)with a high CE(99.6%),and Na‖Na symmetric cells demonstrate extended lifespans for over 6000 h at 1 mA cm^(-2)with a progressively stable overpotential of 9 mV.Remarkably,in Na‖NVP full-cells,the PP@HCS-NaF separator grants a stable capacity of~81 mA h g^(-1)after 3500 cycles at 1 C and an impressive rate capability performance(~70 mA h g^(-1)at 15 C).
基金Supported by Topcon Corporation and Santen Pharmaceutical Co.Ltd.
文摘AIM:To evaluate parameters measured using the tear film imager(TFI)prototype,a new technology that enables to quantify the tear film thickness of lipid and mucoaqueous layers.METHODS:In this cross-sectional study,patients with dry eye,meibomian gland dysfunction(MGD),and non-dry eye/MGD from February 2020 to January 2021 were analyzed.Quantified TFI outputs included lipid layer thickness(LLT),mucoaqueous layer thickness(MALT),MALT rate of change(MALTR),and lipid breakup time.Two other interferometry devices,LipiView2 and DR-1α,were used for comparison.TFI outputs and other clinical parameters were analyzed using correlation coefficients.Each patient underwent one or several study visits.Baseline values of three device outputs,other clinical parameters,and their changes were examined.RESULTS:This study involved 28 patients(8 patients with dry eyes,13 with MGD,and 7 with non-dry eye/MGD).Baseline TFI,LipiView2,and DR-1αvalues were associated with various clinical parameters.The LLT values estimated using TFI had a correlation with the plugging score in the upper eyelid(r=−0.42).Several TFI values have correlated better than LipiView2 and DR-1α,particularly with questionnaire scores.MALTR by TFI revealed a correlation between standardized patient evaluation on eye dryness(SPEED)and dry eye-related quality of life score(DEQS)scores(r=0.59,0.43),respectively.CONCLUSION:TFI enabled to quantify the LLT and MALT separately over time and shows the moderate correlations between TFI measurements and clinical parameters,which yields the potential for TFI to serve as a complementary tool for assessing dry eye and MGD.
基金supports of the National Natural Science Foundation of China(Nos.52076129,92360308,52376027)the Shanghai Municipal Education Commission of China(No.2023-02-4)+1 种基金the Fundamental Research Funds for the Central Universities of Chinathe United Innovation Center(UIC)of Aerothermal Technologies for Turbomachinery of China.
文摘Rotating Instability (RI) is a typical unsteady flow phenomenon in compressors and may cause severe aerodynamic noise and even potential nonsynchronous vibration. Most studies of RI are based on the uniform inflow, ignoring the influence of inlet distortions. This study investigates the mechanism of RI in a transonic rotor through full-annulus unsteady simulations, with a particular focus on the effects of boundary layer ingesting distortions. The results show that at the uniform inflow, the RI fluctuations with the broadband hump can be observed over a relatively wide mass flow rate range, and its origin can be attributed to the coupling effect between the tip leakage flow and shear layer instability. At the inlet distortions, the broadband hump only occurs with partial circumferential locations. This kind of flow phenomenon is defined as Partial Rotating Instability (PRI). The PRI only occurs in a narrower mass flow rate range in which the circumferential range of strong shear is sufficiently large and the self-induced unsteady effects are strong enough. Further, this study confirms that the averaged tip leakage flow axial momentum at the onset of RI or PRI is close, so it can be used as the parameter to determine whether RI or PRI occurs.
文摘Dear Editor,We present a modified surgical technique to verify the chorion layer of the human amniotic membrane(hAM)in treating retinal detachment(RD)with vitrectomy.RD patients with pathological myopia where the tear is located within the posterior pole choroidal atrophy area are difficult to treat.Surgical procedures such as laser treatments,diathermy,cryopexy applications or long-term silicone oil endotamponade may not only be ineffective but also harmful in these cases^([1]).Amniotic membrane transplantation(AMT)is an effective technique in case of RD recurrences to seal retinal holes over high myopic chorioretinal atrophy^([2]).
