As surgical procedures transition from conventional resection to advanced tissue-regeneration technologies,human disease therapy has witnessed a great leap forward.In particular,three-dimensional(3D)bioprinting stands...As surgical procedures transition from conventional resection to advanced tissue-regeneration technologies,human disease therapy has witnessed a great leap forward.In particular,three-dimensional(3D)bioprinting stands as a landmark in this setting,by promising the precise integration of biomaterials,cells,and bioactive molecules,thus opening up a novel avenue for tissue/organ regeneration.Curated by the editorial board of Bio-Design and Manufacturing,this review brings together a cohort of leading young scientists in China to dissect the core functionalities and evolutionary trajectory of 3D bioprinting,by elucidating the intricate challenges encountered in the manufacturing of transplantable organs.We further delve into the translational pathway from scientific research to clinical application,emphasizing the imperativeness of establishing a regulatory framework and rigorously enforcing quality-control measures.Finally,this review outlines the strategic landscape and innovative achievements of China in this field and provides a comprehensive roadmap for researchers worldwide to propel this field collectively to even greater heights.展开更多
Silicone rubber(SR)is a versatile material widely used across various advanced functional applications,such as soft actuators and robots,flexible electronics,and medical devices.However,most SR molding methods rely on...Silicone rubber(SR)is a versatile material widely used across various advanced functional applications,such as soft actuators and robots,flexible electronics,and medical devices.However,most SR molding methods rely on traditional thermal processing or direct ink writing three-dimensional(3D)printing.These methods are not conducive to manufacturing complex structures and present challenges such as time inefficiency,poor accuracy,and the necessity of multiple steps,significantly limiting SR applications.In this study,we developed an SR-based ink suitable for vat photopolymerization 3D printing using a multi-thiol monomer.This ink enables the one-step fabrication of complex architectures with high printing resolution at the micrometer scale,providing excellent mechanical strength and superior chemical stability.Specifically,the optimized 3D printing SR-20 exhibits a tensile stress of 1.96 MPa,an elongation at break of 487.9%,and an elastic modulus of 225.4 kPa.Additionally,the 3D-printed SR samples can withstand various solvents(acetone,toluene,and tetrahydrofuran)and endure temperatures ranging from-50℃ to 180℃,demonstrating superior stability.As a emonstration of the application,we successfully fabricated a series of SR-based soft pneumatic actuators and grippers in a single step with this technology,allowing for free assembly for the first time.This ultraviolet-curable SR,with high printing resolution and exceptional stability performance,has significant potential to enhance the capabilities of 3D printing for applications in soft actuators,robotics,flexible electronics,and medical devices.展开更多
Super-fine electrohydrodynamic inkjet(SIJ)printing of perovskite nanocrystal(PNC)colloid ink exhibits significant potential in the fabrication of high-resolution color conversion microstructures arrays for fullcolor m...Super-fine electrohydrodynamic inkjet(SIJ)printing of perovskite nanocrystal(PNC)colloid ink exhibits significant potential in the fabrication of high-resolution color conversion microstructures arrays for fullcolor micro-LED displays.However,the impact of solvent on both the printing process and the morphology of SIJ-printed PNC color conversion microstructures remains underexplored.In this study,we prepared samples of CsPbBr3PNC colloid inks in various solvents and investigated the solvent's impact on SIJ printed PNC microstructures.Our findings reveal that the boiling point of the solvent is crucial to the SIJ printing process of PNC colloid inks.Only does the boiling point of the solvent fall in the optimal range,the regular positioned,micron-scaled,conical PNC microstructures can be successfully printed.Below this optimal range,the ink is unable to be ejected from the nozzle;while above this range,irregular positioned microstructures with nanoscale height and coffee-ring-like morphology are produced.Based on these observations,high-resolution color conversion PNC microstructures were effectively prepared using SIJ printing of PNC colloid ink dispersed in dimethylbenzene solvent.展开更多
Ceramic matrix composites(CMCs)structural components encounter the dual challenges of severe mechanical conditions and complex electromagnetic environments due to the increasing demand for stealth technology in aerosp...Ceramic matrix composites(CMCs)structural components encounter the dual challenges of severe mechanical conditions and complex electromagnetic environments due to the increasing demand for stealth technology in aerospace field.To address various functional requirements,this study integrates a biomimetic strategy inspired by gradient bamboo vascular bundles with a novel dual-material 3D printing approach.Three distinct bamboo-inspired structural configurations Cf/SiC composites are designed and manufactured,and the effects of these different structural configurations on the CVI process are analyzed.Nanoindentation method is utilized to characterize the relationship between interface bonding strength and mechanical properties.The results reveal that the maximum flexural strength and fracture toughness reach 108.6±5.2 MPa and 16.45±1.52 MPa m1/2,respectively,attributed to the enhanced crack propagation resistance and path caused by the weak fiber-matrix interface.Furthermore,the bio-inspired configuration enhances the dielectric loss and conductivity loss,exhibiting a minimum reflection loss of−24.3 dB with the effective absorption band of 3.89 GHz.This work introduces an innovative biomimetic strategy and 3D printing method for continuous fiber-reinforced ceramic composites,expanding the application of 3D printing technology in the field of CMCs.展开更多
Dermal substitutes have provided a template for the regeneration and reconstruction of the dermis.However,the healed skin tissue often exhibits abnormal morphology and functionality,including scarring and inflammation...Dermal substitutes have provided a template for the regeneration and reconstruction of the dermis.However,the healed skin tissue often exhibits abnormal morphology and functionality,including scarring and inflammation.In this study,a composite bioink composed of methacrylated gelatin(GelMA)and chitosan oligosaccharide(COS)was proposed for printing a dermal scaffold using digital light processing(DLP)technology.The GelMA/COS bioink exhibited suitable porosity,swelling,degradation rate,and mechanical properties.The inclusion of COS demonstrated antibacterial effects against both Gram positive and Gram-negative bacteria,while simultaneously fostering the proliferation of human dermal fibroblasts(HDFs).Additionally,the application of COS could effectively reduce the expression levels of fibrosis-related genes,such as collagen I,collagen III,and fibronectin I.The three-dimensionally printed cell-laden dermal scaffold exhibited excellent shape fidelity and high cellular viability,facilitating the extension of HDFs along the scaffold and the simultaneous secretion of extracellular matrix proteins.Furthermore,the HDF-laden dermal scaffold transplanted into full-thickness skin defect sites in nude mice was shown to accelerate wound closure,reduce inflammation,and improve wound healing.Overall,the DLP-printed dermal scaffold provides an appealing approach for effectively treating full-thickness skin defects in clinical settings.展开更多
