期刊文献+
共找到1,510篇文章
< 1 2 76 >
每页显示 20 50 100
Temporally Preserving Latent Variable Models:Offline and Online Training for Reconstruction and Interpretation of Fault Data for Gearbox Condition Monitoring
1
作者 Ryan Balshaw P.Stephan Heyns +1 位作者 Daniel N.Wilke Stephan Schmidt 《Journal of Dynamics, Monitoring and Diagnostics》 2024年第2期156-177,共22页
Latent variable models can effectively determine the condition of essential rotating machinery without needing labeled data.These models analyze vibration data via an unsupervised learning strategy.Temporal preservati... Latent variable models can effectively determine the condition of essential rotating machinery without needing labeled data.These models analyze vibration data via an unsupervised learning strategy.Temporal preservation is necessary to obtain an informative latent manifold for the fault diagnosis task.In a temporalpreserving context,two approaches exist to develop a condition-monitoring methodology:offline and online.For latent variable models,the available training modes are not different.While many traditional methods use offline training,online training can dynamically adjust the latent manifold,possibly leading to better fault signature extraction from the vibration data.This study explores online training using temporal-preserving latent variable models.Within online training,there are two main methods:one focuses on reconstructing data and the other on interpreting the data components.Both are considered to evaluate how they diagnose faults over time.Using two experimental datasets,the study confirms that models from both training modes can detect changes in machinery health and identify faults even under varying conditions.Importantly,the complementarity of offline and online models is emphasized,reassuring their versatility in fault diagnostics.Understanding the implications of the training approach and the available model formulations is crucial for further research in latent variable modelbased fault diagnostics. 展开更多
关键词 Condition monitoring unsupervised learning latent variable models temporal preservation training approaches
在线阅读 下载PDF
Randomized Latent Factor Model for High-dimensional and Sparse Matrices from Industrial Applications 被引量:14
2
作者 Mingsheng Shang Xin Luo +3 位作者 Zhigang Liu Jia Chen Ye Yuan MengChu Zhou 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第1期131-141,共11页
Latent factor(LF)models are highly effective in extracting useful knowledge from High-Dimensional and Sparse(HiDS)matrices which are commonly seen in various industrial applications.An LF model usually adopts iterativ... Latent factor(LF)models are highly effective in extracting useful knowledge from High-Dimensional and Sparse(HiDS)matrices which are commonly seen in various industrial applications.An LF model usually adopts iterative optimizers,which may consume many iterations to achieve a local optima,resulting in considerable time cost.Hence,determining how to accelerate the training process for LF models has become a significant issue.To address this,this work proposes a randomized latent factor(RLF)model.It incorporates the principle of randomized learning techniques from neural networks into the LF analysis of HiDS matrices,thereby greatly alleviating computational burden.It also extends a standard learning process for randomized neural networks in context of LF analysis to make the resulting model represent an HiDS matrix correctly.Experimental results on three HiDS matrices from industrial applications demonstrate that compared with state-of-the-art LF models,RLF is able to achieve significantly higher computational efficiency and comparable prediction accuracy for missing data.I provides an important alternative approach to LF analysis of HiDS matrices,which is especially desired for industrial applications demanding highly efficient models. 展开更多
