The cure rate for chronic neurodegenerative diseases remains low,creating an urgent need for improved intervention methods.Recent studies have shown that enhancing mitochondrial function can mitigate the effects of th...The cure rate for chronic neurodegenerative diseases remains low,creating an urgent need for improved intervention methods.Recent studies have shown that enhancing mitochondrial function can mitigate the effects of these diseases.This paper comprehensively reviews the relationship between mitochondrial dysfunction and chronic neurodegenerative diseases,aiming to uncover the potential use of targeted mitochondrial interventions as viable therapeutic options.We detail five targeted mitochondrial intervention strategies for chronic neurodegenerative diseases that act by promoting mitophagy,inhibiting mitochondrial fission,enhancing mitochondrial biogenesis,applying mitochondria-targeting antioxidants,and transplanting mitochondria.Each method has unique advantages and potential limitations,making them suitable for various therapeutic situations.Therapies that promote mitophagy or inhibit mitochondrial fission could be particularly effective in slowing disease progression,especially in the early stages.In contrast,those that enhance mitochondrial biogenesis and apply mitochondria-targeting antioxidants may offer great benefits during the middle stages of the disease by improving cellular antioxidant capacity and energy metabolism.Mitochondrial transplantation,while still experimental,holds great promise for restoring the function of damaged cells.Future research should focus on exploring the mechanisms and effects of these intervention strategies,particularly regarding their safety and efficacy in clinical settings.Additionally,the development of innovative mitochondria-targeting approaches,such as gene editing and nanotechnology,may provide new solutions for treating chronic neurodegenerative diseases.Implementing combined therapeutic strategies that integrate multiple intervention methods could also enhance treatment outcomes.展开更多
Based on the split hopkinson pressure bar(SHPB)tests results,the cubic specimens have been numerically modeled in this paper to investigate the impact of key factors,such as the rise time,duration,and incident pulse s...Based on the split hopkinson pressure bar(SHPB)tests results,the cubic specimens have been numerically modeled in this paper to investigate the impact of key factors,such as the rise time,duration,and incident pulse shape,on achieving stress uniformity.After analysis,the paper provides actionable methods aimed at optimizing the conditions for stress uniformity within the cubic specimen.Finally,the lateral inertia effect of cubic specimen has been scrutinized to address the existing gap in this academic area.展开更多
Non-right-handedness(NRH),encompassing left-handedness and mixed-handedness,has been frequently reported at elevated rates in individuals with various psychiatric disorders.The consistency of this association across m...Non-right-handedness(NRH),encompassing left-handedness and mixed-handedness,has been frequently reported at elevated rates in individuals with various psychiatric disorders.The consistency of this association across multiple conditions and its underlying mechanisms is the subject of ongoing investigation.This review synthesized current evidence to explore the association between NRH and psychiatric disorders from epidemiological,genetic,and neurobiological perspectives.We systematically identified and appraised relevant literature investigating NRH prevalence in psychiatric populations and potential explanatory mechanisms.Epidemiological evidence indicates an elevated prevalence of NRH,particularly within neurodevelopmental disorders.Potential contributing mechanisms identified include early developmental disruptions,shared genetic predispositions,and atypical patterns of brain lateralization.While the association between NRH and psychiatric conditions,especially neurodevelopmental disorders,is evident,the causal pathways and relative contributions of identified mechanisms are complex and debated.This review highlighted key areas requiring further research to elucidate these relationships.展开更多
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the progressive degeneration of upper and lower motor neurons in the brainstem and spinal cord,leading to muscle weakness,para...Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the progressive degeneration of upper and lower motor neurons in the brainstem and spinal cord,leading to muscle weakness,paralysis,and respiratory failure (Morgan and Orrell,2016).展开更多
Motor neuron diseases are sporadic or inherited fatal neurodegenerative conditions.They selectively affect the upper and/or lower motor neurons in the brain and spinal cord and feature a slow onset and a subacute cour...Motor neuron diseases are sporadic or inherited fatal neurodegenerative conditions.They selectively affect the upper and/or lower motor neurons in the brain and spinal cord and feature a slow onset and a subacute course contingent upon the site of damage.The main types include amyotrophic lateral sclerosis,progressive muscular atrophy,primary lateral sclerosis,and progressive bulbar palsy,the pathological processes of which are largely identical,with the main disparity lying in the location of the lesions.Amyotrophic lateral sclerosis is the representative condition in this group of diseases,while other types are its variants.Hence,this article mainly focuses on the advancements and challenges in drug research for amyotrophic lateral sclerosis but also briefly addresses several other important degenerative motor neuron diseases.Although the precise pathogenesis remains elusive,recent advancements have shed light on various theories,including gene mutation,excitatory amino acid toxicity,autoimmunology,and neurotrophic factors.The US Food and Drug Administration has approved four drugs for use in delaying the progression of amyotrophic lateral sclerosis:riluzole,edaravone,AMX0035,and tofersen,with the latter being the most recent to receive approval.However,following several phaseⅢtrials that failed to yield favorable outcomes,AMX0035 has been voluntarily withdrawn from both the US and Canadian markets.This article presents a comprehensive summary of drug trials primarily completed between January 1,2023,and June 30,2024,based on data sourced from clinicaltrials.gov.Among these trials,five are currently in phaseⅠ,seventeen are in phaseⅡ,and eleven are undergoing phaseⅢevaluation.Notably,24 clinical trials are now investigating potential disease-modifying therapy drugs,accounting for the majority of the drugs included in this review.Some promising drugs being investigated in preclinical studies,such as ATH-1105,are included in our analysis,and another review in frontiers in gene therapy and immunotherapy has demonstrated their therapeutic potential for motor neuron diseases.This article was written to be an overview of research trends and treatment prospects related to motor neuron disease drugs,with the aim of highlighting the latest potentialities for clinical therapy.展开更多
N umerous neurological disorders negatively impact the nervous system,either through loss of neurons or by disrupting the normal functioning of neural networks.These impairments manifest as cognitive defects,memory lo...N umerous neurological disorders negatively impact the nervous system,either through loss of neurons or by disrupting the normal functioning of neural networks.These impairments manifest as cognitive defects,memory loss,behavioral abnormalities,and motor dysfunctions.Decades of research have significantly advanced our understanding of the pathophysiology underlying neurodegene rative diseases,including Alzheimer's disease(AD),Parkinson's disease,amyotrophic lateral sclerosis,and others.展开更多
With the gradual advancement of research methods and technologies,various biological processes have been identified as playing roles in the pathogenesis of neurodegenerative diseases.However,current descriptions of th...With the gradual advancement of research methods and technologies,various biological processes have been identified as playing roles in the pathogenesis of neurodegenerative diseases.However,current descriptions of these biological processes do not fully explain the onset,progression,and development of these conditions.Therefore,exploration of the pathogenesis of neurodegenerative diseases remains a valuable area of research.This review summarizes the potential common pathogeneses of Alzheimer’s disease,Parkinson’s disease,amyotrophic lateral sclerosis,Huntington’s disease,frontotemporal lobar dementia,and Lewy body disease.Research findings have indicated that several common biological processes,including aging,genetic factors,progressive neuronal dysfunction,neuronal death and apoptosis,protein misfolding and aggregation,neuroinflammation,mitochondrial dysfunction,axonal transport defects,and gut microbiota dysbiosis,are involved in the pathogenesis of these six neurodegenerative diseases.Based on current information derived from diverse areas of research,these biological processes may form complex pathogenic networks that lead to distinctive types of neuronal death in neurodegenerative diseases.Furthermore,promoting the regeneration of damaged neurons may be achievable through the repair of affected neural cells if the underlying pathogenesis can be prevented or reversed.Hence,these potential common biological processes may represent only very small,limited elements within numerous intricate pathogenic networks associated with neurodegenerative diseases.In clinical treatment,interfering with any single biological process has proven insufficient to completely halt the progression of neurodegenerative diseases.Therefore,future research on the pathogenesis of neurodegenerative diseases should focus on uncovering the complex pathogenic networks,rather than isolating individual biological processes.Based on this,therapies that aim to block or reverse various targets involved in the potential pathogenic mechanisms of neurodegenerative diseases may be promising directions,as current treatment methods that focus on halting a single pathogenic factor have not achieved satisfactory efficacy.展开更多