基金co-supported by the National Natural Science Foundation of China (No. 12172175)the National Science and Technology Major Project, China (No. J2019-II0014-0035)the Science Center for Gas Turbine Project, China (Nos. P2022-C-II-002-001, P2022-A-II-002-001)
文摘Cowl-induced incident Shock Wave/Boundary Layer Interactions (SWBLI) under the influence of gradual expansion waves are frequently observed in supersonic inlets. However, the analysis and prediction of interaction lengths have not been sufficiently investigated. First, this study presents a theoretical scaling analysis and validates it through wind tunnel experiments. It conducts detailed control volume analysis of mass conservation, considering the differences between inviscid and viscous cases. Then, three models for analysing interaction length under gradual expansion waves are derived. Related experiments using schlieren photography are conducted to validate the models in a Mach 2.73 flow. The interaction scales are captured at various relative distances between the shock impingement location and the expansion regions with wedge angles ranging from 12° to 15° and expansion angles of 9°, 12°, and 15°. Three trend lines are plotted based on different expansion angles to depict the relationship between normalised interaction length and normalised interaction strength metric. In addition, the relationship between the coefficients of the trend line and the expansion angles is introduced to predict the interaction length influenced by gradual expansion waves. Finally, the estimation of normalised interaction length is derived for various coefficients within a unified form.
基金financial support from the National Natural Science Foundation of China(22439001,52172198,51902117)supported by the Innovation Fund of Wuhan National Laboratory for Optoelectronicsthe Analytical and Testing Center of Huazhong University of Science and Technology(HUST)for performing various characterizations。
文摘Modulating the interface between the electron transport layer(ETL)and perovskite to minimize interfacial recombination is pivotal for developing efficient and stable perovskite solar cells.Here,we introduce an ultra-thin ZrO_(2)insulating interface layer onto the inner surface of the mesoporous TiO_(2)ETL via the chemical bath deposition in the zirconium n-butoxide solution,which alters the interface characteristics between TiO_(2)and perovskite for the printable hole-conductor-free mesoscopic perovskite solar cells(p-MPSCs).The insulating ZrO_(2)interface layer reduces interface defects and suppresses interfacial non-radiative recombination.Furthermore,the ZrO_(2)interface layer improves the wettability of the mesoporous TiO_(2)ETL,which favors the crystallization of perovskite within the mesoporous scaffold.Meanwhile,the device performance presents thickness dependence on the interface layer.While increased thickness improves the open-circuit voltage,excessive thickness negatively impacts both the short-circuit current density and fill factor.Consequently,an improved power conversion efficiency of 19.9% was achieved for p-MPSCs with the ZrO_(2)interface layer at its optimized thickness.
基金the support of the National Natural Science Foundation of China(Grant Nos.51606158,11604311 and 12074151)the Guangxi Science and Technology Base and Talent Special Project(Grant No.AD21075009)+2 种基金the Sichuan Science and Technology Program(Grant No.2021JDRC0022)the Open Fund of the Key Laboratory for Metallurgical Equipment and Control Technology of Ministry of Education in Wuhan University of Science and Technology,People's Republic of China(Grant Nos.MECOF2022B01 and MECOF2023B04)the Guangxi Key Laboratory of Precision Navigation Technology and Application,Guilin University of Electronic Technology(Grant No.DH202321)。
文摘In the multilayer film-substrate system,thermal stress concentration and stress mutations cause film buckling,delamination and cracking,leading to device failure.In this paper,we investigated a multilayer film system composed of a substrate and three film layers.The thermal stress distribution inside the structure was calculated by the finite element method,revealing significant thermal stress differences between the layers.This is mainly due to the mismatch of the coefficient of thermal expansion between materials.Different materials respond differently to changes in external temperature,leading to compression between layers.There are obvious thermal stress concentration points at the corners of the base layer and the transition layer,which is due to the sudden change of the shape at the geometric section of the structure,resulting in a sudden increase in local stress.To address this issue,we chamfered the substrate and added an intermediate layer between the substrate and the transition layer to assess whether these modifications could reduce or eliminate the thermal stress concentration points and extend the service life of the multilayer structure.The results indicate that chamfering and adding the intermediate layer effectively reduce stress discontinuities and mitigate thermal stress concentration points,thereby improving interlayer bonding strength.