Microscale metallic structures enhanced by additive manufacturing technology have attracted extensive attention especially in microelectronics and electromechanical devices.Meniscus-confined electrodeposition(MCED)adv...Microscale metallic structures enhanced by additive manufacturing technology have attracted extensive attention especially in microelectronics and electromechanical devices.Meniscus-confined electrodeposition(MCED)advances microscale 3D metal printing,enabling simpler fabrication of superior metallic microstructures in air without complex equipment or post-processing.However,accurately predicting growth rates with current MCED techniques remain challenging,which is essential for precise structure fabrication and preventing nozzle clogging.In this work,we present a novel approach to electrochemical 3D printing that utilizes a self-adjusting,voxelated method for fabricating metallic microstructures.Diverging from conventional voxelated printing which focuses on monitoring voxel thickness for structure control,this technique adopts a holistic strategy.It ensures each voxel’s position is in alignment with the final structure by synchronizing the micropipette’s trajectory during deposition with the intended design,thus facilitating self-regulation of voxel position and reducing errors associated with environmental fluctuations in deposition parameters.The method’s ability to print micropillars with various tilt angles,high density,and helical arrays demonstrates its refined control over the deposition process.Transmission electron microscopy analysis reveals that the deposited structures,which are fabricated through layer-by-layer(voxel)printing,contain nanotwins that are widely known to enhance the material’s mechanical and electrical properties.Correspondingly,in situ scanning electron microscopy(SEM)microcompression tests confirm this enhancement,showing these structures exhibit a compressive yield strength exceeding 1 GPa.The indentation tests provided an average hardness of 3.71 GPa,which is the highest value reported in previous work using MCED.The resistivity measured by the four-point probe method was(1.95±0.01)×10^(−7)Ω·m,nearly 11 times that of bulk copper.These findings demonstrate the considerable advantage of this technique in fabricating complex metallic microstructures with enhanced mechanical properties,making it suitable for advanced applications in microsensors,microelectronics,and micro-electromechanical systems.展开更多
Ensuring the consistent mechanical performance of three-dimensional(3D)-printed continuous fiber-reinforced composites is a significant challenge in additive manufacturing.The current reliance on manual monitoring exa...Ensuring the consistent mechanical performance of three-dimensional(3D)-printed continuous fiber-reinforced composites is a significant challenge in additive manufacturing.The current reliance on manual monitoring exacerbates this challenge by rendering the process vulnerable to environmental changes and unexpected factors,resulting in defects and inconsistent product quality,particularly in unmanned long-term operations or printing in extreme environments.To address these issues,we developed a process monitoring and closed-loop feedback control strategy for the 3D printing process.Real-time printing image data were captured and analyzed using a well-trained neural network model,and a real-time control module-enabled closed-loop feedback control of the flow rate was developed.The neural network model,which was based on image processing and artificial intelligence,enabled the recognition of flow rate values with an accuracy of 94.70%.The experimental results showed significant improvements in both the surface performance and mechanical properties of printed composites,with three to six times improvement in tensile strength and elastic modulus,demonstrating the effectiveness of the strategy.This study provides a generalized process monitoring and feedback control method for the 3D printing of continuous fiber-reinforced composites,and offers a potential solution for remote online monitoring and closed-loop adjustment in unmanned or extreme space environments.展开更多
Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and hi...Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries.展开更多
In order to study the preferred skin color for printing images,two CMYK images from ISO 400 and one from iStock,including five skin color images of East Asian females was selected in this study.The images were adjuste...In order to study the preferred skin color for printing images,two CMYK images from ISO 400 and one from iStock,including five skin color images of East Asian females was selected in this study.The images were adjusted with the CMYK printing ink volume variation of the single,double and triple channels in the given 280%total ink limit conditions.A larger number of color vision normal observers were organized to carry out the color preference evaluation experiment,and the selected preferred skin colors were analyzed.The distribution range of the chromaticity values for skin color images were obtained and the results indicated that there are three regions for printing skin color preferences,and the observers have a memory preference for brighter,fairer skin colors in young female and a reddish skin colors in girl,which can provide the guidance for color adjustment of printed skin color images.展开更多
Up-conversion(UC)luminescent materials doped with Ln^(3+)ions possess excellent optical properties and extensive applications in the formulation of multifunctional fluorescence ink.Printing technology offers various m...Up-conversion(UC)luminescent materials doped with Ln^(3+)ions possess excellent optical properties and extensive applications in the formulation of multifunctional fluorescence ink.Printing technology offers various methods for the preparation of UC fluorescent inks.This study introduced the optical properties of luminescent materials doped with Ln^(3+)ions,including luminescence characteristics and spectral characteristics,which provide a basis for the subsequent printing process.We also reviewed different printing techniques,including direct writing,screen printing,laser printing,inkjet printing,and aerosol jet printing(AJP),developed so far in the literature and explored the printing process of ink characteristics.However,the printing process of inks was explored and their potential for various applications was maximized.Therefore,the printing technology of UC fluorescent inks still faces challenges in different aspects.This review also points out the direction for future in-depth research,which is expected to promote further development and innovation in the field.展开更多