Neurodegenerative diseases are a group of illnesses characterized by the gradual deterioration of the central nervous system,leading to a decline in patients'cognitive,motor,and emotional abilities.Neuroinflammati...Neurodegenerative diseases are a group of illnesses characterized by the gradual deterioration of the central nervous system,leading to a decline in patients'cognitive,motor,and emotional abilities.Neuroinflammation plays a significant role in the progression of these diseases.However,there is limited research on therapeutic approaches to specifically target neuroinflammation.The role of T lymphocytes,which are crucial mediators of the adaptive immune response,in neurodegenerative diseases has been increasingly recognized.This review focuses on the involvement of T lymphocytes in the neuroinflammation associated with neurodegenerative diseases.The pathogenesis of neurodegenerative diseases is complex,involving multiple mechanisms and pathways that contribute to the gradual degeneration of neurons,and T cells are a key component of these processes.One of the primary factors driving neuroinflammation in neurodegenerative diseases is the infiltration of T cells and other neuroimmune cells,including microglia,astrocytes,B cells,and natural killer cells.Different subsets of CD4~+T cells,such as Th1,Th2,Th17,and regulatory T cells,can differentiate into various cell types and perform distinct roles within the neuroinflammatory environment of neurodegenerative diseases.Additionally,CD8~+T cells,which can directly regulate immune responses and kill target cells,also play several important roles in neurodegenerative diseases.Clinical trials investigating targeted T cell therapies for neurodegenerative diseases have shown that,while some patients respond positively,others may not respond as well and may even experience adverse effects.Targeting T cells precisely is challenging due to the complexity of immune responses in the central nervous system,which can lead to undesirable side effects.However,with new insights into the pathophysiology of neurodegenerative diseases,there is hope for the establishment of a solid theoretical foundation upon which innovative treatment strategies that target T cells can be developed in the future.展开更多
Objective To investigate the lateralizing value of ictal face wiping(FW)in patients with refractory mesial temporal lobe epilepsy(MTLE).Methods Presurgical video types were retrospectively reviewed among 96 patients w...Objective To investigate the lateralizing value of ictal face wiping(FW)in patients with refractory mesial temporal lobe epilepsy(MTLE).Methods Presurgical video types were retrospectively reviewed among 96 patients who were seizure-free for at least 3 years after temporal lobectomy between 1997 and 2012.Attention展开更多
Copper,one of the most prolific transition metals in the body,is required for normal brain physiological activity and allows various functions to work normally through its range of concentrations.Copper homeostasis is...Copper,one of the most prolific transition metals in the body,is required for normal brain physiological activity and allows various functions to work normally through its range of concentrations.Copper homeostasis is meticulously maintained through a complex network of copper-dependent proteins,including copper transporters(CTR1 and CTR2),the two copper ion transporters the Cu-transporting ATPase 1(ATP7A)and Cu-transporting beta(ATP7B),and the three copper chaperones ATOX1,CCS,and COX17.Disruptions in copper homeostasis can lead to either the deficiency or accumulation of copper in brain tissue.Emerging evidence suggests that abnormal copper metabolism or copper binding to various proteins,including ceruloplasmin and metallothionein,is involved in the pathogenesis of neurodegenerative disorders.However,the exact mechanisms underlying these processes are not known.Copper is a potent oxidant that increases reactive oxygen species production and promotes oxidative stress.Elevated reactive oxygen species levels may further compromise mitochondrial integrity and cause mitochondrial dysfunction.Reactive oxygen species serve as key signaling molecules in copper-induced neuroinflammation,with elevated levels activating several critical inflammatory pathways.Additionally,copper can bind aberrantly to several neuronal proteins,including alphasynuclein,tau,superoxide dismutase 1,and huntingtin,thereby inducing neurotoxicity and ultimately cell death.This study focuses on the latest literature evaluating the role of copper in neurodegenerative diseases,with a particular focus on copper-containing metalloenzymes and copper-binding proteins in the regulation of copper homeostasis and their involvement in neurodegenerative disease pathogenesis.By synthesizing the current findings on the functions of copper in oxidative stress,neuroinflammation,mitochondrial dysfunction,and protein misfolding,we aim to elucidate the mechanisms by which copper contributes to a wide range of hereditary and neuronal disorders,such as Wilson's disease,Menkes'disease,Alzheimer's disease,Parkinson's disease,amyotrophic lateral sclerosis,Huntington's disease,and multiple sclerosis.Potential clinically significant therapeutic targets,including superoxide dismutase 1,D-penicillamine,and 5,7-dichloro-2-[(dimethylamino)methyl]-8-hydroxyquinoline,along with their associated therapeutic agents,are further discussed.Ultimately,we collate evidence that copper homeostasis may function in the underlying etiology of several neurodegenerative diseases and offer novel insights into the potential prevention and treatment of these diseases based on copper homeostasis.展开更多
Amyotrophic lateral sclerosis is a devastating neurodegenerative disease for which the current treatment approaches remain severely limited.The principal pathological alterations of the disease include the selective d...Amyotrophic lateral sclerosis is a devastating neurodegenerative disease for which the current treatment approaches remain severely limited.The principal pathological alterations of the disease include the selective degeneration of motor neurons in the brain,brainstem,and spinal cord,as well as abnormal protein deposition in the cytoplasm of neurons and glial cells.The biological markers under extensive scrutiny are predominantly located in the cerebrospinal fluid,blood,and even urine.Among these biomarke rs,neurofilament proteins and glial fibrillary acidic protein most accurately reflect the pathologic changes in the central nervous system,while creatinine and creatine kinase mainly indicate pathological alterations in the peripheral nerves and muscles.Neurofilament light chain levels serve as an indicator of neuronal axonal injury that remain stable throughout disease progression and are a promising diagnostic and prognostic biomarker with high specificity and sensitivity.However,there are challenges in using neurofilament light chain to diffe rentiate amyotrophic lateral sclerosis from other central nervous system diseases with axonal injury.Glial fibrillary acidic protein predominantly reflects the degree of neuronal demyelination and is linked to non-motor symptoms of amyotrophic lateral sclerosis such as cognitive impairment,oxygen saturation,and the glomerular filtration rate.TAR DNA-binding protein 43,a pathological protein associated with amyotrophic lateral sclerosis,is emerging as a promising biomarker,particularly with advancements in exosome-related research.Evidence is currently lacking for the value of creatinine and creatine kinase as diagnostic markers;however,they show potential in predicting disease prognosis.Despite the vigorous progress made in the identification of amyotrophic lateral sclerosis biomarkers in recent years,the quest for definitive diagnostic and prognostic biomarke rs remains a formidable challenge.This review summarizes the latest research achievements concerning blood biomarkers in amyotrophic lateral sclerosis that can provide a more direct basis for the differential diagnosis and prognostic assessment of the disease beyond a reliance on clinical manifestations and electromyography findings.展开更多