关键词 Big data high-dimensional and sparse matrix latent factor analysis latent factor model randomized learning
在线阅读 下载PDF
Traditional Chinese Medicine syndrome elements of male infertility revealed by latent tree model analysis 被引量:5
3
作者 Zhang Zhijie Liu Shaoming +8 位作者 Zhang Yueyang Yang Jingzhe Kong Tao Wang Chengli Ning Peng Chen Xiaochao Li Xuesong Jia Yusen Chen Xiaojun 《Journal of Traditional Chinese Medicine》 SCIE CAS CSCD 2018年第6期926-935,共10页
OBJECTIVE: To explore the features of Traditional Chinese Medicine(TCM) syndromes in male infertility using computer-based analyses.METHODS: Latent class analysis was used to analyze the TCM syndrome data from 813 pat... OBJECTIVE: To explore the features of Traditional Chinese Medicine(TCM) syndromes in male infertility using computer-based analyses.METHODS: Latent class analysis was used to analyze the TCM syndrome data from 813 patients with male infertility and establish a latent tree model.RESULTS: A latent tree model with a Bayesian information criterion score of-11 263 was created.This model revealed that the characteristics of basic TCM syndromes in patients with male infertility were kidney Yang deficiency, kidney Qi deficiency,spleen Yang deficiency, liver Qi stagnation, Qi stagnation and blood stasis, and dump-heat; moreover,most patients with male infertility had complex syndromes(spleen-kidney Yang deficiency and liver Qi stagnation) rather than simple single syndromes.CONCLUSION: The hidden tree model analysis revealed the objective and quantitative complex relationships between the TCM symptoms of male infertility, and obtained the quantification and objective evidence of TCM syndromes in male infertility. 展开更多
关键词 Infertility male SYNDROMES and SIGNS latent tree model
原文传递
Latent Variable Modeling Approach for Assessing Social Impacts of Mine Closure 被引量:1
4
作者 Mallikarjun Rao Pillalamarry Khanindra Pathak 《Open Journal of Applied Sciences》 2014年第14期573-587,共15页
Mining stimulates environmental and economic impacts on the neighboring community right from the inception to the closure of its operations. The society in the neighborhood of mining gradually adopts a characteristic ... Mining stimulates environmental and economic impacts on the neighboring community right from the inception to the closure of its operations. The society in the neighborhood of mining gradually adopts a characteristic life-style that is highly influenced by the mining. In order to sustain the societal development beyond the mine closure, it is necessary to plan post mining activities in the area. Thus, it is essential to predict the impacts of mine closure well before the closure. Many societal and family attributes are affected by mine closure. Impact on these attributes is reflected on the overall quality of life of the neighboring community. There are no adequate indicators and/or methodology available to measure social impacts of mine closure on a neighboring community. This paper made an attempt to develop such methodology to predict the degree of adverse effects of mine closure on the quality of life of neighboring communities using the Structural Equation Modeling (SEM) and the Latent Variables Interaction Model (LVM). 展开更多
