期刊文献+
共找到1,541篇文章
< 1 2 78 >
每页显示 20 50 100
Randomized Latent Factor Model for High-dimensional and Sparse Matrices from Industrial Applications 被引量:14
1
作者 Mingsheng Shang Xin Luo +3 位作者 Zhigang Liu Jia Chen Ye Yuan MengChu Zhou 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第1期131-141,共11页
Latent factor(LF)models are highly effective in extracting useful knowledge from High-Dimensional and Sparse(HiDS)matrices which are commonly seen in various industrial applications.An LF model usually adopts iterativ... Latent factor(LF)models are highly effective in extracting useful knowledge from High-Dimensional and Sparse(HiDS)matrices which are commonly seen in various industrial applications.An LF model usually adopts iterative optimizers,which may consume many iterations to achieve a local optima,resulting in considerable time cost.Hence,determining how to accelerate the training process for LF models has become a significant issue.To address this,this work proposes a randomized latent factor(RLF)model.It incorporates the principle of randomized learning techniques from neural networks into the LF analysis of HiDS matrices,thereby greatly alleviating computational burden.It also extends a standard learning process for randomized neural networks in context of LF analysis to make the resulting model represent an HiDS matrix correctly.Experimental results on three HiDS matrices from industrial applications demonstrate that compared with state-of-the-art LF models,RLF is able to achieve significantly higher computational efficiency and comparable prediction accuracy for missing data.I provides an important alternative approach to LF analysis of HiDS matrices,which is especially desired for industrial applications demanding highly efficient models. 展开更多
关键词 Big data high-dimensional and sparse matrix latent factor analysis latent factor model randomized learning
在线阅读 下载PDF
Traditional Chinese Medicine syndrome elements of male infertility revealed by latent tree model analysis 被引量:5
2
作者 Zhang Zhijie Liu Shaoming +8 位作者 Zhang Yueyang Yang Jingzhe Kong Tao Wang Chengli Ning Peng Chen Xiaochao Li Xuesong Jia Yusen Chen Xiaojun 《Journal of Traditional Chinese Medicine》 SCIE CAS CSCD 2018年第6期926-935,共10页
OBJECTIVE: To explore the features of Traditional Chinese Medicine(TCM) syndromes in male infertility using computer-based analyses.METHODS: Latent class analysis was used to analyze the TCM syndrome data from 813 pat... OBJECTIVE: To explore the features of Traditional Chinese Medicine(TCM) syndromes in male infertility using computer-based analyses.METHODS: Latent class analysis was used to analyze the TCM syndrome data from 813 patients with male infertility and establish a latent tree model.RESULTS: A latent tree model with a Bayesian information criterion score of-11 263 was created.This model revealed that the characteristics of basic TCM syndromes in patients with male infertility were kidney Yang deficiency, kidney Qi deficiency,spleen Yang deficiency, liver Qi stagnation, Qi stagnation and blood stasis, and dump-heat; moreover,most patients with male infertility had complex syndromes(spleen-kidney Yang deficiency and liver Qi stagnation) rather than simple single syndromes.CONCLUSION: The hidden tree model analysis revealed the objective and quantitative complex relationships between the TCM symptoms of male infertility, and obtained the quantification and objective evidence of TCM syndromes in male infertility. 展开更多