基金supported by the National Natural Science Foundation of China(Nos.52371240,U1904215)Natural Science Foundation of Jiangsu Province(No.BK20200044)Changjiang scholars’program of the Ministry of Education(No.Q2018270)。
文摘Rationally design the morphology and structure of electroactive nanomaterials is an effective approach to enhance the performance of aqueous batteries.Herein,we co-engineered the hollow architecture and interlayer spacing of layered double hydroxides(LDH)to achieve high electrochemical activity.The hierarchical hollow LDH was prepared from bimetallic zeolitic imidazolate frameworks(ZIF)by a facile cation exchange strategy.Zn and Cu elements were selected as the second metals incorporated in Co-ZIF.The characteristics of the corresponding derivatives were studied.Besides,the transformation mechanism of CoZn-ZIF into nanosheet-assembled hollow Co Zn Ni LDH(denoted as CoZnNi-OH)was systematically investigated.Importantly,the interlayer spacing of CoZnNi-OH expands due to Zn^(2+)incorporation.The prepared CoZnNi-OH offers large surface area,exposed active sites,and rapid mass transfer/diffusion rate,which lead to a significant enhancement in the specific capacitance,rate performance,and cycle stability of CoZnNi-OH electrode.In addition,the aqueous alkaline CoZnNi-OH//Zn showed a maximum energy density/power density of 0.924 m Wh/cm^(2),8.479 m W/cm^(2).This work not only raises an insightful strategy for regulating the morphology and interlayer spacing of LDH,but also provides a reference of designing hollow nickel-based nanomaterials for aqueous batteries.
基金supported by the National Natural Science Foundation of China(Grant Nos.22278101,22068010,22168016,and 52365044)the Natural Science Foundation of Hainan Province(Grant Nos.2019RC142 and 519QN176)the Finance Science and Technology Project of Hainan Province(Grant No.ZDYF2020009).
文摘Novel and promising chloride ion batteries(CIBs)that can operate at room temperature have attracted great attentions,due to the sustainable chloride-containing resources and high theoretical energy density.To achieve the superior electrochemical properties of CIBs,the structure design of electrode materials is essential.Herein,2D NiAl-layered double hydroxide(NiAl-LDH)nanoarrays derived from Al2O3 are in-situ grafted to graphene(G)by atomic layer deposition(ALD)and hydrothermal method.The achieved NiAl-LDH@G hybrids with 2D NiAl-LDH arrays grown perpendicularly on graphene surface,can efficiently prevent the stacking of LDHs and enlarge specific surface area to provide more active sites.The NiAl-LDH@G cathode exhibits a maximum discharge capacity of 223.3 mA h g^(-1)and an excellent reversible capacity of 107 mA h g^(-1)over 500 cycles at 100 mA g^(-1)with a high coulombic efficiency around 96%,whereas pure NiAl-LDH has a discharge capacity of only 48.8 mA h g^(-1)and a coulombic efficiency(CE)of about 78%.More importantly,the NiAl-LDH@G electrode has a stable voltage at 1.9 V and an outstanding discharge capacity of higher than 72 mA h g^(-1)after 120 days.Additionally,XRD,XPS,and EDS have been employed to unveil the electrochemical reaction and Cl-storage mechanism of the NiAlLDH@G cathode in CIBs.This work opens a facile and reasonable way for improving electrochemical performance at anion-type rechargeable batteries in terms of cathode material design and mechanism interpretation.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1402802)the National Natural Science Foundation of China(Grant Nos.12494591 and 92165204)+4 种基金the Leading Talent Program of Guangdong Special Projects(Grant No.201626003)the Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices(Grant No.2022B1212010008)the Research Center for Magnetoelectric Physics of Guangdong Province(Grant No.2024B0303390001)the Guangdong Provincial Quantum Science Strategic Initiative(Grant No.GDZX2401010)supported by the National Natural Science Foundation of China(Grant Nos.12234016 and 12074031)。