关键词 MINE CLOSURE SOCIAL IMPACTS Structural Equation modelING latent Variable modelING
暂未订购
A Comparison of Statistics for Assessing Model Invariance in Latent Class Analysis 被引量:1
5
作者 Holmes Finch 《Open Journal of Statistics》 2015年第3期191-210,共20页
Latent class analysis (LCA) is a widely used statistical technique for identifying subgroups in the population based upon multiple indicator variables. It has a number of advantages over other unsupervised grouping pr... Latent class analysis (LCA) is a widely used statistical technique for identifying subgroups in the population based upon multiple indicator variables. It has a number of advantages over other unsupervised grouping procedures such as cluster analysis, including stronger theoretical underpinnings, more clearly defined measures of model fit, and the ability to conduct confirmatory analyses. In addition, it is possible to ascertain whether an LCA solution is equally applicable to multiple known groups, using invariance assessment techniques. This study compared the effectiveness of multiple statistics for detecting group LCA invariance, including a chi-square difference test, a bootstrap likelihood ratio test, and several information indices. Results of the simulation study found that the bootstrap likelihood ratio test was the optimal invariance assessment statistic. In addition to the simulation, LCA group invariance assessment was demonstrated in an application with the Youth Risk Behavior Survey (YRBS). Implications of the simulation results for practice are discussed. 展开更多
关键词 latent Class ANALYSIS model INVARIANCE Information Indices
暂未订购
Evaluation of CMIP5 Climate Models in Simulating 1979–2005 Oceanic Latent Heat Flux over the Pacific 被引量:1
6
作者 CAO Ning REN Baohua ZHENG Jianqiu 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第12期1603-1616,共14页
The climatological mean state, seasonal variation and long-term upward trend of 1979-2005 latent heat flux (LHF) in historical runs of 14 coupled general circulation models from CMIP5 (Coupled Model Intercomparison... The climatological mean state, seasonal variation and long-term upward trend of 1979-2005 latent heat flux (LHF) in historical runs of 14 coupled general circulation models from CMIP5 (Coupled Model Intercomparison Project Phase 5) are evaluated against OAFlux (Objectively Analyzed air-sea Fluxes) data. Inter-model diversity of these models in simulating the annual mean climatological LHF is discussed. Results show that the models can capture the climatological LHF fairly well, but the amplitudes are generally overestimated. Model-simulated seasonal variations of LHF match well with observations with overestimated amplitudes. The possible origins of these biases are wind speed biases in the CMIP5 models. Inter-model diversity analysis shows that the overall stronger or weaker LHF over the tropical and subtropical Pacific region, and the meridional variability of LHF, are the two most notable diversities of the CMIP5 models. Regression analysis indicates that the inter-model diversity may come from the diversity of simulated SST and near-surface atmospheric specific humidity. Comparing the observed long-term upward trend, the trends of LHF and wind speed are largely underestimated, while trends of SST and air specific humidity are grossly overestimated, which may be the origins of the model biases in reproducing the trend of LHF. 展开更多