关键词 Infertility male SYNDROMES and SIGNS latent tree model
原文传递
Latent Variable Modeling Approach for Assessing Social Impacts of Mine Closure 被引量:1
3
作者 Mallikarjun Rao Pillalamarry Khanindra Pathak 《Open Journal of Applied Sciences》 2014年第14期573-587,共15页
Mining stimulates environmental and economic impacts on the neighboring community right from the inception to the closure of its operations. The society in the neighborhood of mining gradually adopts a characteristic ... Mining stimulates environmental and economic impacts on the neighboring community right from the inception to the closure of its operations. The society in the neighborhood of mining gradually adopts a characteristic life-style that is highly influenced by the mining. In order to sustain the societal development beyond the mine closure, it is necessary to plan post mining activities in the area. Thus, it is essential to predict the impacts of mine closure well before the closure. Many societal and family attributes are affected by mine closure. Impact on these attributes is reflected on the overall quality of life of the neighboring community. There are no adequate indicators and/or methodology available to measure social impacts of mine closure on a neighboring community. This paper made an attempt to develop such methodology to predict the degree of adverse effects of mine closure on the quality of life of neighboring communities using the Structural Equation Modeling (SEM) and the Latent Variables Interaction Model (LVM). 展开更多
关键词 MINE CLOSURE SOCIAL IMPACTS Structural Equation modelING latent Variable modelING
暂未订购
A Comparison of Statistics for Assessing Model Invariance in Latent Class Analysis 被引量:1
4
作者 Holmes Finch 《Open Journal of Statistics》 2015年第3期191-210,共20页
Latent class analysis (LCA) is a widely used statistical technique for identifying subgroups in the population based upon multiple indicator variables. It has a number of advantages over other unsupervised grouping pr... Latent class analysis (LCA) is a widely used statistical technique for identifying subgroups in the population based upon multiple indicator variables. It has a number of advantages over other unsupervised grouping procedures such as cluster analysis, including stronger theoretical underpinnings, more clearly defined measures of model fit, and the ability to conduct confirmatory analyses. In addition, it is possible to ascertain whether an LCA solution is equally applicable to multiple known groups, using invariance assessment techniques. This study compared the effectiveness of multiple statistics for detecting group LCA invariance, including a chi-square difference test, a bootstrap likelihood ratio test, and several information indices. Results of the simulation study found that the bootstrap likelihood ratio test was the optimal invariance assessment statistic. In addition to the simulation, LCA group invariance assessment was demonstrated in an application with the Youth Risk Behavior Survey (YRBS). Implications of the simulation results for practice are discussed. 展开更多
关键词 latent Class ANALYSIS model INVARIANCE Information Indices
暂未订购