文摘We investigate the energy bands,magnetism,and superconductivity of bilayer octagraphene with A-A stackingunder a perpendicular electric field.A tight-binding model is used to analyze the band structure of the system.The doubling of the unit cell results in each band of the single layer splitting into two.We find that applyinga perpendicular electric field increases the band splitting.As the electric field strength increases,the nestingof the Fermi surface(FS)weakens,eventually disrupting the antiferromagnetic order,and bilayer octagrapheneexhibits superconductivity.Spin fluctuations can induce unconventional superconductivity with s±-wave pairing.Applying a perpendicular electric field to bilayer octagraphene parent weakens the nesting of the FS,ultimatelykilling the spin-density-wave(SDW)ordered state and transitioning it into the superconducting state,whichworks as a doping effect.We use the random-phase approximation approach to obtain the pairing eigenvaluesand pairing symmetries of the perpendicular electric field-tuned bilayer octagraphene in the weak coupling limit.By tuning the strength of the perpendicular electric field,the critical interaction strength for SDW order can bemodified,which in turn may promote the emergence of unconventional superconductivity.
基金the National Natural Science Foundation of China(51925206,U1932214,52302052)the National Natural Science Foundation of China(52322318)+6 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0450301)the Fundamental Research Funds for the Central Universities(WK2060000051,20720220009)the National Key Research and Development Program of China(No.2023YFB3809700)the Innovation and Technology Fund(GHP/100/20SZ,GHP/102/20GD,MRP/040/21X,ITS/147/22FP)the Research Grants Council of Hong Kong Grant(N_City U102/23,C4005-22Y,C1055-23G,11306521)the Green Tech Fund(GTF202020164)the Science Technology and Innovation Committee of Shenzhen Municipality(SGDX20210823104002015,JCYJ20220818101018038)。
文摘Self-assembled monolayers(SAMs)have been commonly employed as hole-selective layers(HSLs)in inverted(p-i-n)perovskite solar cells(PSCs),and typically only a single-component SAM is applied,which plays limited role in selective hole transport.Herein,we synthesize a novel SAM,(4-(3,11-dibro mo-7H-dibenzo[c,g]carbazol-7-yl)butyl)phosphonic acid(Br-4PADBC),and apply it as a complementary component to the commonly used[2-(3,6-dimeth oxy-9H-carbazol-9-yl)ethyl]phosphonic acid(MeO-2PACz)SAM,accomplishing boosted hole transport in inverted PSCs.A series of characterizations and theoretical calculations are employed to unravel the roles of each components within the binary SAM(bi-SAM).The involvements of the non-planar dibenzo[c,g]carbazole unit and electron-withdrawing Br atoms induce larger dipole moment of Br-4PADBC than MeO-2PACz,resulting in much deeper work function of ITO and consequently improved alignment with the valence band energy level of perovskite.Besides,the introduced Br atoms improve the quality of perovskite crystals and help passivate defects of perovskite.On the other hand,the existence of the conventional MeO-2PACz SAM ensures the considerable conductivity of the bi-SAM and thus efficient hole extraction from the perovskite layer.As a result,inverted PSC devices based on bi-SAM HSL deliver a decent power conversion efficiency(PCE)of 24.52%as well as dramatically improved thermal and operational stabilities.