关键词 model evaluation CLIMATOLOGY TREND latent heat flux CMIP5
在线阅读 下载PDF
Latent Growth Mixture Modeling to Estimate Differential PTSD Trajectories and Associated Risk Factors in Psychiatric Staff Following Workplace Violence
7
作者 Ask Elklit Sara Al Ali Jesper Pihl-Thingvad 《Open Journal of Epidemiology》 2023年第4期360-371,共12页
Background: Workplace violence (WV) towards psychiatric staff has commonly been associated with Posttraumatic Stress Disorder (PTSD). However, prospective studies have shown that not all psychiatric staff who experien... Background: Workplace violence (WV) towards psychiatric staff has commonly been associated with Posttraumatic Stress Disorder (PTSD). However, prospective studies have shown that not all psychiatric staff who experience workplace violence experience post-traumatic stress. Purpose: We want to examine the longitudinal trajectories of PTSD in this population to identify possible subgroups that might be more at risk. Furthermore, we need to investigate whether certain risk factors of PTSD might identify membership in the subgroups. Method: In a sample of psychiatric staff from 18 psychiatric wards in Denmark who had reported an incident of WV, we used Latent Growth Mixture Modelling (LGMM) and further logistic regression analysis to investigate this. Results: We found three separate PTSD trajectories: a recovering, a delayed-onset, and a moderate-stable trajectory. Higher social support and negative cognitive appraisals about oneself, the world and self-blame predicted membership in the delayed-onset trajectory, while higher social support and lower accept coping predicted membership in the delayed-onset trajectory. Conclusion: Although most psychiatric staff go through a natural recovery, it is important to be aware of and identify staff members who might be struggling long-term. More focus on the factors that might predict these groups should be an important task for psychiatric departments to prevent posttraumatic symptomatology from work. 展开更多
关键词 latent Growth Mixture modeling PTSD Trajectories Psychiatric Staff Work-place Violence
暂未订购
Quasi-Monte Carlo Approximations for Exponentiated Quadratic Kernel in Latent Force Models
8
作者 Qianli Di 《Open Journal of Modelling and Simulation》 2022年第4期349-390,共42页
In this project, we consider obtaining Fourier features via more efficient sampling schemes to approximate the kernel in LFMs. A latent force model (LFM) is a Gaussian process whose covariance functions follow an Expo... In this project, we consider obtaining Fourier features via more efficient sampling schemes to approximate the kernel in LFMs. A latent force model (LFM) is a Gaussian process whose covariance functions follow an Exponentiated Quadratic (EQ) form, and the solutions for the cross-covariance are expensive due to the computational complexity. To reduce the complexity of mathematical expressions, random Fourier features (RFF) are applied to approximate the EQ kernel. Usually, the random Fourier features are implemented with Monte Carlo sampling, but this project proposes replacing the Monte-Carlo method with the Quasi-Monte Carlo (QMC) method. The first-order and second-order models’ experiment results demonstrate the decrease in NLPD and NMSE, which revealed that the models with QMC approximation have better performance. 展开更多