Evaluation of CMIP5 Climate Models in Simulating 1979–2005 Oceanic Latent Heat Flux over the Pacific 被引量:1
5
作者 CAO Ning REN Baohua ZHENG Jianqiu 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第12期1603-1616,共14页
The climatological mean state, seasonal variation and long-term upward trend of 1979-2005 latent heat flux (LHF) in historical runs of 14 coupled general circulation models from CMIP5 (Coupled Model Intercomparison... The climatological mean state, seasonal variation and long-term upward trend of 1979-2005 latent heat flux (LHF) in historical runs of 14 coupled general circulation models from CMIP5 (Coupled Model Intercomparison Project Phase 5) are evaluated against OAFlux (Objectively Analyzed air-sea Fluxes) data. Inter-model diversity of these models in simulating the annual mean climatological LHF is discussed. Results show that the models can capture the climatological LHF fairly well, but the amplitudes are generally overestimated. Model-simulated seasonal variations of LHF match well with observations with overestimated amplitudes. The possible origins of these biases are wind speed biases in the CMIP5 models. Inter-model diversity analysis shows that the overall stronger or weaker LHF over the tropical and subtropical Pacific region, and the meridional variability of LHF, are the two most notable diversities of the CMIP5 models. Regression analysis indicates that the inter-model diversity may come from the diversity of simulated SST and near-surface atmospheric specific humidity. Comparing the observed long-term upward trend, the trends of LHF and wind speed are largely underestimated, while trends of SST and air specific humidity are grossly overestimated, which may be the origins of the model biases in reproducing the trend of LHF. 展开更多
关键词 model evaluation CLIMATOLOGY TREND latent heat flux CMIP5
在线阅读 下载PDF
Latent Growth Mixture Modeling to Estimate Differential PTSD Trajectories and Associated Risk Factors in Psychiatric Staff Following Workplace Violence
6
作者 Ask Elklit Sara Al Ali Jesper Pihl-Thingvad 《Open Journal of Epidemiology》 2023年第4期360-371,共12页
Background: Workplace violence (WV) towards psychiatric staff has commonly been associated with Posttraumatic Stress Disorder (PTSD). However, prospective studies have shown that not all psychiatric staff who experien... Background: Workplace violence (WV) towards psychiatric staff has commonly been associated with Posttraumatic Stress Disorder (PTSD). However, prospective studies have shown that not all psychiatric staff who experience workplace violence experience post-traumatic stress. Purpose: We want to examine the longitudinal trajectories of PTSD in this population to identify possible subgroups that might be more at risk. Furthermore, we need to investigate whether certain risk factors of PTSD might identify membership in the subgroups. Method: In a sample of psychiatric staff from 18 psychiatric wards in Denmark who had reported an incident of WV, we used Latent Growth Mixture Modelling (LGMM) and further logistic regression analysis to investigate this. Results: We found three separate PTSD trajectories: a recovering, a delayed-onset, and a moderate-stable trajectory. Higher social support and negative cognitive appraisals about oneself, the world and self-blame predicted membership in the delayed-onset trajectory, while higher social support and lower accept coping predicted membership in the delayed-onset trajectory. Conclusion: Although most psychiatric staff go through a natural recovery, it is important to be aware of and identify staff members who might be struggling long-term. More focus on the factors that might predict these groups should be an important task for psychiatric departments to prevent posttraumatic symptomatology from work. 展开更多