As a novel 2D material,Ti_(3)C_(2)T_(x)-MXene has become a major area of interest in the field of microwave absorption(MA).However,the MA effect of common Ti_(3)C_(2)T_(x)-MXene is not prominent and often requires com...As a novel 2D material,Ti_(3)C_(2)T_(x)-MXene has become a major area of interest in the field of microwave absorption(MA).However,the MA effect of common Ti_(3)C_(2)T_(x)-MXene is not prominent and often requires complex processes or combinations of other ma-terials to achieve enhanced performance.In this context,a kind of gradient woodpile structure using common Ti_(3)C_(2)T_(x)-MXene as MA ma-terial was designed and manufactured through direct ink writing(DIW)3D printing.The minimum reflection loss(RL_(min))of the Ti_(3)C_(2)T_(x)-MXene-based gradient woodpile structures with a thickness of less than 3 mm can reach-70 dB,showing considerable improve-ment compared with that of a completely filled structure.In addition,the effective absorption bandwidth(EAB)reaches 7.73 GHz.This study demonstrates that a Ti_(3)C_(2)T_(x)-MXene material with excellent MA performance and tunable frequency band can be successfully fab-ricated with a macroscopic structural design and through DIW 3D printing without complex material hybridization and modification,of-fering broad application prospects by reducing electromagnetic wave radiation and interference.展开更多
Founded in 2016,Zhejiang Haiyin Digital Technology Co.,Ltd.stands at the forefront of innovation as a certified China National High-Tech Enterprise,relentlessly advancing the boundaries of single-pass digital printing...Founded in 2016,Zhejiang Haiyin Digital Technology Co.,Ltd.stands at the forefront of innovation as a certified China National High-Tech Enterprise,relentlessly advancing the boundaries of single-pass digital printing technology.Our crowning achievement—the revolutionary KUNR High-Speed Digital Printing System—earned China’s prestigious National First-in-Kind Certification.Engineered with 100%independent patents across mechanical,control,software,ink supply,and inks,we deliver tailored intelligent turnkey solutions that transform textile production dynamics.展开更多
Electromagnetic devices have been widely used in the fields of information communication,medical treatment,electrical engineering,and national defense,and their properties are strongly dependent on the constituent ele...Electromagnetic devices have been widely used in the fields of information communication,medical treatment,electrical engineering,and national defense,and their properties are strongly dependent on the constituent electromagnetic materials.Conversely,electromagnetic metamaterials(EMMs),which are artificially engineered with distinctive electromagnetic properties,can overcome the limitations of natural materials owing to their structural advantages.Three-dimensional(3D)printing is the most effec-tive technique for fabricating EMM devices with different geometric parameters and associated proper-ties.However,conventional 3D-printed EMM devices may lack manufacturing flexibility and environmental adaptability to different physical stimuli,such as electric and magnetic fields.Four-dimensional(4D)printing is an ideal technique for schemes to integrate structural design with intelligent materials environmentally adaptive to external fields,for example,the printed components can change shape under electric stimulation.Given the rapid advancements in the EMM field,this paper first reviews typical EMM devices,their design theories,and underlying principles.Subsequently,it presents various EMM structural topologies and manufacturing technologies,emphasizing the feasibility of combining 3D and 4D printing.In addition,we highlight the important applications of EMMs and their future trends and the challenges associated with functional EMMs and additive manufacturing.展开更多
For more than 30 years,Hangzhou Honghua Digital Technology Stock Co.,Ltd(hereinafter also referred to as Atexco)has led digital inkjet innovation.From textiles to packaging and publishing,we deliver turnkey solutions ...For more than 30 years,Hangzhou Honghua Digital Technology Stock Co.,Ltd(hereinafter also referred to as Atexco)has led digital inkjet innovation.From textiles to packaging and publishing,we deliver turnkey solutions that unite precision printers,high-performance inks,process know-how and AI-driven design—one ecosystem powering global industry upgrade with Chinese inkjet excellence.展开更多
Have you noticed the award ceremony dress at the Asian Winter Games Harbin 2025?This time,the fabric for the award ceremony dresses of the Games was created by Zhejiang enterprise WENSLI.This is also the fourth time t...Have you noticed the award ceremony dress at the Asian Winter Games Harbin 2025?This time,the fabric for the award ceremony dresses of the Games was created by Zhejiang enterprise WENSLI.This is also the fourth time that WENSLI has provided customized silk dress fabric for international events after the 2008 Beijing Olympics,the 2016 G20Hangzhou Summit,and the 2022 Asian Games Hangzhou.展开更多
Vat photopolymerization 3D printing creates structures by projecting patterns onto a photosensitive resin within a vat.However,the presence of resin vats limits the printing of multiscale multimaterial structures.In t...Vat photopolymerization 3D printing creates structures by projecting patterns onto a photosensitive resin within a vat.However,the presence of resin vats limits the printing of multiscale multimaterial structures.In this context,a novel 3D printing process is presented in which a cured structure is produced from acoustically levitated droplets without a physical vat.This enables the printing process to achieve high flexibility in the printing orientation and material supply.In pursuit of the envisioned 3D acoustic levitation printing strategy,acoustic levitation technology was utilized to suspend a photosensitive resin.Objects with small features were successfully produced by projecting patterns onto levitated resin droplets.Transforming printing orientations allows the fabrication of multiscale structures.Levitating resin droplets on-demand enables the rapid replacement of materials,thereby realizing effortless multimaterial 3D printing.By exploiting the flexibility of printing on levitation resin droplets,the capability of 3D printing on existing objects was established.Finally,an interesting example was illustrated,in which an object integrating liquid,gas,and solid materials was fabricated using the proposed 3D printing strategy.The results show that 3D printing on levitated droplets is feasible for fabricating multiscale and multimaterial objects,which contributes to the development of new 3D printing methods and potential applications.展开更多