关键词 latent Force model COVID-19 Quasi-Monte Carlo Approximations
在线阅读 下载PDF
Discovering Latent Variables for the Tasks With Confounders in Multi-Agent Reinforcement Learning
9
作者 Kun Jiang Wenzhang Liu +2 位作者 Yuanda Wang Lu Dong Changyin Sun 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第7期1591-1604,共14页
Efficient exploration in complex coordination tasks has been considered a challenging problem in multi-agent reinforcement learning(MARL). It is significantly more difficult for those tasks with latent variables that ... Efficient exploration in complex coordination tasks has been considered a challenging problem in multi-agent reinforcement learning(MARL). It is significantly more difficult for those tasks with latent variables that agents cannot directly observe. However, most of the existing latent variable discovery methods lack a clear representation of latent variables and an effective evaluation of the influence of latent variables on the agent. In this paper, we propose a new MARL algorithm based on the soft actor-critic method for complex continuous control tasks with confounders. It is called the multi-agent soft actor-critic with latent variable(MASAC-LV) algorithm, which uses variational inference theory to infer the compact latent variables representation space from a large amount of offline experience.Besides, we derive the counterfactual policy whose input has no latent variables and quantify the difference between the actual policy and the counterfactual policy via a distance function. This quantified difference is considered an intrinsic motivation that gives additional rewards based on how much the latent variable affects each agent. The proposed algorithm is evaluated on two collaboration tasks with confounders, and the experimental results demonstrate the effectiveness of MASAC-LV compared to other baseline algorithms. 展开更多
关键词 latent variable model maximum entropy multi-agent reinforcement learning(MARL) multi-agent system
在线阅读 下载PDF
Accounting for Heterogeneity in Stop Frequency Models of Work Tours Using Latent Class Poisson Models
10
作者 Babak Mirzazadeh 《Journal of Transportation Technologies》 2023年第2期243-261,共19页
Stop frequency models, as one of the elements of activity based models, represent an important part of travel behavior. Unobserved heterogeneity across the travelers should be taken into consideration to prevent biase... Stop frequency models, as one of the elements of activity based models, represent an important part of travel behavior. Unobserved heterogeneity across the travelers should be taken into consideration to prevent biasedness and inconsistency in the estimated parameters in the stop frequency models. Additionally, previous studies on the stop frequency have mostly been done in larger metropolitan areas and less attention has been paid to the areas with less population. This study addresses these gaps by using 2012 travel data from a medium sized U.S. urban area using the work tour for the case study. Stop in the work tour were classified into three groups of outbound leg, work based subtour, and inbound leg of the commutes. Latent Class Poisson Regression Models were used to analyze the data. The results indicate the presence of heterogeneity across the commuters. Using latent class models significantly improves the predictive power of the models compared to regular