关键词 latent Growth Mixture modeling PTSD Trajectories Psychiatric Staff Work-place Violence
暂未订购
Quasi-Monte Carlo Approximations for Exponentiated Quadratic Kernel in Latent Force Models
7
作者 Qianli Di 《Open Journal of Modelling and Simulation》 2022年第4期349-390,共42页
In this project, we consider obtaining Fourier features via more efficient sampling schemes to approximate the kernel in LFMs. A latent force model (LFM) is a Gaussian process whose covariance functions follow an Expo... In this project, we consider obtaining Fourier features via more efficient sampling schemes to approximate the kernel in LFMs. A latent force model (LFM) is a Gaussian process whose covariance functions follow an Exponentiated Quadratic (EQ) form, and the solutions for the cross-covariance are expensive due to the computational complexity. To reduce the complexity of mathematical expressions, random Fourier features (RFF) are applied to approximate the EQ kernel. Usually, the random Fourier features are implemented with Monte Carlo sampling, but this project proposes replacing the Monte-Carlo method with the Quasi-Monte Carlo (QMC) method. The first-order and second-order models’ experiment results demonstrate the decrease in NLPD and NMSE, which revealed that the models with QMC approximation have better performance. 展开更多
关键词 latent Force model COVID-19 Quasi-Monte Carlo Approximations
在线阅读 下载PDF
Temporally Preserving Latent Variable Models:Offline and Online Training for Reconstruction and Interpretation of Fault Data for Gearbox Condition Monitoring
8
作者 Ryan Balshaw P.Stephan Heyns +1 位作者 Daniel N.Wilke Stephan Schmidt 《Journal of Dynamics, Monitoring and Diagnostics》 2024年第2期156-177,共22页
Latent variable models can effectively determine the condition of essential rotating machinery without needing labeled data.These models analyze vibration data via an unsupervised learning strategy.Temporal preservati... Latent variable models can effectively determine the condition of essential rotating machinery without needing labeled data.These models analyze vibration data via an unsupervised learning strategy.Temporal preservation is necessary to obtain an informative latent manifold for the fault diagnosis task.In a temporalpreserving context,two approaches exist to develop a condition-monitoring methodology:offline and online.For latent variable models,the available training modes are not different.While many traditional methods use offline training,online training can dynamically adjust the latent manifold,possibly leading to better fault signature extraction from the vibration data.This study explores online training using temporal-preserving latent variable models.Within online training,there are two main methods:one focuses on reconstructing data and the other on interpreting the data components.Both are considered