Wrought and laser powder bed fusion(LPBF)Ti−6Al−4V(Ti-6-4)specimens were comparatively evaluated,with the objective to determine LPBF Ti−6Al−4V’s suitability for biomedical applications.Testing included nanoindentati...Wrought and laser powder bed fusion(LPBF)Ti−6Al−4V(Ti-6-4)specimens were comparatively evaluated,with the objective to determine LPBF Ti−6Al−4V’s suitability for biomedical applications.Testing included nanoindentation,cyclic polarization in simulated body fluid(SBF,37°C),and dry and SBF“ball-on-plate”sliding.Wrought Ti-6-4 exhibited a lamellarα+βmicrostructure,whereas LPBF Ti-6-4 displayed a fine-grainedα′-martensite microstructure.LPBF Ti-6-4 demonstrated~3%higher indentation modulus and~32%higher hardness,while wrought Ti-6-4 showed~8%higher plasticity.Both alloys exhibited low corrosion rates(10−5 mA/cm^(2)order)and true passivity(10−4 mA/cm^(2)order).No localized corrosion was observed in either two alloys,except for occasional metastable pitting in the LPBF alloy.However,LPBF Ti-6-4 presented higher corrosion rate and passive current,ascribed to its martensitic structure.During dry sliding,LPBF Ti-6-4 exhibited~14%lower volume loss compared to wrought Ti-6-4.Sliding in SBF increased volume losses for both alloys,with wear resistances nearly equalized,as the advantage of LPBF Ti-6-4 decreased due to more intense wear-accelerated corrosion induced by the stressed martensite.Overall,the results demonstrate the suitability of LPBF Ti-6-4 for biomedical uses.展开更多
Four-dimensional(4D)printing represents a groundbreaking advancement in manufacturing,yet a persistent challenge is the limited number of stable configurations achievable through spontaneous shape reconstruction.Herei...Four-dimensional(4D)printing represents a groundbreaking advancement in manufacturing,yet a persistent challenge is the limited number of stable configurations achievable through spontaneous shape reconstruction.Herein,we present a novel 4D printing mechanism that utilizes self-adjustable gas pressure to facilitate a wide range of spontaneous and stable multi-shape transformations.The gas is precisely released at designated spatial locations through strategic temperature-controlled degradation of a solid material,which is printed and distributed as needed at the voxel level within a specially designed multi-material structure,consisting of a low degradation temperature material(LDTM),a high degradation temperature soft material(HDTSM),and a high degradation temperature hard material(HDTHM).Each shape configuration is determined and locked in by the maximum temperature experienced during its thermal history.Notably,this shape retains its form robustly,independently of subsequent temperature changes,until a higher temperature threshold is reached,at which point a new shape configuration is triggered.These shapes exhibit a remarkable temperature memory effect,permanently recording the peak temperature reached in their thermal history.Our study comprehensively investigates the underlying principles and key parameters that influence deformation.We present a series of examples demonstrating complex multi-shape transformations modulated by temperature,supported by finite element simulations.This advance in 4D printing has the potential to significantly enhance its functional capabilities,performance,and applicability,opening up new horizons in additive manufacturing and design.展开更多
This paper systematically studies the current practical application status,existing problems and optimization suggestions of 3D printing technology in spacecraft manufacturing.Research shows that this technology has b...This paper systematically studies the current practical application status,existing problems and optimization suggestions of 3D printing technology in spacecraft manufacturing.Research shows that this technology has been successfully applied to the manufacturing of key components such as rocket engines and satellite structures,demonstrating advantages like lightweight and rapid prototyping.However,it still faces core challenges such as material performance,process stability,adaptability to space environments,and industrialization costs.In response to these issues,this paper proposes three optimization suggestions:enhancing manufacturing reliability by developing aerospace-specific materials,optimizing process parameters,and establishing a quality traceability system.Surface modification technology and topological optimization design are adopted to enhance the adaptability to the spatial environment,and a space-ground integrated verification method is constructed.Reduce industrialization costs through the localization of materials,modular production,and the construction of a standardized system.Research has confirmed that implementing these measures can reduce the performance dispersion of 3D-printed aerospace components by more than 50%,increase their in-orbit lifespan by three times,and lower production costs by 30-40%.The research results of this paper provide a systematic technical route and industrialization solution for the large-scale application of 3D printing technology in the aerospace field,which has significant reference value for promoting the innovation of aerospace manufacturing models.展开更多
To explore the feasibility of electrospray-based additive manufacturing for thin-film fabrication in zero-or microgravity environments,we conducted numerical simulations of charged droplet behavior under zero-gravity ...To explore the feasibility of electrospray-based additive manufacturing for thin-film fabrication in zero-or microgravity environments,we conducted numerical simulations of charged droplet behavior under zero-gravity conditions,followed by ground-based experimental validation using an anti-gravity electrospray(AG-ES)strategy.First,simulations of charged droplet deposition during the electrospray process showed that the presence or absence of gravity did not significantly affect deposition behavior.Second,simulations of droplet-substrate collisions indicated that the presence of an electric field could reduce the risk of droplet splashing.Third,simulations of droplet coalescence under zero-gravity conditions demonstrated that an electric field could promote the coalescence of charged droplets.An AG-ES experimental platform featuring an inverted nozzle-substrate configuration was constructed on the ground.Comparative experiments using Rhodamine B solution and TiO_(2)nanoparticle dispersions were performed in both AG-ES and conventional electrospray(ES)modes.The results indicated that the spray cone angle,deposition area,and film morphology were comparable between the two modes.Finally,multilayer alternating-current electroluminescent(ACEL)devices were fabricated via AG-ES using ZnS:Cu/poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP),BaTiO_(3)/polyvinylpyrrolidone(PVP),and silver nanowire(AgNW)inks,achieving a maximum luminance of 66.2 cd/m^(2).This study demonstrates the potential of the electrospray process for functional thin-film fabrication under microgravity conditions.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52325504,52235007,and T2121004).