BACKGROUND:Tracheal intubation(TI)is a fundamental procedure for securing the airway or assisting ventilation in emergency medicine.Tracheal intubation in the lateral position(TILP)has been utilized in clinical practi...BACKGROUND:Tracheal intubation(TI)is a fundamental procedure for securing the airway or assisting ventilation in emergency medicine.Tracheal intubation in the lateral position(TILP)has been utilized in clinical practice,demonstrating potential advantages in specific scenarios,including emergency settings.However,there is a lack of comprehensive reviews and practical protocols on TILP application.To address this gap,we performed a narrative review,and provided evidence-based recommendations to formulate a practice protocol,to assist clinicians to effectively apply TILP.METHODS:We conducted a narrative review of TILP applications and developed recommendations based on clinical research evidence and clinical experience.Delphi method was used among the TILP consortium to grade the strength of the recommendations and to help reach consensus.The practice protocols were formulated as warranted by advancements in medical knowledge,technology,and practice.RESULTS:This narrative review summarized the current evidence on TILP application,highlighting its safety,efficacy,challenges,and potential complications.In total,24 recommendations and a clinical protocol for TILP application in emergency patients were established.CONCLUSION:TILP is a valuable technique in emergency medicine.We reviewed its application in emergency settings and formulated recommendations along with a clinical practice protocol.Future studies are needed to evaluate the safety and efficacy of TILP,broaden its scope of application,and explore effective training protocols.展开更多
This paper presents the design of an asymmetrically variable wingtip anhedral angles morphing aircraft,inspired by biomimetic mechanisms,to enhance lateral maneuver capability.Firstly,we establish a lateral dynamic mo...This paper presents the design of an asymmetrically variable wingtip anhedral angles morphing aircraft,inspired by biomimetic mechanisms,to enhance lateral maneuver capability.Firstly,we establish a lateral dynamic model considering additional forces and moments resulting during the morphing process,and convert it into a Multiple Input Multiple Output(MIMO)virtual control system by importing virtual inputs.Secondly,a classical dynamics inversion controller is designed for the outer-loop system.A new Global Fast Terminal Incremental Sliding Mode Controller(NDO-GFTISMC)is proposed for the inner-loop system,in which an adaptive law is implemented to weaken control surface chattering,and a Nonlinear Disturbance Observer(NDO)is integrated to compensate for unknown disturbances.The whole control system is proven semiglobally uniformly ultimately bounded based on the multi-Lyapunov function method.Furthermore,we consider tracking errors and self-characteristics of actuators,a quadratic programmingbased dynamic control allocation law is designed,which allocates virtual control inputs to the asymmetrically deformed wingtip and rudder.Actuator dynamic models are incorporated to ensure physical realizability of designed allocation law.Finally,comparative experimental results validate the effectiveness of the designed control system and control allocation law.The NDO-GFTISMC features faster convergence,stronger robustness,and 81.25%and 75.0%reduction in maximum state tracking error under uncertainty compared to the Incremental Nonlinear Dynamic Inversion Controller based on NDO(NDO-INDI)and Incremental Sliding Mode Controller based on NDO(NDO-ISMC),respectively.The design of the morphing aircraft significantly enhances lateral maneuver capability,maintaining a substantial control margin during lateral maneuvering,reducing the burden of the rudder surface,and effectively solving the actuator saturation problem of traditional aircraft during lateral maneuvering.展开更多
The muscular system plays a critical role in the human body by governing skeletal movement,cardiovascular function,and the activities of digestive organs.Additionally,muscle tissues serve an endocrine function by secr...The muscular system plays a critical role in the human body by governing skeletal movement,cardiovascular function,and the activities of digestive organs.Additionally,muscle tissues serve an endocrine function by secreting myogenic cytokines,thereby regulating metabolism throughout the entire body.Maintaining muscle function requires iron homeostasis.Recent studies suggest that disruptions in iron metabolism and ferroptosis,a form of iron-dependent cell death,are essential contributors to the progression of a wide range of muscle diseases and disorders,including sarcopenia,cardiomyopathy,and amyotrophic lateral sclerosis.Thus,a comprehensive overview of the mechanisms regulating iron metabolism and ferroptosis in these conditions is crucial for identifying potential therapeutic targets and developing new strategies for disease treatment and/or prevention.This review aims to summarize recent advances in understanding the molecular mechanisms underlying ferroptosis in the context of muscle injury,as well as associated muscle diseases and disorders.Moreover,we discuss potential targets within the ferroptosis pathway and possible strategies for managing muscle disorders.Finally,we shed new light on current limitations and future prospects for therapeutic interventions targeting ferroptosis.展开更多
The models constructed by particle flow simulation method can effectively simulate the heterogeneous substance characteristics and failure behaviors of rocks.However,existing contact models overlook the rock cracks,an...The models constructed by particle flow simulation method can effectively simulate the heterogeneous substance characteristics and failure behaviors of rocks.However,existing contact models overlook the rock cracks,and the various simulation methods that do consider cracks still exhibit certain limitations.In this paper,based on Flat-Joint model and Linear Parallel Bond model,a crack contact model considering linked substance in the crack is proposed by splitting the crack contact into two portions:linked portion and unlinked portion for calculation.The new contact model considers the influence of crack closure on the contact force-displacement law.And a better compressive tensile strength ratio(UCS/T)was obtained by limiting the failure of the contact bond to be solely controlled by the contact force and moment of the linked portion.Then,by employing the FISH Model tool within the Particle Flow Code,the contact model was constructed and verified through contact force–displacement experiments and loading-unloading tests with cracked model.Finally,the contact model was tested through simulations of rock mechanics experiments.The results indicate that the contact model can effectively simulate the axial and lateral strain laws of rocks simultaneously and has a relatively good reproduction of the bi-modularity of rocks.展开更多
Mountainous areas are the priority for forest restoration in semiarid regions,with hillslopes serving as the basic units of mountains.Precipitation is the only water source in these regions,and the uneven distribution...Mountainous areas are the priority for forest restoration in semiarid regions,with hillslopes serving as the basic units of mountains.Precipitation is the only water source in these regions,and the uneven distribution of hillslope soil moisture replenishment after precipitation determines vegetation survival and growth.Therefore,in this study experiments were performed on a hillslope in the Liupan Mountains,Ningxia Hui Autonomous Region,China,to quantify the unevenness of soil moisture replenishment.Soil water content(SWC)in the 0–60 cm layer and precipitation were monitored throughout the growing season in 2020 and 2021.The results showed that(1)Annual soil moisture replenishment was the highest at the mid-slope position,with an average of 309.9 mm,especially under moderate and heavy rain grade conditions,reaching 38.7% and 30.8% of the total replenishment,respectively;(2)Vertical replenishment played a dominant role in the total replenishment,accounting for 82.8%;lateral replenishment played an important but lesser role,accounting for up to 17.2% of the total replenishment;(3)Based on a soil moisture replenishment model established in this study,the maximal replenishment occurred at 90 m from the top of the slope;(4)The dominant factors contributing to the soil moisture replenishment were rainfall amount and saturated hydraulic conductivity(Ks).These findings suggest that attention should be given to both vertical and lateral soil moisture replenishment,and the mid-slope position could be preferred for site selection to achieve precise and integrated forest-water management on hillslopes in semi-arid mountainous regions.展开更多