to evaluate how they diagnose faults over time.Using two experimental datasets,the study confirms that models from both training modes can detect changes in machinery health and identify faults even under varying conditions.Importantly,the complementarity of offline and online models is emphasized,reassuring their versatility in fault diagnostics.Understanding the implications of the training approach and the available model formulations is crucial for further research in latent variable modelbased fault diagnostics. 展开更多
关键词 Condition monitoring unsupervised learning latent variable models temporal preservation training approaches
在线阅读 下载PDF
Accounting for Heterogeneity in Stop Frequency Models of Work Tours Using Latent Class Poisson Models
9
作者 Babak Mirzazadeh 《Journal of Transportation Technologies》 2023年第2期243-261,共19页
Stop frequency models, as one of the elements of activity based models, represent an important part of travel behavior. Unobserved heterogeneity across the travelers should be taken into consideration to prevent biase... Stop frequency models, as one of the elements of activity based models, represent an important part of travel behavior. Unobserved heterogeneity across the travelers should be taken into consideration to prevent biasedness and inconsistency in the estimated parameters in the stop frequency models. Additionally, previous studies on the stop frequency have mostly been done in larger metropolitan areas and less attention has been paid to the areas with less population. This study addresses these gaps by using 2012 travel data from a medium sized U.S. urban area using the work tour for the case study. Stop in the work tour were classified into three groups of outbound leg, work based subtour, and inbound leg of the commutes. Latent Class Poisson Regression Models were used to analyze the data. The results indicate the presence of heterogeneity across the commuters. Using latent class models significantly improves the predictive power of the models compared to regular one class Poisson regression models. In contrast to one class Poisson models, gender becomes insignificant in predicting the number of tours when unobserved heterogeneity is accounted for. The commuters are associated with increased stops on their work based subtour when the employment density of service-related occupations increases in their work zone, but employment density of retail employment does not significantly contribute to the stop making likelihood of the commuters. Additionally, an increase in the number of work tours was associated with fewer stops on the inbound leg of the commute. The results of this study suggest the consideration of unobserved heterogeneity in the stop frequency models and help transportation agencies and policy makers make better inferences from such models. 展开更多
关键词 Activity Based model Work Tour Stop Frequency latent Class Poisson Regression model
在线阅读 下载PDF
Modelling of Active and Latent Attributes Based on Traveler Perspectives: Case of Port City of Douala
10
作者 Anastasia Ojong Maayuk-Okpok Yin Ming 《World Journal of Engineering and Technology》 2023年第1期164-198,共35页