文摘As surgical procedures transition from conventional resection to advanced tissue-regeneration technologies,human disease therapy has witnessed a great leap forward.In particular,three-dimensional(3D)bioprinting stands as a landmark in this setting,by promising the precise integration of biomaterials,cells,and bioactive molecules,thus opening up a novel avenue for tissue/organ regeneration.Curated by the editorial board of Bio-Design and Manufacturing,this review brings together a cohort of leading young scientists in China to dissect the core functionalities and evolutionary trajectory of 3D bioprinting,by elucidating the intricate challenges encountered in the manufacturing of transplantable organs.We further delve into the translational pathway from scientific research to clinical application,emphasizing the imperativeness of establishing a regulatory framework and rigorously enforcing quality-control measures.Finally,this review outlines the strategic landscape and innovative achievements of China in this field and provides a comprehensive roadmap for researchers worldwide to propel this field collectively to even greater heights.
基金supported by the Strategic Priority Program of the Chinese Academy of Sciences(XDB0470303)the National Key R&D Program of China(2022YFB4600102and 2023YFE0209900)+4 种基金the National Natural Science Foundation of China(52175201 and 51935012)the science and technology projects of Gansu province(22JR5RA093,24JRRA044,24YFFA014 and 24ZDGA014)the Innovation and Entrepreneurship Team Project of YEDA(2021TD007)the special supporting project for provincial leading talents of Yantaithe Taishan Scholars Program。
文摘Silicone rubber(SR)is a versatile material widely used across various advanced functional applications,such as soft actuators and robots,flexible electronics,and medical devices.However,most SR molding methods rely on traditional thermal processing or direct ink writing three-dimensional(3D)printing.These methods are not conducive to manufacturing complex structures and present challenges such as time inefficiency,poor accuracy,and the necessity of multiple steps,significantly limiting SR applications.In this study,we developed an SR-based ink suitable for vat photopolymerization 3D printing using a multi-thiol monomer.This ink enables the one-step fabrication of complex architectures with high printing resolution at the micrometer scale,providing excellent mechanical strength and superior chemical stability.Specifically,the optimized 3D printing SR-20 exhibits a tensile stress of 1.96 MPa,an elongation at break of 487.9%,and an elastic modulus of 225.4 kPa.Additionally,the 3D-printed SR samples can withstand various solvents(acetone,toluene,and tetrahydrofuran)and endure temperatures ranging from-50℃ to 180℃,demonstrating superior stability.As a emonstration of the application,we successfully fabricated a series of SR-based soft pneumatic actuators and grippers in a single step with this technology,allowing for free assembly for the first time.This ultraviolet-curable SR,with high printing resolution and exceptional stability performance,has significant potential to enhance the capabilities of 3D printing for applications in soft actuators,robotics,flexible electronics,and medical devices.
基金supported by the National Natural Science Foundation of China(No.62374142)Fundamental Research Funds for the Central Universities(Nos.20720220085 and 20720240064)+2 种基金External Cooperation Program of Fujian(No.2022I0004)Major Science and Technology Project of Xiamen in China(No.3502Z20191015)Xiamen Natural Science Foundation Youth Project(No.3502Z202471002)。
文摘Super-fine electrohydrodynamic inkjet(SIJ)printing of perovskite nanocrystal(PNC)colloid ink exhibits significant potential in the fabrication of high-resolution color conversion microstructures arrays for fullcolor micro-LED displays.However,the impact of solvent on both the printing process and the morphology of SIJ-printed PNC color conversion microstructures remains underexplored.In this study,we prepared samples of CsPbBr3PNC colloid inks in various solvents and investigated the solvent's impact on SIJ printed PNC microstructures.Our findings reveal that the boiling point of the solvent is crucial to the SIJ printing process of PNC colloid inks.Only does the boiling point of the solvent fall in the optimal range,the regular positioned,micron-scaled,conical PNC microstructures can be successfully printed.Below this optimal range,the ink is unable to be ejected from the nozzle;while above this range,irregular positioned microstructures with nanoscale height and coffee-ring-like morphology are produced.Based on these observations,high-resolution color conversion PNC microstructures were effectively prepared using SIJ printing of PNC colloid ink dispersed in dimethylbenzene solvent.
基金supported by The National Key Research and Development Program of China(No.2019YFB1901001).
文摘Ceramic matrix composites(CMCs)structural components encounter the dual challenges of severe mechanical conditions and complex electromagnetic environments due to the increasing demand for stealth technology in aerospace field.To address various functional requirements,this study integrates a biomimetic strategy inspired by gradient bamboo vascular bundles with a novel dual-material 3D printing approach.Three distinct bamboo-inspired structural configurations Cf/SiC composites are designed and manufactured,and the effects of these different structural configurations on the CVI process are analyzed.Nanoindentation method is utilized to characterize the relationship between interface bonding strength and mechanical properties.The results reveal that the maximum flexural strength and fracture toughness reach 108.6±5.2 MPa and 16.45±1.52 MPa m1/2,respectively,attributed to the enhanced crack propagation resistance and path caused by the weak fiber-matrix interface.Furthermore,the bio-inspired configuration enhances the dielectric loss and conductivity loss,exhibiting a minimum reflection loss of−24.3 dB with the effective absorption band of 3.89 GHz.This work introduces an innovative biomimetic strategy and 3D printing method for continuous fiber-reinforced ceramic composites,expanding the application of 3D printing technology in the field of CMCs.
基金supported by the National Natural Science Foundation of China(Nos.51975400 and 62031022)the Shanxi Provincial Key Medical Scientific Research Project(No.2020XM06)+2 种基金the Shanxi Provincial Basic Research Project(Nos.202103021221006,20210302123040,and 202103021223069)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(No.2021L044)the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(No.2022SX-TD026).