The exchange of information and materials between organelles plays a crucial role in regulating cellular physiological functions and metabolic levels.Mitochondria-associated endoplasmic reticulum membranes serve as ph...The exchange of information and materials between organelles plays a crucial role in regulating cellular physiological functions and metabolic levels.Mitochondria-associated endoplasmic reticulum membranes serve as physical contact channels between the endoplasmic reticulum membrane and the mitochondrial outer membrane,formed by various proteins and protein complexes.This microstructural domain mediates several specialized functions,including calcium(Ca^(2+))signaling,autophagy,mitochondrial morphology,oxidative stress response,and apoptosis.Notably,the dysregulation of Ca^(2+)signaling mediated by mitochondria-associated endoplasmic reticulum membranes is a critical factor in the pathogenesis of neurological diseases.Certain proteins or protein complexes within these membranes directly or indirectly regulate the distance between the endoplasmic reticulum and mitochondria,as well as the transduction of Ca^(2+)signaling.Conversely,Ca^(2+)signaling mediated by mitochondria-associated endoplasmic reticulum membranes influences other mitochondria-associated endoplasmic reticulum membraneassociated functions.These functions can vary significantly across different neurological diseases—such as ischemic stroke,traumatic brain injury,Alzheimer's disease,Parkinson's disease,amyotrophic lateral sclerosis,and Huntington's disease—and their respective stages of progression.Targeted modulation of these disease-related pathways and functional proteins can enhance neurological function and promote the regeneration and repair of damaged neurons.Therefore,mitochondria-associated endoplasmic reticulum membranes-mediated Ca^(2+)signaling plays a pivotal role in the pathological progression of neurological diseases and represents a significant potential therapeutic target.This review focuses on the effects of protein complexes in mitochondria-associated endoplasmic reticulum membranes and the distinct roles of mitochondria-associated endoplasmic reticulum membranes-mediated Ca^(2+)signaling in neurological diseases,specifically highlighting the early protective effects and neuronal damage that can result from prolonged mitochondrial Ca^(2+)overload or deficiency.This article provides a comprehensive analysis of the various mechanisms of Ca^(2+)signaling mediated by mitochondria-associated endoplasmic reticulum membranes in neurological diseases,contributing to the exploration of potential therapeutic targets for promoting neuroprotection and nerve repair.展开更多
Schwann cells are essential for the maintenance and function of motor neurons,axonal networks,and the neuromuscular junction.In amyotrophic lateral sclerosis,where motor neuron function is progressively lost,Schwann c...Schwann cells are essential for the maintenance and function of motor neurons,axonal networks,and the neuromuscular junction.In amyotrophic lateral sclerosis,where motor neuron function is progressively lost,Schwann cell function may also be impaired.Recently,important signaling and potential trophic activities of Schwann cell-derived exosomal vesicles have been reported.This case report describes the treatment of a patient with advanced amyotrophic lateral sclerosis using serial intravenous infusions of allogeneic Schwann cell-derived exosomal vesicles,marking,to our knowledge,the first instance of such treatment.An 81-year-old male patient presented with a 1.5-year history of rapidly progressive amyotrophic lateral sclerosis.After initial diagnosis,the patient underwent a combination of generic riluzole,sodium phenylbutyrate for the treatment of amyotrophic lateral sclerosis,and taurursodiol.The patient volunteered to participate in an FDA-approved single-patient expanded access treatment and received weekly intravenous infusions of allogeneic Schwann cell-derived exosomal vesicles to potentially restore impaired Schwann cell and motor neuron function.We confirmed that cultured Schwann cells obtained from the amyotrophic lateral sclerosis patient via sural nerve biopsy appeared impaired(senescent)and that exposure of the patient’s Schwann cells to allogeneic Schwann cell-derived exosomal vesicles,cultured expanded from a cadaver donor improved their growth capacity in vitro.After a period of observation lasting 10 weeks,during which amyotrophic lateral sclerosis Functional Rating Scale-Revised and pulmonary function were regularly monitored,the patient received weekly consecutive infusions of 1.54×1012(×2),and then consecutive infusions of 7.5×1012(×6)allogeneic Schwann cell-derived exosomal vesicles diluted in 40 mL of Dulbecco’s phosphate-buffered saline.None of the infusions were associated with adverse events such as infusion reactions(allergic or otherwise)or changes in vital signs.Clinical lab serum neurofilament and cytokine levels measured prior to each infusion varied somewhat without a clear trend.A more sensitive in-house assay suggested possible inflammasome activation during the disease course.A trend for clinical stabilization was observed during the infusion period.Our study provides a novel approach to address impaired Schwann cells and possibly motor neuron function in patients with amyotrophic lateral sclerosis using allogeneic Schwann cell-derived exosomal vesicles.Initial findings suggest that this approach is safe.展开更多
BACKGROUND A case study of multiple distinct levels of skipped thoracolumbar spine infection was reported in which 13 successful vacuum sealing drainage(VSD)surgeries were treated.CASE SUMMARY The patient underwent a ...BACKGROUND A case study of multiple distinct levels of skipped thoracolumbar spine infection was reported in which 13 successful vacuum sealing drainage(VSD)surgeries were treated.CASE SUMMARY The patient underwent a total of 13 procedures within our medical facility,including five performed under local anesthesia and eight performed under general anesthesia.The source of the ailment was ultimately identified as Enterobacter cloacae.After the last procedure,the patient's symptoms were alleviated,and the recovery process was satisfactory.Three months post-operation,the Japanese Orthopaedic Association scores had improved to 100%.Imageological examination revealed a satisfactory position of internal fixation,and the abnormal signals in the vertebral body and intervertebral space had been eliminated when compared to the pre-operative results.CONCLUSION The study demonstrates that the extreme lateral approach debridement combined with multiple VSD operations is a secure and successful method of treatment for recurrent spinal infection,providing an alternative to traditional surgery.展开更多
基金partly supported by the Yan’an University Qin Chuanyuan“Scientist+Engineer”Team Special Fund,No.2023KXJ-012(to YL)Yan’an University Transformation of Scientific and Technological Achievements Fund,No.2023CGZH-001(to YL)+2 种基金College Students Innovation and Entrepreneurship Training Program,Nos.D2023158,202410719056(to XS,JM)Yan’an University Production and Cultivation Project,No.CXY202001(to YL)Kweichow Moutai Hospital Research and Talent Development Fund Project,No.MTyk2022-25(to XO)。
文摘The cure rate for chronic neurodegenerative diseases remains low,creating an urgent need for improved intervention methods.Recent studies have shown that enhancing mitochondrial function can mitigate the effects of these diseases.This paper comprehensively reviews the relationship between mitochondrial dysfunction and chronic neurodegenerative diseases,aiming to uncover the potential use of targeted mitochondrial interventions as viable therapeutic options.We detail five targeted mitochondrial intervention strategies for chronic neurodegenerative diseases that act by promoting mitophagy,inhibiting mitochondrial fission,enhancing mitochondrial biogenesis,applying mitochondria-targeting antioxidants,and transplanting mitochondria.Each method has unique advantages and potential limitations,making them suitable for various therapeutic situations.Therapies that promote mitophagy or inhibit mitochondrial fission could be particularly effective in slowing disease progression,especially in the early stages.In contrast,those that enhance mitochondrial biogenesis and apply mitochondria-targeting antioxidants may offer great benefits during the middle stages of the disease by improving cellular antioxidant capacity and energy metabolism.Mitochondrial transplantation,while still experimental,holds great promise for restoring the function of damaged cells.Future research should focus on exploring the mechanisms and effects of these intervention strategies,particularly regarding their safety and efficacy in clinical settings.Additionally,the development of innovative mitochondria-targeting approaches,such as gene editing and nanotechnology,may provide new solutions for treating chronic neurodegenerative diseases.Implementing combined therapeutic strategies that integrate multiple intervention methods could also enhance treatment outcomes.