A growing stream of study stresses the relevance of subjective elements in understanding the hierarchy of preferences that underpin individual travel behavior. The purpose of this study is to evaluate the impact of va... A growing stream of study stresses the relevance of subjective elements in understanding the hierarchy of preferences that underpin individual travel behavior. The purpose of this study is to evaluate the impact of various factors on mode choice. To achieve this, a multinomial logit model (MNL) was used to analyze the relationships between mode choice and three classes of attributes;Combined Active and Latent, Active only and Latent only attributes. The data used are derived from surveys in the port city of Douala, Cameroon as a case study. Results stipulated that, the combined attributes model performed better than both active only attributes and latent only attributes models. Likewise, latent only attributes model performed better than active only attributes model. The advantage of modelling all three groups is for better selection of the most relevant attributes, and this is very relevant in understanding travel behavior of individuals and mode choice decisions. 展开更多
关键词 Multinomial logit model latent Attributes Mode Choice Individual Behavior Active Attributes
在线阅读 下载PDF
New approaches to cognitive work analysis through latent variable modeling in mining operations 被引量:1
11
作者 S.Li Y.A.Sari M.Kumral 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2019年第4期549-556,共8页
This paper discusses the utilization of latent variable modeling related to occupational health and safety in the mining industry.Latent variable modeling,which is a statistical model that relates observable and laten... This paper discusses the utilization of latent variable modeling related to occupational health and safety in the mining industry.Latent variable modeling,which is a statistical model that relates observable and latent variables,could be used to facilitate researchers’understandings of the underlying constructs or hypothetical factors and their magnitude of effect that constitute a complex system.This enhanced understanding,in turn,can help emphasize the important factors to improve mine safety.The most commonly used techniques include the exploratory factor analysis(EFA),the confirmatory factor analysis(CFA)and the structural equation model with latent variables(SEM).A critical comparison of the three techniques regarding mine safety is provided.Possible applications of latent variable modeling in mining engineering are explored.In this scope,relevant research papers were reviewed.They suggest that the application of such methods could prove useful in mine accident and safety research.Application of latent variables analysis in cognitive work analysis was proposed to improve the understanding of human-work relationships in mining operations. 展开更多
关键词 latent variables EXPLORATORY FACTOR ANALYSIS Confirmatory FACTOR ANALYSIS Structural equation modeling OCCUPATIONAL health and SAFETY Mine SAFETY
在线阅读 下载PDF
被欺凌和情绪调节自我效能与青少年自杀风险关系的纵向研究
12
作者 王中杰 陆开圆 +1 位作者 王学振 樊倩倩 《中国心理卫生杂志》 北大核心 2026年第1期45-51,共7页
目的:探索青少年被欺凌对自杀风险的纵向关系以及情绪调节自我效能感在其中的作用。方法:选取1454名七、八年级学生,采用自杀行为问卷、特拉华欺负受害量表和情绪调节自我效能感量表,开展历时1年的3次(每次间隔6个月)追踪测量,通过潜变... 目的:探索青少年被欺凌对自杀风险的纵向关系以及情绪调节自我效能感在其中的作用。方法:选取1454名七、八年级学生,采用自杀行为问卷、特拉华欺负受害量表和情绪调节自我效能感量表,开展历时1年的3次(每次间隔6个月)追踪测量,通过潜变量增长模型和纵向中介模型,考察青少年被欺凌、情绪调节自我效能感、自杀风险的变化趋势,及变量间的纵向影响关系。结果:青少年被欺凌、自杀风险均随时间发展呈下降趋势,情绪调节自我效能感呈上升趋势。被欺凌的下降趋势直接正向预测自杀风险的下降趋势(β=0.34,95%CI:0.05~0.61),还可通过情绪调节自我效能感的上升趋势发挥间接影响(β=0.16,95%CI:0.03~0.19)。情绪调节自我效能感在被欺凌与自杀风险间发挥纵向中介作用(β=0.17,95%CI:0.06~0.09)。结论:减少校园欺凌和提升青少年情绪调节的信心,将有助于降低青少年的自杀风险。 展开更多