文摘Dermal substitutes have provided a template for the regeneration and reconstruction of the dermis.However,the healed skin tissue often exhibits abnormal morphology and functionality,including scarring and inflammation.In this study,a composite bioink composed of methacrylated gelatin(GelMA)and chitosan oligosaccharide(COS)was proposed for printing a dermal scaffold using digital light processing(DLP)technology.The GelMA/COS bioink exhibited suitable porosity,swelling,degradation rate,and mechanical properties.The inclusion of COS demonstrated antibacterial effects against both Gram positive and Gram-negative bacteria,while simultaneously fostering the proliferation of human dermal fibroblasts(HDFs).Additionally,the application of COS could effectively reduce the expression levels of fibrosis-related genes,such as collagen I,collagen III,and fibronectin I.The three-dimensionally printed cell-laden dermal scaffold exhibited excellent shape fidelity and high cellular viability,facilitating the extension of HDFs along the scaffold and the simultaneous secretion of extracellular matrix proteins.Furthermore,the HDF-laden dermal scaffold transplanted into full-thickness skin defect sites in nude mice was shown to accelerate wound closure,reduce inflammation,and improve wound healing.Overall,the DLP-printed dermal scaffold provides an appealing approach for effectively treating full-thickness skin defects in clinical settings.
基金supported in part by National Key R&D Program of China under Grant 2023YFB4705600in part by the National Natural Science Foundation of China under Grants 61925304,62127810 and 62203138+1 种基金in part by the National Postdoctoral Program for Innovative Talents under Grant BX20200107in part by the Self-Planned Task(No.SKLRS202205C)of State Key Laboratory of Robotics and System(HIT).
文摘Microscale metallic structures enhanced by additive manufacturing technology have attracted extensive attention especially in microelectronics and electromechanical devices.Meniscus-confined electrodeposition(MCED)advances microscale 3D metal printing,enabling simpler fabrication of superior metallic microstructures in air without complex equipment or post-processing.However,accurately predicting growth rates with current MCED techniques remain challenging,which is essential for precise structure fabrication and preventing nozzle clogging.In this work,we present a novel approach to electrochemical 3D printing that utilizes a self-adjusting,voxelated method for fabricating metallic microstructures.Diverging from conventional voxelated printing which focuses on monitoring voxel thickness for structure control,this technique adopts a holistic strategy.It ensures each voxel’s position is in alignment with the final structure by synchronizing the micropipette’s trajectory during deposition with the intended design,thus facilitating self-regulation of voxel position and reducing errors associated with environmental fluctuations in deposition parameters.The method’s ability to print micropillars with various tilt angles,high density,and helical arrays demonstrates its refined control over the deposition process.Transmission electron microscopy analysis reveals that the deposited structures,which are fabricated through layer-by-layer(voxel)printing,contain nanotwins that are widely known to enhance the material’s mechanical and electrical properties.Correspondingly,in situ scanning electron microscopy(SEM)microcompression tests confirm this enhancement,showing these structures exhibit a compressive yield strength exceeding 1 GPa.The indentation tests provided an average hardness of 3.71 GPa,which is the highest value reported in previous work using MCED.The resistivity measured by the four-point probe method was(1.95±0.01)×10^(−7)Ω·m,nearly 11 times that of bulk copper.These findings demonstrate the considerable advantage of this technique in fabricating complex metallic microstructures with enhanced mechanical properties,making it suitable for advanced applications in microsensors,microelectronics,and micro-electromechanical systems.
基金supported by National Key Research and Development Program of China(Grant No.2023YFB4604100)National Key Research and Development Program of China(Grant No.2022YFB3806104)+4 种基金Key Research and Development Program in Shaanxi Province(Grant No.2021LLRH-08-17)Young Elite Scientists Sponsorship Program by CAST(No.2023QNRC001)K C Wong Education Foundation of ChinaYouth Innovation Team of Shaanxi Universities of ChinaKey Research and Development Program of Shaanxi Province(Grant 2021LLRH-08-3.1).
文摘Ensuring the consistent mechanical performance of three-dimensional(3D)-printed continuous fiber-reinforced composites is a significant challenge in additive manufacturing.The current reliance on manual monitoring exacerbates this challenge by rendering the process vulnerable to environmental changes and unexpected factors,resulting in defects and inconsistent product quality,particularly in unmanned long-term operations or printing in extreme environments.To address these issues,we developed a process monitoring and closed-loop feedback control strategy for the 3D printing process.Real-time printing image data were captured and analyzed using a well-trained neural network model,and a real-time control module-enabled closed-loop feedback control of the flow rate was developed.The neural network model,which was based on image processing and artificial intelligence,enabled the recognition of flow rate values with an accuracy of 94.70%.The experimental results showed significant improvements in both the surface performance and mechanical properties of printed composites,with three to six times improvement in tensile strength and elastic modulus,demonstrating the effectiveness of the strategy.This study provides a generalized process monitoring and feedback control method for the 3D printing of continuous fiber-reinforced composites,and offers a potential solution for remote online monitoring and closed-loop adjustment in unmanned or extreme space environments.
基金supported by the Innovative Research Group Project of the National Natural Science Foundation of China(T2121004)Key Programme(52235007)National Outstanding Youth Foundation of China(52325504).
文摘Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries.
文摘In order to study the preferred skin color for printing images,two CMYK images from ISO 400 and one from iStock,including five skin color images of East Asian females was selected in this study.The images were adjusted with the CMYK printing ink volume variation of the single,double and triple channels in the given 280%total ink limit conditions.A larger number of color vision normal observers were organized to carry out the color preference evaluation experiment,and the selected preferred skin colors were analyzed.The distribution range of the chromaticity values for skin color images were obtained and the results indicated that there are three regions for printing skin color preferences,and the observers have a memory preference for brighter,fairer skin colors in young female and a reddish skin colors in girl,which can provide the guidance for color adjustment of printed skin color images.