基金Funded by the National Natural Science Foundation of China(Nos.52278518 and 51938011)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.24KJB560021)。
文摘Based on the split hopkinson pressure bar(SHPB)tests results,the cubic specimens have been numerically modeled in this paper to investigate the impact of key factors,such as the rise time,duration,and incident pulse shape,on achieving stress uniformity.After analysis,the paper provides actionable methods aimed at optimizing the conditions for stress uniformity within the cubic specimen.Finally,the lateral inertia effect of cubic specimen has been scrutinized to address the existing gap in this academic area.
基金supported by a grant from NIH(R01AI132695)to RM。
文摘Chronic wasting disease—a prion disease affecting cervids:Many neurological conditions,including Alzheimer's and Parkinson's diseases,amyotrophic lateral sclerosis,frontotemporal dementias,among others,are caused by the accumulation of misfolded proteins in the brain.These diseases affect not only humans,but also animals.
文摘Non-right-handedness(NRH),encompassing left-handedness and mixed-handedness,has been frequently reported at elevated rates in individuals with various psychiatric disorders.The consistency of this association across multiple conditions and its underlying mechanisms is the subject of ongoing investigation.This review synthesized current evidence to explore the association between NRH and psychiatric disorders from epidemiological,genetic,and neurobiological perspectives.We systematically identified and appraised relevant literature investigating NRH prevalence in psychiatric populations and potential explanatory mechanisms.Epidemiological evidence indicates an elevated prevalence of NRH,particularly within neurodevelopmental disorders.Potential contributing mechanisms identified include early developmental disruptions,shared genetic predispositions,and atypical patterns of brain lateralization.While the association between NRH and psychiatric conditions,especially neurodevelopmental disorders,is evident,the causal pathways and relative contributions of identified mechanisms are complex and debated.This review highlighted key areas requiring further research to elucidate these relationships.
文摘Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the progressive degeneration of upper and lower motor neurons in the brainstem and spinal cord,leading to muscle weakness,paralysis,and respiratory failure (Morgan and Orrell,2016).
基金supported by the National Key Research and Development Program of China,No.2022YFC2703101(to YC)the National Natural Science Fundation of China,No.82371422(to YC)+1 种基金the National Innovation and Entrepreneurship Training Program for College Students,No.202310611408(to XW)the 1·3·5 Project for Disciplines of Excellence Clinical Research Fund,West China Hospital,Sichuan University,No.2023HXFH032(to YC)。
文摘Motor neuron diseases are sporadic or inherited fatal neurodegenerative conditions.They selectively affect the upper and/or lower motor neurons in the brain and spinal cord and feature a slow onset and a subacute course contingent upon the site of damage.The main types include amyotrophic lateral sclerosis,progressive muscular atrophy,primary lateral sclerosis,and progressive bulbar palsy,the pathological processes of which are largely identical,with the main disparity lying in the location of the lesions.Amyotrophic lateral sclerosis is the representative condition in this group of diseases,while other types are its variants.Hence,this article mainly focuses on the advancements and challenges in drug research for amyotrophic lateral sclerosis but also briefly addresses several other important degenerative motor neuron diseases.Although the precise pathogenesis remains elusive,recent advancements have shed light on various theories,including gene mutation,excitatory amino acid toxicity,autoimmunology,and neurotrophic factors.The US Food and Drug Administration has approved four drugs for use in delaying the progression of amyotrophic lateral sclerosis:riluzole,edaravone,AMX0035,and tofersen,with the latter being the most recent to receive approval.However,following several phaseⅢtrials that failed to yield favorable outcomes,AMX0035 has been voluntarily withdrawn from both the US and Canadian markets.This article presents a comprehensive summary of drug trials primarily completed between January 1,2023,and June 30,2024,based on data sourced from clinicaltrials.gov.Among these trials,five are currently in phaseⅠ,seventeen are in phaseⅡ,and eleven are undergoing phaseⅢevaluation.Notably,24 clinical trials are now investigating potential disease-modifying therapy drugs,accounting for the majority of the drugs included in this review.Some promising drugs being investigated in preclinical studies,such as ATH-1105,are included in our analysis,and another review in frontiers in gene therapy and immunotherapy has demonstrated their therapeutic potential for motor neuron diseases.This article was written to be an overview of research trends and treatment prospects related to motor neuron disease drugs,with the aim of highlighting the latest potentialities for clinical therapy.
基金supported by the National Institute on Aging(Nos.AG000723 and AG000578)(to VAB)the Fondation Sante(No.19656),Greece 2.0+1 种基金the National Recovery and Resilience Plan’s flagship program TAEDR-0535850the European Research Council(No.101077374-Synapto Mitophagy)(to KP)。
文摘N umerous neurological disorders negatively impact the nervous system,either through loss of neurons or by disrupting the normal functioning of neural networks.These impairments manifest as cognitive defects,memory loss,behavioral abnormalities,and motor dysfunctions.Decades of research have significantly advanced our understanding of the pathophysiology underlying neurodegene rative diseases,including Alzheimer's disease(AD),Parkinson's disease,amyotrophic lateral sclerosis,and others.
基金supported by the National Natural Science Foundation of China,No.82160255(to RX)the Natural Science Foundation of Jiangxi Province,No.20212BAB216026(to HL)+2 种基金Science and Technology Plan Project of Health Commission of Jiangxi Province,No.202110016(to HL)Science and Technology Plan Project of Jiangxi Provincial Administration of Traditional Chinese Medicine,No.2022B975(to HL)a grant from Jiangxi Province Key Laboratory of Neurology,No.2024SSY06081(to RX).
