Probabilistic assessment of seismic performance(SPPA)is a crucial aspect of evaluating the seismic behavior of structures.For complex bridges with inherent uncertainties,conducting precise and efficient seismic reliab...Probabilistic assessment of seismic performance(SPPA)is a crucial aspect of evaluating the seismic behavior of structures.For complex bridges with inherent uncertainties,conducting precise and efficient seismic reliability analysis remains a significant challenge.To address this issue,the current study introduces a sample-unequal weight fractional moment assessment method,which is based on an improved correlation-reduced Latin hypercube sampling(ICLHS)technique.This method integrates the benefits of important sampling techniques with interpolator quadrature formulas to enhance the accuracy of estimating the extreme value distribution(EVD)for the seismic response of complex nonlinear structures subjected to non-stationary ground motions.Additionally,the core theoretical approaches employed in seismic reliability analysis(SRA)are elaborated,such as dimension reduction for simulating non-stationary random ground motions and a fractional-maximum entropy single-loop solution strategy.The effectiveness of this proposed method is validated through a three-story nonlinear shear frame structure.Furthermore,a comprehensive reliability analysis of a real-world long-span,single-pylon suspension bridge is conducted using the developed theoretical framework within the OpenSees platform,leading to key insights and conclusions.展开更多
This paper presents an artificial neural network(ANN)-based response surface method that can be used to predict the failure probability of c-φslopes with spatially variable soil.In this method,the Latin hypercube s...This paper presents an artificial neural network(ANN)-based response surface method that can be used to predict the failure probability of c-φslopes with spatially variable soil.In this method,the Latin hypercube sampling technique is adopted to generate input datasets for establishing an ANN model;the random finite element method is then utilized to calculate the corresponding output datasets considering the spatial variability of soil properties;and finally,an ANN model is trained to construct the response surface of failure probability and obtain an approximate function that incorporates the relevant variables.The results of the illustrated example indicate that the proposed method provides credible and accurate estimations of failure probability.As a result,the obtained approximate function can be used as an alternative to the specific analysis process in c-φslope reliability analyses.展开更多
基金Sichuan Science and Technology Program under Grant No.2024NSFSC0932the National Natural Science Foundation of China under Grant No.52008047。
文摘Probabilistic assessment of seismic performance(SPPA)is a crucial aspect of evaluating the seismic behavior of structures.For complex bridges with inherent uncertainties,conducting precise and efficient seismic reliability analysis remains a significant challenge.To address this issue,the current study introduces a sample-unequal weight fractional moment assessment method,which is based on an improved correlation-reduced Latin hypercube sampling(ICLHS)technique.This method integrates the benefits of important sampling techniques with interpolator quadrature formulas to enhance the accuracy of estimating the extreme value distribution(EVD)for the seismic response of complex nonlinear structures subjected to non-stationary ground motions.Additionally,the core theoretical approaches employed in seismic reliability analysis(SRA)are elaborated,such as dimension reduction for simulating non-stationary random ground motions and a fractional-maximum entropy single-loop solution strategy.The effectiveness of this proposed method is validated through a three-story nonlinear shear frame structure.Furthermore,a comprehensive reliability analysis of a real-world long-span,single-pylon suspension bridge is conducted using the developed theoretical framework within the OpenSees platform,leading to key insights and conclusions.
基金financially supported by the National Natural Science Foundation of China(Grant No.51278217)
文摘This paper presents an artificial neural network(ANN)-based response surface method that can be used to predict the failure probability of c-φslopes with spatially variable soil.In this method,the Latin hypercube sampling technique is adopted to generate input datasets for establishing an ANN model;the random finite element method is then utilized to calculate the corresponding output datasets considering the spatial variability of soil properties;and finally,an ANN model is trained to construct the response surface of failure probability and obtain an approximate function that incorporates the relevant variables.The results of the illustrated example indicate that the proposed method provides credible and accurate estimations of failure probability.As a result,the obtained approximate function can be used as an alternative to the specific analysis process in c-φslope reliability analyses.