基金Project supported by National Natural Science Foundation of China(51962006)the High-level Talents Research Initiation Project of JXUST(205200100545)+1 种基金the Young Elite Scientists Sponsorship Program by CAST(2022QNRC001)Jiangxi Natural Science Foundation of China(20224BAB214029,20232BAB204021)。
文摘Up-conversion(UC)luminescent materials doped with Ln^(3+)ions possess excellent optical properties and extensive applications in the formulation of multifunctional fluorescence ink.Printing technology offers various methods for the preparation of UC fluorescent inks.This study introduced the optical properties of luminescent materials doped with Ln^(3+)ions,including luminescence characteristics and spectral characteristics,which provide a basis for the subsequent printing process.We also reviewed different printing techniques,including direct writing,screen printing,laser printing,inkjet printing,and aerosol jet printing(AJP),developed so far in the literature and explored the printing process of ink characteristics.However,the printing process of inks was explored and their potential for various applications was maximized.Therefore,the printing technology of UC fluorescent inks still faces challenges in different aspects.This review also points out the direction for future in-depth research,which is expected to promote further development and innovation in the field.
基金support from the National Key Research and Development Program of China(No.2021YFB3701503)the Key Research and Development Program of Ningbo,China(No.2023Z107).
文摘As a novel 2D material,Ti_(3)C_(2)T_(x)-MXene has become a major area of interest in the field of microwave absorption(MA).However,the MA effect of common Ti_(3)C_(2)T_(x)-MXene is not prominent and often requires complex processes or combinations of other ma-terials to achieve enhanced performance.In this context,a kind of gradient woodpile structure using common Ti_(3)C_(2)T_(x)-MXene as MA ma-terial was designed and manufactured through direct ink writing(DIW)3D printing.The minimum reflection loss(RL_(min))of the Ti_(3)C_(2)T_(x)-MXene-based gradient woodpile structures with a thickness of less than 3 mm can reach-70 dB,showing considerable improve-ment compared with that of a completely filled structure.In addition,the effective absorption bandwidth(EAB)reaches 7.73 GHz.This study demonstrates that a Ti_(3)C_(2)T_(x)-MXene material with excellent MA performance and tunable frequency band can be successfully fab-ricated with a macroscopic structural design and through DIW 3D printing without complex material hybridization and modification,of-fering broad application prospects by reducing electromagnetic wave radiation and interference.
文摘Founded in 2016,Zhejiang Haiyin Digital Technology Co.,Ltd.stands at the forefront of innovation as a certified China National High-Tech Enterprise,relentlessly advancing the boundaries of single-pass digital printing technology.Our crowning achievement—the revolutionary KUNR High-Speed Digital Printing System—earned China’s prestigious National First-in-Kind Certification.Engineered with 100%independent patents across mechanical,control,software,ink supply,and inks,we deliver tailored intelligent turnkey solutions that transform textile production dynamics.
基金sponsored by the National Natural Science Foundation of China(52275331 and 52205358)the National Key Research and Development Program of China(2023YFB4604800)+1 种基金the Key Research and Development Program of Hubei Province(2022BAA011)the Hong Kong Scholars Program(XJ2022014).
文摘Electromagnetic devices have been widely used in the fields of information communication,medical treatment,electrical engineering,and national defense,and their properties are strongly dependent on the constituent electromagnetic materials.Conversely,electromagnetic metamaterials(EMMs),which are artificially engineered with distinctive electromagnetic properties,can overcome the limitations of natural materials owing to their structural advantages.Three-dimensional(3D)printing is the most effec-tive technique for fabricating EMM devices with different geometric parameters and associated proper-ties.However,conventional 3D-printed EMM devices may lack manufacturing flexibility and environmental adaptability to different physical stimuli,such as electric and magnetic fields.Four-dimensional(4D)printing is an ideal technique for schemes to integrate structural design with intelligent materials environmentally adaptive to external fields,for example,the printed components can change shape under electric stimulation.Given the rapid advancements in the EMM field,this paper first reviews typical EMM devices,their design theories,and underlying principles.Subsequently,it presents various EMM structural topologies and manufacturing technologies,emphasizing the feasibility of combining 3D and 4D printing.In addition,we highlight the important applications of EMMs and their future trends and the challenges associated with functional EMMs and additive manufacturing.
文摘For more than 30 years,Hangzhou Honghua Digital Technology Stock Co.,Ltd(hereinafter also referred to as Atexco)has led digital inkjet innovation.From textiles to packaging and publishing,we deliver turnkey solutions that unite precision printers,high-performance inks,process know-how and AI-driven design—one ecosystem powering global industry upgrade with Chinese inkjet excellence.
文摘Have you noticed the award ceremony dress at the Asian Winter Games Harbin 2025?This time,the fabric for the award ceremony dresses of the Games was created by Zhejiang enterprise WENSLI.This is also the fourth time that WENSLI has provided customized silk dress fabric for international events after the 2008 Beijing Olympics,the 2016 G20Hangzhou Summit,and the 2022 Asian Games Hangzhou.
基金supported by National Natural Science Foundation of China(Grant No.52305398)Chengdu University of Information Technology Project(Grant No.KYTZ202145).
文摘Vat photopolymerization 3D printing creates structures by projecting patterns onto a photosensitive resin within a vat.However,the presence of resin vats limits the printing of multiscale multimaterial structures.In this context,a novel 3D printing process is presented in which a cured structure is produced from acoustically levitated droplets without a physical vat.This enables the printing process to achieve high flexibility in the printing orientation and material supply.In pursuit of the envisioned 3D acoustic levitation printing strategy,acoustic levitation technology was utilized to suspend a photosensitive resin.Objects with small features were successfully produced by projecting patterns onto levitated resin droplets.Transforming printing orientations allows the fabrication of multiscale structures.Levitating resin droplets on-demand enables the rapid replacement of materials,thereby realizing effortless multimaterial 3D printing.By exploiting the flexibility of printing on levitation resin droplets,the capability of 3D printing on existing objects was established.Finally,an interesting example was illustrated,in which an object integrating liquid,gas,and solid materials was fabricated using the proposed 3D printing strategy.The results show that 3D printing on levitated droplets is feasible for fabricating multiscale and multimaterial objects,which contributes to the development of new 3D printing methods and potential applications.