关键词 青少年 被欺凌 自杀风险 情绪调节自我效能感 潜变量增长模型
在线阅读 下载PDF
大学新生数字媒介使用与健康促进行为的关系:基于平行潜变量增长模型
13
作者 黄文英 袁宇晴 +3 位作者 胡昶 张文 陈鑫意 宋超 《教育生物学杂志》 2026年第1期17-22,28,共7页
目的 探讨大学新生数字媒介使用与健康促进行为的关系。方法 以电子媒介健康素养量表和健康促进行为量表为测量工具,对515名大学新生开展4次纵向追踪调查。运用Mplus 8.3软件分析数字媒介使用和健康促进行为的动态变化趋势,并通过平行... 目的 探讨大学新生数字媒介使用与健康促进行为的关系。方法 以电子媒介健康素养量表和健康促进行为量表为测量工具,对515名大学新生开展4次纵向追踪调查。运用Mplus 8.3软件分析数字媒介使用和健康促进行为的动态变化趋势,并通过平行潜变量增长模型及交叉滞后模型,探究二者可能存在的因果关系。结果 大学新生数字媒介使用与健康促进行为均呈显著上升趋势(斜率值分别为0.06、0.03,均P<0.001)。数字媒介使用的初始水平正向预测健康促进行为的初始水平(β=0.17,P<0.001)及其增长速率(β=0.11,P<0.001),健康促进行为的初始水平负向预测数字媒介使用的增长速率(β=-0.12,P<0.001),数字媒介使用的增长速率对健康促进行为的变化速率具有显著正向预测作用(β=0.02,P<0.001)。前测数字媒介使用或健康促进行为均能显著预测后测健康促进行为或数字媒介使用,二者存在双向预测关系。结论 该研究明确了大学新生数字媒介使用与健康促进行为的发展轨迹及因果关联,为高校精准设计“媒介赋能”型健康干预方案提供了实证依据。 展开更多
关键词 数字媒介使用 健康促进行为 大学新生 平行潜变量增长模型 交叉滞后模型
暂未订购
我国老年人健康关注度变化轨迹及影响因素
14
作者 苏晨之 苑秋辰 姚秀钰 《护理研究》 北大核心 2026年第2期227-235,共9页
目的:探究我国老年人健康关注度变化轨迹,分析其影响因素。方法:基于中国健康与养老追踪调查(CHARLS)2013年、2015年、2018年和2020年数据,采用潜变量增长混合模型(LGMM)对老年人健康关注度变化轨迹进行分类。采用多分类Logistic回归模... 目的:探究我国老年人健康关注度变化轨迹,分析其影响因素。方法:基于中国健康与养老追踪调查(CHARLS)2013年、2015年、2018年和2020年数据,采用潜变量增长混合模型(LGMM)对老年人健康关注度变化轨迹进行分类。采用多分类Logistic回归模型分析其变化轨迹影响因素。结果:我国老年人健康关注度变化轨迹可分为上升波动组(567人,占32.5%)、稳定居中组(741人,占42.5%)和下降波动组(436人,占25.0%)。回归分析显示,年龄、性别、慢性病种数、社会医疗保险、是否退休和社交活动频率是老年人健康关注度变化轨迹分类的影响因素(均P<0.05)。结论:我国老年人健康关注度具有群体异质性,未来应关注不同轨迹的变化趋势,根据其影响因素制定长效干预措施,为有效促进老年人主动健康提供依据。 展开更多
关键词 老年人 健康关注度 变化轨迹 影响因素 潜类别增长混合模型
暂未订购
一种新的目标检测方法:Latent Dirichlet classification 被引量:3
15
作者 丁轶 郭乔进 李宁 《南京大学学报(自然科学版)》 CSCD 北大核心 2012年第2期214-220,共7页
图像目标检测的任务是通过对图像分块或者分区域提取特征,进行学习和分类,从而检测出目标在图像中的位置.基于潜在迪利克雷分布模型,提出一种应用于目标检测的主题模型latentDirichlet classification(LDC),结合图像连续值局部特征和共... 图像目标检测的任务是通过对图像分块或者分区域提取特征,进行学习和分类,从而检测出目标在图像中的位置.基于潜在迪利克雷分布模型,提出一种应用于目标检测的主题模型latentDirichlet classification(LDC),结合图像连续值局部特征和共生关系来进行目标检测.LDC模型将latentDirichlet allocation(LDA)生成的主题信息作为权重赋予样本,生成多份样本,然后利用多份样本训练多个分类器进行集成分类.实验结果表明利用LDC模型能有效提高检测精度. 展开更多
关键词 潜在迪利克雷分布 目标检测 变分推理 主题模型
在线阅读 下载PDF
基于潜变量增长模型探究精神分裂症患者药物治疗后PANSS评分的发展轨迹及其影响因素
16
作者 刘水平 胡鑫鑫 《首都食品与医药》 2026年第3期63-65,共3页
目的基于潜变量增长模型探究精神分裂症患者药物治疗后PANSS评分轨迹及影响因素。方法选取2023年12月-2024年12月在新余北湖医院精神科接受药物治疗的200例精神分裂症患者,治疗后每月1次PANSS评分(共5次,T1-T5),用潜变量增长模型识别轨... 目的基于潜变量增长模型探究精神分裂症患者药物治疗后PANSS评分轨迹及影响因素。方法选取2023年12月-2024年12月在新余北湖医院精神科接受药物治疗的200例精神分裂症患者,治疗后每月1次PANSS评分(共5次,T1-T5),用潜变量增长模型识别轨迹,Logistic回归分析影响因素。结果识别3类轨迹:平稳趋势组(n=89)、下降趋势组(n=56)、上升趋势组(n=55)。单因素分析显示年龄、病程等8项有统计学差异,Logistic回归显示病程、服药依从性、社会支持水平、家庭功能及自我效能感5项为独立影响因素。结论精神分裂症患者药物治疗后PANSS评分呈3类轨迹,上述5项为独立影响因素,临床可据此制定针对性干预以改善症状。 展开更多
关键词 精神分裂症 PANSS评分 发展轨迹 影响因素 潜变量增长模型
暂未订购
生成式AI对传统搜索引擎使用的影响研究
17
作者 尚玉良 杜誉丹 +1 位作者 孙源 贾伟 《黑龙江科学》 2026年第1期139-141,共3页
基于“技术-用户-内容-环境”框架,采用贝叶斯结构方程模型(BSEM)与潜在类别分析(LCA)混合方法揭示生成式AI对传统搜索引擎的替代机制,突破现有研究应用单一理论的局限。通过885份分层抽样问卷与动态追踪数据发现,技术特性是核心驱动力... 基于“技术-用户-内容-环境”框架,采用贝叶斯结构方程模型(BSEM)与潜在类别分析(LCA)混合方法揭示生成式AI对传统搜索引擎的替代机制,突破现有研究应用单一理论的局限。通过885份分层抽样问卷与动态追踪数据发现,技术特性是核心驱动力,其中内容准确性与多模态交互显著提升采纳意愿,用户信任和内容质量构成关键中介路径,但建议的实用性亟待优化。环境因素虽未产生直接效应,但83%的用户证实生成式AI已形成显著习惯迁移,合规性与市场竞争共同推动技术迭代。 展开更多
关键词 生成式AI 传统搜索引擎 结构方程模型 潜在类别分析
在线阅读 下载PDF
基于潜类别增长模型孤独症患儿社会适应能力发展轨迹及影响因素
18
作者 单丽 聂瑶 +1 位作者 罗意 邢珩 《中国实用神经疾病杂志》 2026年第1期48-52,共5页