文摘With the gradual advancement of research methods and technologies,various biological processes have been identified as playing roles in the pathogenesis of neurodegenerative diseases.However,current descriptions of these biological processes do not fully explain the onset,progression,and development of these conditions.Therefore,exploration of the pathogenesis of neurodegenerative diseases remains a valuable area of research.This review summarizes the potential common pathogeneses of Alzheimer’s disease,Parkinson’s disease,amyotrophic lateral sclerosis,Huntington’s disease,frontotemporal lobar dementia,and Lewy body disease.Research findings have indicated that several common biological processes,including aging,genetic factors,progressive neuronal dysfunction,neuronal death and apoptosis,protein misfolding and aggregation,neuroinflammation,mitochondrial dysfunction,axonal transport defects,and gut microbiota dysbiosis,are involved in the pathogenesis of these six neurodegenerative diseases.Based on current information derived from diverse areas of research,these biological processes may form complex pathogenic networks that lead to distinctive types of neuronal death in neurodegenerative diseases.Furthermore,promoting the regeneration of damaged neurons may be achievable through the repair of affected neural cells if the underlying pathogenesis can be prevented or reversed.Hence,these potential common biological processes may represent only very small,limited elements within numerous intricate pathogenic networks associated with neurodegenerative diseases.In clinical treatment,interfering with any single biological process has proven insufficient to completely halt the progression of neurodegenerative diseases.Therefore,future research on the pathogenesis of neurodegenerative diseases should focus on uncovering the complex pathogenic networks,rather than isolating individual biological processes.Based on this,therapies that aim to block or reverse various targets involved in the potential pathogenic mechanisms of neurodegenerative diseases may be promising directions,as current treatment methods that focus on halting a single pathogenic factor have not achieved satisfactory efficacy.
基金supported by Yunnan Provincial Science and Technology Department,Nos.202403AC100007(to NZ),202301AY070001-239(to JY)Yunnan Revitalization Talent Support Program,Nos.2019-069(to ZY)and 2019-300(to JY)+1 种基金the National Natural Science Foundation of China,Nos.32260196(to JY)a grant from Kunming Medical University,No.2024S085(to KL)。
文摘Neurodegenerative diseases are a group of illnesses characterized by the gradual deterioration of the central nervous system,leading to a decline in patients'cognitive,motor,and emotional abilities.Neuroinflammation plays a significant role in the progression of these diseases.However,there is limited research on therapeutic approaches to specifically target neuroinflammation.The role of T lymphocytes,which are crucial mediators of the adaptive immune response,in neurodegenerative diseases has been increasingly recognized.This review focuses on the involvement of T lymphocytes in the neuroinflammation associated with neurodegenerative diseases.The pathogenesis of neurodegenerative diseases is complex,involving multiple mechanisms and pathways that contribute to the gradual degeneration of neurons,and T cells are a key component of these processes.One of the primary factors driving neuroinflammation in neurodegenerative diseases is the infiltration of T cells and other neuroimmune cells,including microglia,astrocytes,B cells,and natural killer cells.Different subsets of CD4~+T cells,such as Th1,Th2,Th17,and regulatory T cells,can differentiate into various cell types and perform distinct roles within the neuroinflammatory environment of neurodegenerative diseases.Additionally,CD8~+T cells,which can directly regulate immune responses and kill target cells,also play several important roles in neurodegenerative diseases.Clinical trials investigating targeted T cell therapies for neurodegenerative diseases have shown that,while some patients respond positively,others may not respond as well and may even experience adverse effects.Targeting T cells precisely is challenging due to the complexity of immune responses in the central nervous system,which can lead to undesirable side effects.However,with new insights into the pathophysiology of neurodegenerative diseases,there is hope for the establishment of a solid theoretical foundation upon which innovative treatment strategies that target T cells can be developed in the future.
文摘Objective To investigate the lateralizing value of ictal face wiping(FW)in patients with refractory mesial temporal lobe epilepsy(MTLE).Methods Presurgical video types were retrospectively reviewed among 96 patients who were seizure-free for at least 3 years after temporal lobectomy between 1997 and 2012.Attention
基金supported by the Notional Natural Science Foundation of Chino,No.82160690Colloborotive Innovation Center of Chinese Ministry of Education,No.2020-39Science and Technology Foundation of Guizhou Province,No.ZK[2021]-014(all to FZ)。
文摘Copper,one of the most prolific transition metals in the body,is required for normal brain physiological activity and allows various functions to work normally through its range of concentrations.Copper homeostasis is meticulously maintained through a complex network of copper-dependent proteins,including copper transporters(CTR1 and CTR2),the two copper ion transporters the Cu-transporting ATPase 1(ATP7A)and Cu-transporting beta(ATP7B),and the three copper chaperones ATOX1,CCS,and COX17.Disruptions in copper homeostasis can lead to either the deficiency or accumulation of copper in brain tissue.Emerging evidence suggests that abnormal copper metabolism or copper binding to various proteins,including ceruloplasmin and metallothionein,is involved in the pathogenesis of neurodegenerative disorders.However,the exact mechanisms underlying these processes are not known.Copper is a potent oxidant that increases reactive oxygen species production and promotes oxidative stress.Elevated reactive oxygen species levels may further compromise mitochondrial integrity and cause mitochondrial dysfunction.Reactive oxygen species serve as key signaling molecules in copper-induced neuroinflammation,with elevated levels activating several critical inflammatory pathways.Additionally,copper can bind aberrantly to several neuronal proteins,including alphasynuclein,tau,superoxide dismutase 1,and huntingtin,thereby inducing neurotoxicity and ultimately cell death.This study focuses on the latest literature evaluating the role of copper in neurodegenerative diseases,with a particular focus on copper-containing metalloenzymes and copper-binding proteins in the regulation of copper homeostasis and their involvement in neurodegenerative disease pathogenesis.By synthesizing the current findings on the functions of copper in oxidative stress,neuroinflammation,mitochondrial dysfunction,and protein misfolding,we aim to elucidate the mechanisms by which copper contributes to a wide range of hereditary and neuronal disorders,such as Wilson's disease,Menkes'disease,Alzheimer's disease,Parkinson's disease,amyotrophic lateral sclerosis,Huntington's disease,and multiple sclerosis.Potential clinically significant therapeutic targets,including superoxide dismutase 1,D-penicillamine,and 5,7-dichloro-2-[(dimethylamino)methyl]-8-hydroxyquinoline,along with their associated therapeutic agents,are further discussed.Ultimately,we collate evidence that copper homeostasis may function in the underlying etiology of several neurodegenerative diseases and offer novel insights into the potential prevention and treatment of these diseases based on copper homeostasis.
文摘Amyotrophic lateral sclerosis is a devastating neurodegenerative disease for which the current treatment approaches remain severely limited.The principal pathological alterations of the disease include the selective degeneration of motor neurons in the brain,brainstem,and spinal cord,as well as abnormal protein deposition in the cytoplasm of neurons and glial cells.The biological markers under extensive scrutiny are predominantly located in the cerebrospinal fluid,blood,and even urine.Among these biomarke rs,neurofilament proteins and glial fibrillary acidic protein most accurately reflect the pathologic changes in the central nervous system,while creatinine and creatine kinase mainly indicate pathological alterations in the peripheral nerves and muscles.Neurofilament light chain levels serve as an indicator of neuronal axonal injury that remain stable throughout disease progression and are a promising diagnostic and prognostic biomarker with high specificity and sensitivity.However,there are challenges in using neurofilament light chain to diffe rentiate amyotrophic lateral sclerosis from other central nervous system diseases with axonal injury.Glial fibrillary acidic protein predominantly reflects the degree of neuronal demyelination and is linked to non-motor symptoms of amyotrophic lateral sclerosis such as cognitive impairment,oxygen saturation,and the glomerular filtration rate.TAR DNA-binding protein 43,a pathological protein associated with amyotrophic lateral sclerosis,is emerging as a promising biomarker,particularly with advancements in exosome-related research.Evidence is currently lacking for the value of creatinine and creatine kinase as diagnostic markers;however,they show potential in predicting disease prognosis.Despite the vigorous progress made in the identification of amyotrophic lateral sclerosis biomarkers in recent years,the quest for definitive diagnostic and prognostic biomarke rs remains a formidable challenge.This review summarizes the latest research achievements concerning blood biomarkers in amyotrophic lateral sclerosis that can provide a more direct basis for the differential diagnosis and prognostic assessment of the disease beyond a reliance on clinical manifestations and electromyography findings.