基金supported by the Ministry of Education and Science of Ukraine(No.0123U101834)support in the framework of the“EU Next generation EU through the Recovery and Resilience Plan for Slovakia”(Nos.09I03-03-V01-00061 and 09I03-03-V01-00099)。
文摘Wrought and laser powder bed fusion(LPBF)Ti−6Al−4V(Ti-6-4)specimens were comparatively evaluated,with the objective to determine LPBF Ti−6Al−4V’s suitability for biomedical applications.Testing included nanoindentation,cyclic polarization in simulated body fluid(SBF,37°C),and dry and SBF“ball-on-plate”sliding.Wrought Ti-6-4 exhibited a lamellarα+βmicrostructure,whereas LPBF Ti-6-4 displayed a fine-grainedα′-martensite microstructure.LPBF Ti-6-4 demonstrated~3%higher indentation modulus and~32%higher hardness,while wrought Ti-6-4 showed~8%higher plasticity.Both alloys exhibited low corrosion rates(10−5 mA/cm^(2)order)and true passivity(10−4 mA/cm^(2)order).No localized corrosion was observed in either two alloys,except for occasional metastable pitting in the LPBF alloy.However,LPBF Ti-6-4 presented higher corrosion rate and passive current,ascribed to its martensitic structure.During dry sliding,LPBF Ti-6-4 exhibited~14%lower volume loss compared to wrought Ti-6-4.Sliding in SBF increased volume losses for both alloys,with wear resistances nearly equalized,as the advantage of LPBF Ti-6-4 decreased due to more intense wear-accelerated corrosion induced by the stressed martensite.Overall,the results demonstrate the suitability of LPBF Ti-6-4 for biomedical uses.
基金support from the Shenzhen Science and Technology Innovation Commission(Grant No.JCYJ20200109115439775 and JCYJ20230807140459034)Guangdong Basic and Applied Basic Research Foundation(Grant No.2022A1515012645)National Natural Science Foundation of China(Grant No.11872369).
文摘Four-dimensional(4D)printing represents a groundbreaking advancement in manufacturing,yet a persistent challenge is the limited number of stable configurations achievable through spontaneous shape reconstruction.Herein,we present a novel 4D printing mechanism that utilizes self-adjustable gas pressure to facilitate a wide range of spontaneous and stable multi-shape transformations.The gas is precisely released at designated spatial locations through strategic temperature-controlled degradation of a solid material,which is printed and distributed as needed at the voxel level within a specially designed multi-material structure,consisting of a low degradation temperature material(LDTM),a high degradation temperature soft material(HDTSM),and a high degradation temperature hard material(HDTHM).Each shape configuration is determined and locked in by the maximum temperature experienced during its thermal history.Notably,this shape retains its form robustly,independently of subsequent temperature changes,until a higher temperature threshold is reached,at which point a new shape configuration is triggered.These shapes exhibit a remarkable temperature memory effect,permanently recording the peak temperature reached in their thermal history.Our study comprehensively investigates the underlying principles and key parameters that influence deformation.We present a series of examples demonstrating complex multi-shape transformations modulated by temperature,supported by finite element simulations.This advance in 4D printing has the potential to significantly enhance its functional capabilities,performance,and applicability,opening up new horizons in additive manufacturing and design.
文摘This paper systematically studies the current practical application status,existing problems and optimization suggestions of 3D printing technology in spacecraft manufacturing.Research shows that this technology has been successfully applied to the manufacturing of key components such as rocket engines and satellite structures,demonstrating advantages like lightweight and rapid prototyping.However,it still faces core challenges such as material performance,process stability,adaptability to space environments,and industrialization costs.In response to these issues,this paper proposes three optimization suggestions:enhancing manufacturing reliability by developing aerospace-specific materials,optimizing process parameters,and establishing a quality traceability system.Surface modification technology and topological optimization design are adopted to enhance the adaptability to the spatial environment,and a space-ground integrated verification method is constructed.Reduce industrialization costs through the localization of materials,modular production,and the construction of a standardized system.Research has confirmed that implementing these measures can reduce the performance dispersion of 3D-printed aerospace components by more than 50%,increase their in-orbit lifespan by three times,and lower production costs by 30-40%.The research results of this paper provide a systematic technical route and industrialization solution for the large-scale application of 3D printing technology in the aerospace field,which has significant reference value for promoting the innovation of aerospace manufacturing models.
基金supported by Research and Development Program of Shaanxi Province,China(Grant No.2021ZDLGY10-09)the High-End Foreign Expert Recruitment Program,China(Grant No.G2023170009L)the Science and Technology on Electromechanical Dynamic Control Laboratory,China(Grant No.6142601220111)。
文摘To explore the feasibility of electrospray-based additive manufacturing for thin-film fabrication in zero-or microgravity environments,we conducted numerical simulations of charged droplet behavior under zero-gravity conditions,followed by ground-based experimental validation using an anti-gravity electrospray(AG-ES)strategy.First,simulations of charged droplet deposition during the electrospray process showed that the presence or absence of gravity did not significantly affect deposition behavior.Second,simulations of droplet-substrate collisions indicated that the presence of an electric field could reduce the risk of droplet splashing.Third,simulations of droplet coalescence under zero-gravity conditions demonstrated that an electric field could promote the coalescence of charged droplets.An AG-ES experimental platform featuring an inverted nozzle-substrate configuration was constructed on the ground.Comparative experiments using Rhodamine B solution and TiO_(2)nanoparticle dispersions were performed in both AG-ES and conventional electrospray(ES)modes.The results indicated that the spray cone angle,deposition area,and film morphology were comparable between the two modes.Finally,multilayer alternating-current electroluminescent(ACEL)devices were fabricated via AG-ES using ZnS:Cu/poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP),BaTiO_(3)/polyvinylpyrrolidone(PVP),and silver nanowire(AgNW)inks,achieving a maximum luminance of 66.2 cd/m^(2).This study demonstrates the potential of the electrospray process for functional thin-film fabrication under microgravity conditions.