one class Poisson regression models. In contrast to one class Poisson models, gender becomes insignificant in predicting the number of tours when unobserved heterogeneity is accounted for. The commuters are associated with increased stops on their work based subtour when the employment density of service-related occupations increases in their work zone, but employment density of retail employment does not significantly contribute to the stop making likelihood of the commuters. Additionally, an increase in the number of work tours was associated with fewer stops on the inbound leg of the commute. The results of this study suggest the consideration of unobserved heterogeneity in the stop frequency models and help transportation agencies and policy makers make better inferences from such models. 展开更多
关键词 Activity Based model Work Tour Stop Frequency latent Class Poisson Regression model
在线阅读 下载PDF
Modelling of Active and Latent Attributes Based on Traveler Perspectives: Case of Port City of Douala
11
作者 Anastasia Ojong Maayuk-Okpok Yin Ming 《World Journal of Engineering and Technology》 2023年第1期164-198,共35页
A growing stream of study stresses the relevance of subjective elements in understanding the hierarchy of preferences that underpin individual travel behavior. The purpose of this study is to evaluate the impact of va... A growing stream of study stresses the relevance of subjective elements in understanding the hierarchy of preferences that underpin individual travel behavior. The purpose of this study is to evaluate the impact of various factors on mode choice. To achieve this, a multinomial logit model (MNL) was used to analyze the relationships between mode choice and three classes of attributes;Combined Active and Latent, Active only and Latent only attributes. The data used are derived from surveys in the port city of Douala, Cameroon as a case study. Results stipulated that, the combined attributes model performed better than both active only attributes and latent only attributes models. Likewise, latent only attributes model performed better than active only attributes model. The advantage of modelling all three groups is for better selection of the most relevant attributes, and this is very relevant in understanding travel behavior of individuals and mode choice decisions. 展开更多
关键词 Multinomial logit model latent Attributes Mode Choice Individual Behavior Active Attributes
在线阅读 下载PDF
高中生未来职业规划的发展趋势:基于潜变量增长模型的分析 被引量:1
12
作者 吴鹏 王宇亮 蒋星雨 《心理与行为研究》 北大核心 2025年第1期115-122,共8页
为揭示高中生未来职业规划发展趋势,探究公正世界信念的影响,通过2年共5次问卷调查,对1646名高中生进行测试。潜变量增长模型分析发现:(1)高中生未来职业探索的发展趋势呈两阶段性,即先下降后增长;(2)高中生未来职业投入的发展趋势可分... 为揭示高中生未来职业规划发展趋势,探究公正世界信念的影响,通过2年共5次问卷调查,对1646名高中生进行测试。潜变量增长模型分析发现:(1)高中生未来职业探索的发展趋势呈两阶段性,即先下降后增长;(2)高中生未来职业投入的发展趋势可分为2个亚组,高投入下降组和低投入增长组;(3)一般公正世界信念可以预测高中生未来职业探索的发展速率,个人公正世界信念可以预测高中生未来职业投入的发展趋势。研究结果揭示了公正世界信念对高中生未来职业规划发展轨迹的预测作用,验证了公正世界信念理论,对高中职业规划教育具有重要启示。 展开更多
关键词 未来职业规划 潜变量增长模型 发展趋势 高中生 公正世界信念
在线阅读 下载PDF
父母直升机教养对大学生手机依赖的影响:基本心理需求的纵向中介作用 被引量:1
13
作者 凌宇 李嘉琦 +2 位作者 胡小晋 陈雨凌 李丹雨 《心理发展与教育》 北大核心 2025年第3期448-456,共9页
通过对591名大一新生进行为期1年的3次追踪研究,考察了大学生的基本心理需求和手机依赖的发展趋势,并对基本心理需求在直升机教养与手机依赖发展间的纵向作用机制进行检验。结果表明:(1)大一新生的基本心理需求呈线性下降,手机依赖呈线... 通过对591名大一新生进行为期1年的3次追踪研究,考察了大学生的基本心理需求和手机依赖的发展趋势,并对基本心理需求在直升机教养与手机依赖发展间的纵向作用机制进行检验。结果表明:(1)大一新生的基本心理需求呈线性下降,手机依赖呈线性增长;(2)父母直升机教养显著正向预测大学生手机依赖的水平;(3)直升机教养通过基本心理需求的初始水平对手机依赖的初始水平和发展速度起间接作用。结论:大一新生的基本心理需求呈线性递减的趋势,手机依赖呈线性递增的趋势;直升机教养可以直接正向预测大学生手机依赖的初始水平,并且能够通过基本心理需求的初始水平对其手机依赖的发展起间接作用。 展开更多