基金National Natural Science Foundation of China(U24A20714 to XMF and 82102238 to PC)。
文摘BACKGROUND:Tracheal intubation(TI)is a fundamental procedure for securing the airway or assisting ventilation in emergency medicine.Tracheal intubation in the lateral position(TILP)has been utilized in clinical practice,demonstrating potential advantages in specific scenarios,including emergency settings.However,there is a lack of comprehensive reviews and practical protocols on TILP application.To address this gap,we performed a narrative review,and provided evidence-based recommendations to formulate a practice protocol,to assist clinicians to effectively apply TILP.METHODS:We conducted a narrative review of TILP applications and developed recommendations based on clinical research evidence and clinical experience.Delphi method was used among the TILP consortium to grade the strength of the recommendations and to help reach consensus.The practice protocols were formulated as warranted by advancements in medical knowledge,technology,and practice.RESULTS:This narrative review summarized the current evidence on TILP application,highlighting its safety,efficacy,challenges,and potential complications.In total,24 recommendations and a clinical protocol for TILP application in emergency patients were established.CONCLUSION:TILP is a valuable technique in emergency medicine.We reviewed its application in emergency settings and formulated recommendations along with a clinical practice protocol.Future studies are needed to evaluate the safety and efficacy of TILP,broaden its scope of application,and explore effective training protocols.
基金supported by the National Natural Science Foundation of China(Nos.62103052 and No.52175214)。
文摘This paper presents the design of an asymmetrically variable wingtip anhedral angles morphing aircraft,inspired by biomimetic mechanisms,to enhance lateral maneuver capability.Firstly,we establish a lateral dynamic model considering additional forces and moments resulting during the morphing process,and convert it into a Multiple Input Multiple Output(MIMO)virtual control system by importing virtual inputs.Secondly,a classical dynamics inversion controller is designed for the outer-loop system.A new Global Fast Terminal Incremental Sliding Mode Controller(NDO-GFTISMC)is proposed for the inner-loop system,in which an adaptive law is implemented to weaken control surface chattering,and a Nonlinear Disturbance Observer(NDO)is integrated to compensate for unknown disturbances.The whole control system is proven semiglobally uniformly ultimately bounded based on the multi-Lyapunov function method.Furthermore,we consider tracking errors and self-characteristics of actuators,a quadratic programmingbased dynamic control allocation law is designed,which allocates virtual control inputs to the asymmetrically deformed wingtip and rudder.Actuator dynamic models are incorporated to ensure physical realizability of designed allocation law.Finally,comparative experimental results validate the effectiveness of the designed control system and control allocation law.The NDO-GFTISMC features faster convergence,stronger robustness,and 81.25%and 75.0%reduction in maximum state tracking error under uncertainty compared to the Incremental Nonlinear Dynamic Inversion Controller based on NDO(NDO-INDI)and Incremental Sliding Mode Controller based on NDO(NDO-ISMC),respectively.The design of the morphing aircraft significantly enhances lateral maneuver capability,maintaining a substantial control margin during lateral maneuvering,reducing the burden of the rudder surface,and effectively solving the actuator saturation problem of traditional aircraft during lateral maneuvering.
基金the National Natural Science Foundation of China(82471593 to J.M.32330047 and 31930057 to F.W.+2 种基金and 82071970 to Y.W.and 82072506 to Y.L.)the Science Fund for Distinguished Young Scholars of Hubei Province(2023AFA109 to Y.W.)Hubei Provincial Natural Science Foundation of China(2024AFB963 to Q.R.).
文摘The muscular system plays a critical role in the human body by governing skeletal movement,cardiovascular function,and the activities of digestive organs.Additionally,muscle tissues serve an endocrine function by secreting myogenic cytokines,thereby regulating metabolism throughout the entire body.Maintaining muscle function requires iron homeostasis.Recent studies suggest that disruptions in iron metabolism and ferroptosis,a form of iron-dependent cell death,are essential contributors to the progression of a wide range of muscle diseases and disorders,including sarcopenia,cardiomyopathy,and amyotrophic lateral sclerosis.Thus,a comprehensive overview of the mechanisms regulating iron metabolism and ferroptosis in these conditions is crucial for identifying potential therapeutic targets and developing new strategies for disease treatment and/or prevention.This review aims to summarize recent advances in understanding the molecular mechanisms underlying ferroptosis in the context of muscle injury,as well as associated muscle diseases and disorders.Moreover,we discuss potential targets within the ferroptosis pathway and possible strategies for managing muscle disorders.Finally,we shed new light on current limitations and future prospects for therapeutic interventions targeting ferroptosis.
基金supported by the Natural Science Foundation of Heilongjiang Province(No.ZD2021E006)the National Natural Science Foundation of China(Nos.52174075 and 52074110).
文摘The models constructed by particle flow simulation method can effectively simulate the heterogeneous substance characteristics and failure behaviors of rocks.However,existing contact models overlook the rock cracks,and the various simulation methods that do consider cracks still exhibit certain limitations.In this paper,based on Flat-Joint model and Linear Parallel Bond model,a crack contact model considering linked substance in the crack is proposed by splitting the crack contact into two portions:linked portion and unlinked portion for calculation.The new contact model considers the influence of crack closure on the contact force-displacement law.And a better compressive tensile strength ratio(UCS/T)was obtained by limiting the failure of the contact bond to be solely controlled by the contact force and moment of the linked portion.Then,by employing the FISH Model tool within the Particle Flow Code,the contact model was constructed and verified through contact force–displacement experiments and loading-unloading tests with cracked model.Finally,the contact model was tested through simulations of rock mechanics experiments.The results indicate that the contact model can effectively simulate the axial and lateral strain laws of rocks simultaneously and has a relatively good reproduction of the bi-modularity of rocks.