目的基于潜类别增长模型(LCGM)分析孤独症(ASD)患儿社会适应能力发展轨迹,探究其影响因素。方法选取2018-01—2021-09在湖北民族大学附属民大医院诊治的184例3~6岁ASD患儿为研究对象,分别于入院时、1 a后、2 a后、3 a后收集患儿一般情... 目的基于潜类别增长模型(LCGM)分析孤独症(ASD)患儿社会适应能力发展轨迹,探究其影响因素。方法选取2018-01—2021-09在湖北民族大学附属民大医院诊治的184例3~6岁ASD患儿为研究对象,分别于入院时、1 a后、2 a后、3 a后收集患儿一般情况和临床资料,并进行儿童社交反应量表(SRS-2)评估。使用LCGM对患儿社会适应能力发展轨迹进行刻画,采用单因素和多因素Logistic回归分析ASD患儿社会适应能力的影响因素。结果184例ASD患儿中152例完成随访,入院时、1 a后、2 a后、3 a后的SRS-2评分分别为(85.37±4.62)分、(82.23±3.93)分、(79.04±2.32)分、(75.33±3.23)分,总体呈下降趋势,单因素方差分析显示4个时间点SRS-2值存在统计学差异(F=214.092,P<0.001)。通过LCGM识别出3条不同特点的ASD患儿社会适应能力发展轨迹,分别命名低SRS值-2-稳定进展组(34.21%)、中SRS值-2-缓慢进展组(49.34%)、高SRS值-2-停滞组(16.45%)。单因素分析显示,3组在独生子女、社会支持评定量表(SSRS)评分、孤独症评定量表(CARS)评分、孤独症行为量表(ABC)评分、监护人文化水平、收入水平方面比较差异均有统计学意义(P<0.05)。多因素Logistic回归分析显示,以高SRS值-2-停滞组为参考类,低SRS值-2-稳定进展组和中SRS值-2-缓慢进展组的主要影响因素均有独生子女、监护人文化水平、家庭年收入、SSRS评分(P<0.05)。结论ASD患儿社会适应能力具有不同发展轨迹,且患儿是否为独生子女、监护人文化水平、家庭年收入、SSRS评分是影响ASD患儿社会适应能力发展轨迹的主要因素。 展开更多
关键词 孤独症 潜类别增长模型 社会适应能力 发展轨迹 影响因素
暂未订购
新发艾滋病病人应激反应变化轨迹及影响因素
19
作者 黄文婷 何华梅 +3 位作者 莫小云 覃晓婕 黄爱丽 王芳 《护理研究》 北大核心 2026年第3期377-382,共6页
目的:探讨新发艾滋病病人应激反应的纵向变化轨迹并分析其影响因素。方法:采用便利抽样法,选取广西壮族自治区某三级甲等医院116例新发艾滋病病人为研究对象,采用一般资料调查表、斯坦福急性应激反应量表对其进行调查,通过潜变量增长混... 目的:探讨新发艾滋病病人应激反应的纵向变化轨迹并分析其影响因素。方法:采用便利抽样法,选取广西壮族自治区某三级甲等医院116例新发艾滋病病人为研究对象,采用一般资料调查表、斯坦福急性应激反应量表对其进行调查,通过潜变量增长混合模型识别其应激反应变化轨迹,采用二元Logistic回归分析其影响因素。结果:新发艾滋病病人的应激反应变化轨迹可分为整体低应激缓慢下降组(27.6%)和整体高应激快速下降组(72.4%)。Logistic回归分析结果显示,医疗费用支付方式、宗教信仰和心理弹性为新发艾滋病病人应激反应变化潜在类别的影响因素(P<0.05)。结论:新发艾滋病病人应激反应变化轨迹存在群体异质性,应基于病人应激反应变化进行个性化评估和干预。 展开更多
关键词 艾滋病 人类免疫缺陷病毒 应激反应 变化轨迹 影响因素 潜在类别分析 增长混合模型
暂未订购
Robust Latent Factor Analysis for Precise Representation of High-Dimensional and Sparse Data 被引量:5
20
作者 Di Wu Xin Luo 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第4期796-805,共10页
High-dimensional and sparse(HiDS)matrices commonly arise in various industrial applications,e.g.,recommender systems(RSs),social networks,and wireless sensor networks.Since they contain rich information,how to accurat... High-dimensional and sparse(HiDS)matrices commonly arise in various industrial applications,e.g.,recommender systems(RSs),social networks,and wireless sensor networks.Since they contain rich information,how to accurately represent them is of great significance.A latent factor(LF)model is one of the most popular and successful ways to address this issue.Current LF models mostly adopt L2-norm-oriented Loss to represent an HiDS matrix,i.e.,they sum the errors between observed data and predicted ones with L2-norm.Yet L2-norm is sensitive to outlier data.Unfortunately,outlier data usually exist in such matrices.For example,an HiDS matrix from RSs commonly contains many outlier ratings due to some heedless/malicious users.To address this issue,this work proposes a smooth L1-norm-oriented latent factor(SL-LF)model.Its main idea is to adopt smooth L1-norm rather than L2-norm to form its Loss,making it have both strong robustness and high accuracy in predicting the missing data of an HiDS matrix.Experimental results on eight HiDS matrices generated by industrial applications verify that the proposed SL-LF model not only is robust to the outlier data but also has significantly higher prediction accuracy than state-of-the-art models when they are used to predict the missing data of HiDS matrices. 展开更多
关键词 High-dimensional and sparse matrix L1-norm L2 norm latent factor model recommender system smooth L1-norm
在线阅读 下载PDF
上一页 1 2 78 下一页 到第
使用帮助 返回顶部