关键词 直升机教养 手机依赖 基本心理需求 潜变量增长模型 多重中介模型
原文传递
京津冀健康促进政策的特征与协同效应研究 被引量:1
14
作者 刘珊珊 刘春华 李祥飞 《中国卫生经济》 北大核心 2025年第8期17-22,共6页
目的:探究京津冀三地健康促进政策的特征差异以及政策目标和政策工具的协同情况。方法:借助潜在迪利克雷分布模型和文本挖掘法分析京津冀三地政策的政策特点。通过相关性分析和政策建模一致性指数模型分析京津冀2014—2023年发布的政策... 目的:探究京津冀三地健康促进政策的特征差异以及政策目标和政策工具的协同情况。方法:借助潜在迪利克雷分布模型和文本挖掘法分析京津冀三地政策的政策特点。通过相关性分析和政策建模一致性指数模型分析京津冀2014—2023年发布的政策在医护、培训、应急、质控、评估、监管、医保、医药、医疗等9个维度上的一致性情况。结果:京津冀三地在不同阶段有着差异化的政策关注热点,其中北京市比较关注医养结合和护理,天津市注重质量控制和费用管理,河北省重视医师资格考核和设备管理;京津冀三地在医保互通和应急协同方面稳步提升,但在其他维度的政策协同上缺乏连贯性。河北省表现出更加强烈的协同意愿。结论:京津冀三地内部仍缺乏政策上的长期统筹。未来应着力推进政策协同化进程,推进京津冀三地在政策实施中的协调。 展开更多
关键词 京津冀地区 健康促进政策 潜在迪利克雷分布模型 政策建模一致性指数模型
原文传递
基于潜在剖面模型探讨脑卒中行神经血管内诊疗患者失志综合征与死亡焦虑的关系
15
作者 高翔 马蓓蓓 鲍婉茹 《实用医学杂志》 北大核心 2025年第22期3609-3617,共9页
目的使用潜在剖面分析(latent profile analysis,LPA)行神经血管内诊疗的脑卒中患者失志综合征的潜在亚型,以及死亡焦虑在这些亚型中的差异。方法本研究基于横断面设计,于2024年11月至2025年3月,以方便抽样法选取医院的202例行神经血管... 目的使用潜在剖面分析(latent profile analysis,LPA)行神经血管内诊疗的脑卒中患者失志综合征的潜在亚型,以及死亡焦虑在这些亚型中的差异。方法本研究基于横断面设计,于2024年11月至2025年3月,以方便抽样法选取医院的202例行神经血管内诊疗的脑卒中患者,采用一般资料调查表、失志量表(Despair Scale,DS)及中文版死亡焦虑量表(the Chinese version of the Templer's Death Anxiety Scale,CT-DAS)进行调查。采用R软件,基于失志综合征的4个症状表现(即失去意义与目的、弥散性痛苦、应对无能与绝望、感到失败),构建2~6个剖面的潜在剖面模型系列。从第2个剖面模型开始,逐步增加剖面的数量,对比找出拟合数据最好的模型;根据潜在剖面模型分组,采用logistic回归分析影响脑卒中行神经血管内诊疗患者DS评分的因素;比较不同分组患者DS评分,并采用双变量Pearson相关性分析DS评分(失去意义及目的、弥散性痛苦、应对无能与绝望、感到失败)与CT-DAS评分(情感、压力与痛苦、时间意识、认知)的相关性。结果脑卒中患者依据DS总分可分为无意义痛苦组[51.00%(103/202)],应对无效绝望组[49.00%(99/202)];应对无效绝望组性别为女、住院时间为6~10 d、手术类型为动脉狭窄/闭塞类、文化水平为初中/高中及以上、职业为有工作、居住地为农村患者占比高于无意义痛苦组(P<0.05);二元logistic回归分析显示,相较于居住地为农村的患者,居住地为城镇(OR=0.159,P<0.001)和居住地为市区(OR=0.224,P=0.007)的患者归属于应对无效绝望组的概率更低;相较于住院时间为1~5 d的患者,住院时间为6~10 d(OR=2.311,P=0.017)的患者归属于应对无效绝望组的概率更高;相较于受教育程度小学及以下的患者,受教育程度为初中(OR=4.956,P<0.001)和高中及以上(OR=5.102,P=0.001)的患者,归属于应对无效绝望组的概率更高;相较于手术类型为脑血管造影类的患者,手术类型为动脉瘤栓塞类(OR=2.419,P=0.040)和动脉狭窄/闭塞类(OR=2.733,P=0.014)的患者,归属于应对无效绝望组的概率更高;应对无效绝望组认知维度评分低于无意义痛苦组(t=2.421,P=0.016),两组情感、压力与痛苦、时间意识维度比较差异无统计学意义(P>0.05);双变量Pearson相关结果,DS中弥散性痛苦与CT-DAS中情感、时间意识、认知呈正相关(r=0.192、0.172、0.139,P=0.006、0.015、0.049)。结论脑卒中行神经血管内诊疗患者死亡焦虑水平较高,且在不同亚型失志患者中的表现存在差异,同时居住地、住院时间、焦虑程度、手术类型是影响患者失志综合征的重要因素,临床可通过针对性干预,以降低患者失志综合征严重程度,缓解死亡焦虑。 展开更多
关键词 脑卒中 失志综合征 神经血管内诊疗 死亡焦虑 潜在剖面模型
暂未订购
围产期抑郁发展轨迹的异质性及其相关因素
16
作者 王晨 李安宁 +1 位作者 侯金芹 姜海利 《中国心理卫生杂志》 北大核心 2025年第8期720-726,共7页
目的:探索围产期抑郁的发展轨迹异质性及相关因素。方法:于2020年1月-2021年6月在北京妇产医院,对孕中期至产后3个月的孕产妇进行5次抑郁评估,使用爱丁堡产后抑郁量表筛查抑郁症状。同时在入组时收集社会人口学信息、婚姻满意度、社会... 目的:探索围产期抑郁的发展轨迹异质性及相关因素。方法:于2020年1月-2021年6月在北京妇产医院,对孕中期至产后3个月的孕产妇进行5次抑郁评估,使用爱丁堡产后抑郁量表筛查抑郁症状。同时在入组时收集社会人口学信息、婚姻满意度、社会支持度信息。使用潜类别增长模型分析抑郁发展轨迹异质性,并运用logistic回归分析其影响因素。结果:1416例孕妇完成至少3次测评,识别出2个轨迹亚组:其中1023例(72.2%)总体分数较低,抑郁轨迹以抛物线形式进行性上升,称为曲线组;另有393例(27.8%)抑郁轨迹趋于不变,总体得分高,称为直线组。较大年龄、较高婚姻满意度和社会支持度者进入直线组的风险降低(OR=0.96、0.94、0.89);自身及家族抑郁病史者进入直线组风险升高(OR=2.50、6.51)。结论:围产期抑郁症状变化趋势存在个体差异,较大年龄、较高的婚姻满意度和社会支持度降低持续性较高抑郁水平的风险,个人及家族抑郁病史可能增加其风险。 展开更多
关键词 围产期抑郁 轨迹 潜类别增长曲线模型 风险因素
暂未订购
New approaches to cognitive work analysis through latent variable modeling in mining operations 被引量:1
17
作者 S.Li Y.A.Sari M.Kumral 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2019年第4期549-556,共8页