基金financially supported by the Central Public-Interest Scientific Institution Basal Research Fund of Chinese Academy of Forestry(CAFYBB2021ZW002)the National Key Research and Development Program of China(2022YFF1300404)the National Natural Science Foundation of China(U21A2005)。
文摘Mountainous areas are the priority for forest restoration in semiarid regions,with hillslopes serving as the basic units of mountains.Precipitation is the only water source in these regions,and the uneven distribution of hillslope soil moisture replenishment after precipitation determines vegetation survival and growth.Therefore,in this study experiments were performed on a hillslope in the Liupan Mountains,Ningxia Hui Autonomous Region,China,to quantify the unevenness of soil moisture replenishment.Soil water content(SWC)in the 0–60 cm layer and precipitation were monitored throughout the growing season in 2020 and 2021.The results showed that(1)Annual soil moisture replenishment was the highest at the mid-slope position,with an average of 309.9 mm,especially under moderate and heavy rain grade conditions,reaching 38.7% and 30.8% of the total replenishment,respectively;(2)Vertical replenishment played a dominant role in the total replenishment,accounting for 82.8%;lateral replenishment played an important but lesser role,accounting for up to 17.2% of the total replenishment;(3)Based on a soil moisture replenishment model established in this study,the maximal replenishment occurred at 90 m from the top of the slope;(4)The dominant factors contributing to the soil moisture replenishment were rainfall amount and saturated hydraulic conductivity(Ks).These findings suggest that attention should be given to both vertical and lateral soil moisture replenishment,and the mid-slope position could be preferred for site selection to achieve precise and integrated forest-water management on hillslopes in semi-arid mountainous regions.
基金supported by Yunnan Province Innovation Team of Prevention and Treatment for Brain Disease with Acupuncture and Tuina,No.202405AS350007Youth Top Talent Project of 10-thousand Talent Plan in Yunnan Province,No.YNWR-QNBJ-2018-345+3 种基金the National Natural Science Foundation of China,No.81960731Joint Special Project of Traditional Chinese Medicine in Science and Technology Department of Yunnan Province,Nos.2019FF002[-008],202001AZ070001-002 and 202001AZ070001-030Yunnan Province University Innovation Team Projects No.2019YGC04Yunnan Province Project Education Fund,Nos.2024Y406,2024Y414(all to PZ)。
文摘The exchange of information and materials between organelles plays a crucial role in regulating cellular physiological functions and metabolic levels.Mitochondria-associated endoplasmic reticulum membranes serve as physical contact channels between the endoplasmic reticulum membrane and the mitochondrial outer membrane,formed by various proteins and protein complexes.This microstructural domain mediates several specialized functions,including calcium(Ca^(2+))signaling,autophagy,mitochondrial morphology,oxidative stress response,and apoptosis.Notably,the dysregulation of Ca^(2+)signaling mediated by mitochondria-associated endoplasmic reticulum membranes is a critical factor in the pathogenesis of neurological diseases.Certain proteins or protein complexes within these membranes directly or indirectly regulate the distance between the endoplasmic reticulum and mitochondria,as well as the transduction of Ca^(2+)signaling.Conversely,Ca^(2+)signaling mediated by mitochondria-associated endoplasmic reticulum membranes influences other mitochondria-associated endoplasmic reticulum membraneassociated functions.These functions can vary significantly across different neurological diseases—such as ischemic stroke,traumatic brain injury,Alzheimer's disease,Parkinson's disease,amyotrophic lateral sclerosis,and Huntington's disease—and their respective stages of progression.Targeted modulation of these disease-related pathways and functional proteins can enhance neurological function and promote the regeneration and repair of damaged neurons.Therefore,mitochondria-associated endoplasmic reticulum membranes-mediated Ca^(2+)signaling plays a pivotal role in the pathological progression of neurological diseases and represents a significant potential therapeutic target.This review focuses on the effects of protein complexes in mitochondria-associated endoplasmic reticulum membranes and the distinct roles of mitochondria-associated endoplasmic reticulum membranes-mediated Ca^(2+)signaling in neurological diseases,specifically highlighting the early protective effects and neuronal damage that can result from prolonged mitochondrial Ca^(2+)overload or deficiency.This article provides a comprehensive analysis of the various mechanisms of Ca^(2+)signaling mediated by mitochondria-associated endoplasmic reticulum membranes in neurological diseases,contributing to the exploration of potential therapeutic targets for promoting neuroprotection and nerve repair.
基金support from the Miami Project to Cure Paralysis,the Buoniconti Fund,and the Interdisciplinary Stem Cell Institute(to AK,WDD,JDG,and ADL)the unconditional support of Dean Henri Ford of the Leonard M.Miller School of Medicine at the University of Miami.
文摘Schwann cells are essential for the maintenance and function of motor neurons,axonal networks,and the neuromuscular junction.In amyotrophic lateral sclerosis,where motor neuron function is progressively lost,Schwann cell function may also be impaired.Recently,important signaling and potential trophic activities of Schwann cell-derived exosomal vesicles have been reported.This case report describes the treatment of a patient with advanced amyotrophic lateral sclerosis using serial intravenous infusions of allogeneic Schwann cell-derived exosomal vesicles,marking,to our knowledge,the first instance of such treatment.An 81-year-old male patient presented with a 1.5-year history of rapidly progressive amyotrophic lateral sclerosis.After initial diagnosis,the patient underwent a combination of generic riluzole,sodium phenylbutyrate for the treatment of amyotrophic lateral sclerosis,and taurursodiol.The patient volunteered to participate in an FDA-approved single-patient expanded access treatment and received weekly intravenous infusions of allogeneic Schwann cell-derived exosomal vesicles to potentially restore impaired Schwann cell and motor neuron function.We confirmed that cultured Schwann cells obtained from the amyotrophic lateral sclerosis patient via sural nerve biopsy appeared impaired(senescent)and that exposure of the patient’s Schwann cells to allogeneic Schwann cell-derived exosomal vesicles,cultured expanded from a cadaver donor improved their growth capacity in vitro.After a period of observation lasting 10 weeks,during which amyotrophic lateral sclerosis Functional Rating Scale-Revised and pulmonary function were regularly monitored,the patient received weekly consecutive infusions of 1.54×1012(×2),and then consecutive infusions of 7.5×1012(×6)allogeneic Schwann cell-derived exosomal vesicles diluted in 40 mL of Dulbecco’s phosphate-buffered saline.None of the infusions were associated with adverse events such as infusion reactions(allergic or otherwise)or changes in vital signs.Clinical lab serum neurofilament and cytokine levels measured prior to each infusion varied somewhat without a clear trend.A more sensitive in-house assay suggested possible inflammasome activation during the disease course.A trend for clinical stabilization was observed during the infusion period.Our study provides a novel approach to address impaired Schwann cells and possibly motor neuron function in patients with amyotrophic lateral sclerosis using allogeneic Schwann cell-derived exosomal vesicles.Initial findings suggest that this approach is safe.
基金Supported by Natural Science Foundation of Shandong Province,No.ZR2023MH331.
文摘BACKGROUND A case study of multiple distinct levels of skipped thoracolumbar spine infection was reported in which 13 successful vacuum sealing drainage(VSD)surgeries were treated.CASE SUMMARY The patient underwent a total of 13 procedures within our medical facility,including five performed under local anesthesia and eight performed under general anesthesia.The source of the ailment was ultimately identified as Enterobacter cloacae.After the last procedure,the patient's symptoms were alleviated,and the recovery process was satisfactory.Three months post-operation,the Japanese Orthopaedic Association scores had improved to 100%.Imageological examination revealed a satisfactory position of internal fixation,and the abnormal signals in the vertebral body and intervertebral space had been eliminated when compared to the pre-operative results.CONCLUSION The study demonstrates that the extreme lateral approach debridement combined with multiple VSD operations is a secure and successful method of treatment for recurrent spinal infection,providing an alternative to traditional surgery.