基金supported by the Ministry of Science and Higher Education of the Russian Federation(agreement No.075-15-2021-1349)。
文摘Synchrotron method of resonant X-ray reflectivity 2D mapping has been applied to study ultrathin epitaxial layers of WS_(2)grown by pulsed laser deposition on Al_(2)O_(3)(0001)substrates.The measurements were carried out across the L absorption edge of tungsten to perform depth-dependent element-selective analysis sensitive to potential chemical modification of the WS_(2)layer in ambient conditions.Despite the few monolayer thickness of the studied film,the experimentally measured maps of reflectance as a function of incident angle and photon energy turned out to be quite informative showing well-pronounced interference effects near W absorption edge at 10210 eV.The synchrotron studies were complemented with conventional non-resonant reflectance measurements carried out in the laboratory at a fixed photon energy corresponding to Cu Kαemission.The reconstruction of the depth and energy dependent scattering length density within the studied multilayers was carried out using the OpenCL empowered fitting software utilizing spectral shaping algorithm which does not rely on the pre-measured reference absorption spectra.A thin WO_(x) layer has been revealed at the surface of the WS_(2)layer pointing out to the effect of water assisted photo-oxidation reported in a number of works related to ultrathin layers of transition metal dichalcogenides.
基金supported by National Natural Science Foundation of China under grant U23A20361Key Area R&D Program of Guangdong Province under grant 2022B0701180001.
文摘In this work,we design and fabricate AlGaN/GaN-based Schottky barrier diodes(SBDs)on a silicon substrate with a trenched n^(+)-GaN cap layer.With the developed physical models,we find that the n^(+)-GaN cap layer provides more electrons into the AlGaN/GaN channel,which is further confirmed experimentally.When compared with the reference device,this increases the two-dimensional electron gas(2DEG)density by two times and leads to a reduced specific ON-resistance(Ron,sp)of~2.4 mΩ·cm^(2).We also adopt the trenched n^(+)-GaN structure such that partial of the n^(+)-GaN is removed by using dry etching process to eliminate the surface electrical conduction when the device is set in the off-state.To suppress the surface defects that are caused by the dry etching process,we also deposit Si_(3)N_(4)layer prior to the deposition of field plate(FP),and we obtain a reduced leakage current of~8×10^(−5)A·cm^(−2)and breakdown voltage(BV)of 876 V.The Baliga’s figure of merit(BFOM)for the proposed structure is increased to~319 MW·cm^(−2).Our investigations also find that the pre-deposited Si_(3)N_(4)layer helps suppress the electron capture and transport processes,which enables the reduced dynamic R_(on,sp).
基金Science Fund for Outstanding Young Scholars of Hunan Province,Grant/Award Number:2023JJ20064National Natural Science Foundation of China,Grant/Award Number:12004057+1 种基金Graduate Research and Innovation Foundation of Chongqing,Grant/Award Number:CYB23026Natural Science Foundation of Chongqing Municipality,Grant/Award Number:CSTB2022NSCQ-MSX1183。
文摘Layered vanadates are ideal energy storage materials due to their multielectron redox reactions and excellent cation storage capacity.However,their practical application still faces challenges,such as slow reaction kinetics and poor structural stability.In this study,we synthesized[Me_(2)NH_(2)]V_(3)O_(7)(MNVO),a layered vanadate with expended layer spacing and enhanced pH resistance,using a one-step simple hydrothermal gram-scale method.Experimental analyses and density functional theory(DFT)calculations revealed supportive ionic and hydrogen bonding interactions between the thin-layered[Me_(2)NH_(2)]+cation and[V_(3)O_(7)]-anion layers,clarifying the energy storage mechanism of the H^(+)/Zn^(2+)co-insertion.The synergistic effect of these bonds and oxygen vacancies increased the electronic conductivity and significantly reduced the diffusion energy barrier of the insertion ions,thereby improving the rate capability of the material.In an acidic electrolyte,aqueous zinc-ion batteries employing MNVO as the cathode exhibited a high specific capacity of 433 mAh g^(-1)at 0.1 A g^(-1).The prepared electrodes exhibited a maximum specific capacity of 237 mAh g^(-1)at 5 A g^(-1)and maintained a capacity retention of 83.5%after 10,000 cycles.This work introduces a novel approach for advancing layered cathodes,paving the way for their practical application in energy storage devices.