This paper discusses the utilization of latent variable modeling related to occupational health and safety in the mining industry.Latent variable modeling,which is a statistical model that relates observable and laten... This paper discusses the utilization of latent variable modeling related to occupational health and safety in the mining industry.Latent variable modeling,which is a statistical model that relates observable and latent variables,could be used to facilitate researchers’understandings of the underlying constructs or hypothetical factors and their magnitude of effect that constitute a complex system.This enhanced understanding,in turn,can help emphasize the important factors to improve mine safety.The most commonly used techniques include the exploratory factor analysis(EFA),the confirmatory factor analysis(CFA)and the structural equation model with latent variables(SEM).A critical comparison of the three techniques regarding mine safety is provided.Possible applications of latent variable modeling in mining engineering are explored.In this scope,relevant research papers were reviewed.They suggest that the application of such methods could prove useful in mine accident and safety research.Application of latent variables analysis in cognitive work analysis was proposed to improve the understanding of human-work relationships in mining operations. 展开更多
关键词 latent variables EXPLORATORY FACTOR ANALYSIS Confirmatory FACTOR ANALYSIS Structural equation modeling OCCUPATIONAL health and SAFETY Mine SAFETY
在线阅读 下载PDF
脑卒中偏瘫患者功能锻炼依从性发展轨迹分型及影响因素分析
18
作者 肖黎丽 蒋旭萍 肖婷婷 《中国护理管理》 北大核心 2025年第5期717-723,共7页
目的:探讨脑卒中偏瘫患者康复训练期间功能锻炼依从性发展轨迹分型及影响因素。方法:便利选取2022年1月至2024年1月赣州市某三级甲等医院收治的脑卒中偏瘫患者210例,评估患者功能锻炼1周、6周、12周、20周、24周的依从性,利用潜变量增... 目的:探讨脑卒中偏瘫患者康复训练期间功能锻炼依从性发展轨迹分型及影响因素。方法:便利选取2022年1月至2024年1月赣州市某三级甲等医院收治的脑卒中偏瘫患者210例,评估患者功能锻炼1周、6周、12周、20周、24周的依从性,利用潜变量增长混合模型和无序多分类Logistic回归分析数据。结果:210例脑卒中偏瘫患者康复训练期间功能锻炼依从性可分为4个类别,低依从性平稳型56例(26.7%)、低依从性上升型42例(20.0%),中依从性下降型64例(30.5%)、中依从性上升型48例(22.8%)。年龄、脑卒中知识、神经功能障碍程度、自我效能感、心理弹性、家庭关怀度是功能锻炼依从性发展轨迹潜在类别的影响因素(均P<0.05)。结论:脑卒中偏瘫患者康复训练期间功能锻炼依从性发展轨迹变化各异。医护人员应根据不同影响因素制定相应的护理计划,以提升患者的锻炼依从性。 展开更多
关键词 脑卒中偏瘫 功能锻炼依从性 潜变量增长混合模型 影响因素
原文传递
考虑城市与群体异质的新能源车激励策略有效性研究 被引量:1
19
作者 翁剑成 周慧缘 +1 位作者 张梦媛 于江波 《交通运输系统工程与信息》 北大核心 2025年第1期2-14,共13页
制定针对城市低碳发展阶段和居民特征的差异化政策,是优化激励策略和促进居民转向绿色出行的重要途径。本文综合考虑空气质量、新能源汽车渗透率和充电设施成熟度等因素,选取4种类别典型城市的异质性居民人群,量化评估新能源车激励策略... 制定针对城市低碳发展阶段和居民特征的差异化政策,是优化激励策略和促进居民转向绿色出行的重要途径。本文综合考虑空气质量、新能源汽车渗透率和充电设施成熟度等因素,选取4种类别典型城市的异质性居民人群,量化评估新能源车激励策略的有效性;利用隐含狄利克雷分布(LDA)模型分析社交媒体热点数据,设计用户调查问卷;构建潜在类别有序Logit模型(LCOL)定量分析不同城市类别下潜在类别人群对车辆电动化激励策略的偏好程度,辨识不同策略的核心作用群体。结果表明,即时效应激励,例如,限行豁免和大额财政补贴,更能有效提升新能源车接受度较低居民的购车意愿,接受度较高的居民对常态化低额补贴更为敏感。在城市类别维度上,相较新能源车渗透率高的大城市(60%),渗透率较低的中小城市居民在政策激励下,购买新能源车概率为65%,更具提升潜力;充电设施欠缺的城市,优化充电设施可显著提升居民购车意愿,减少1 min寻电时间,概率提高1%,但在充电桩覆盖率高的城市,效果有限;机动车限号的大城市,实施新能源车限行豁免政策时,居民购车概率提高3.5%。定量化的研究结论可为不同城市新能源车推广策略的制定提供决策依据和科学度量参考。 展开更多
关键词 城市交通 低碳激励政策 潜在类别有序Logit模型 隐含狄利克雷分布模型 群体异质性 城市类别
在线阅读 下载PDF
双车道公路超车行为安全研究进展
20
作者 戢晓峰 俸才梅 +2 位作者 李武 韩春阳 覃文文 《安全与环境学报》 北大核心 2025年第1期21-40,共20页
双车道公路超车行为作为一项复杂且极为危险的驾驶行为,可能导致严重的交通事故,已成为驾驶行为研究中的热点和难点问题。聚焦双车道公路超车行为安全,运用潜在狄利克雷分配(Latent Dirichlet Allocation,LDA)模型对该领域的潜在研究主... 双车道公路超车行为作为一项复杂且极为危险的驾驶行为,可能导致严重的交通事故,已成为驾驶行为研究中的热点和难点问题。聚焦双车道公路超车行为安全,运用潜在狄利克雷分配(Latent Dirichlet Allocation,LDA)模型对该领域的潜在研究主题进行了归纳总结,梳理了超车视距评估与间隙接受决策行为建模、超车安全影响因素与碰撞风险评估、超车持续时间及交通仿真建模、超车碰撞预警系统安全分析4个主题的研究进展。结果表明:双车道公路超车行为安全研究总体上面临数据获取的难度、模型参数选择的不确定性、实际应用中的复杂性等局限性,主要体现在超车事故数据以及多车结队超车、弯道超车等非常规超车场景下的现场观测数据支撑较为薄弱;影响超车安全的道路、环境、驾驶员等因素难以被全面捕捉,增加了模型参数选择的不确定性;面对现实交通环境的复杂动态变化,超车模型的实时性、敏感性可能不足。在总结现有研究局限性的基础上,认为未来研究应从4个方面重点改进:一是完善超车视距的可靠性分析方法,拓展智能网联背景下的动态超车视距和间隙接受决策研究;二是强化多维因素对超车安全耦合影响机制的挖掘,构建超车风险的动态演化分析方法;三是深入解析异质交通流状态下超车持续时间与超车风险的关系,着力开发针对双车道公路超车的交通仿真软件;四是完善超车碰撞预警系统的微观驾驶行为和宏观交通运行影响分析,提升超车碰撞预警系统的集成应用研究。 展开更多
关键词 安全工程 双车道公路超车行为 研究进展 潜在狄利克雷分配模型 交通仿真
原文传递
上一页 1 2 76 下一页 到第
使用帮助 返回顶部