The emergence of laser technology has led to the gradual integration of laser weapon system(LaWS)into military scene,particularly in the field of anti-unmanned aerial vehicle(UAV),showcasing significant potential.Howe...The emergence of laser technology has led to the gradual integration of laser weapon system(LaWS)into military scene,particularly in the field of anti-unmanned aerial vehicle(UAV),showcasing significant potential.However,A current limitation lies in the absence of a comprehensive quantitative approach to assess the capabilities of LaWS.To address this issue,a damage effectiveness characterization model for LaWS is established,taking into account the properties of laser transmission through the atmosphere and the thermal damage effects.By employing this model,key parameters pertaining to the effectiveness of laser damage are determined.The impact of various spatial positions and atmospheric conditions on the damage effectiveness of LaWS have been examined,employing simulation experiments with diverse parameters.The conclusions indicate that the damage effectiveness of LaWS is contingent upon the spatial position of the target,resulting in a diminished effectiveness to damage on distant,low-altitude targets.Additionally,the damage effectiveness of LaWS is heavily reliant on the atmospheric condition,particularly in complex settings such as midday and low visibility conditions,where the damage effectiveness is substantially reduced.This paper provides an accurate and effective calculation method for the rapid decisionmaking of the operators.展开更多
The laser weapons will play a special role in the future high-tech war.To study the impact of airborne laser weapon on the System-of-System(SoS)effectiveness in cooperative com-bat,this paper proposes an indicator con...The laser weapons will play a special role in the future high-tech war.To study the impact of airborne laser weapon on the System-of-System(SoS)effectiveness in cooperative com-bat,this paper proposes an indicator construction method based on the combination of the weapon capability indicator system and the combat simulation.The indicator system of capability is divided into 4 layers by the bottom-to-up generation mechanism of indicators.It can describe the logical relationship between the indicator layers from a qualitative perspective.Together with the 4 layers capability indicator system,a hierarchical framework of airborne laser weapon is established by the agent-based modeling and simulation.Impact analyses show that the SoS effectiveness improves with the increase of the laser weapon output power,the laser launcher diameter,and the photoelectric sensor pixel.But the SoS effectiveness promotion brought by the photoelectric sensor pixel is limited.The results can be used for the development of tactical airborne laser weapon.展开更多
In order to maximize the lethality and reversibility of the non-lethal laser weapons(NLLW) at the same time and thus provide a theoretical basis for the R&D of laser weapons in the future,this paper accurately ana...In order to maximize the lethality and reversibility of the non-lethal laser weapons(NLLW) at the same time and thus provide a theoretical basis for the R&D of laser weapons in the future,this paper accurately analyzed the limiting biological dose of irreversible damage to human skin caused by the NLLW.Firstly,based on the burn theory in medicine and the actual tactical background,this paper redefines the evaluation criteria of the limiting laser dose of NLLW to the human body.Secondly,on the basis of anatomical knowledge,a 5-layer finite element model(FEM) of superficial skin is proposed,constructed and verified,which can accurately describe the limiting reversible damage.Based on the optimized Pennes bioheat transfer equation,the diffusion approximation theory,the modified Beer-Lambert law,the Arrhenius equation,and combined with dynamic thermophysical parameters,this paper highly restored the temperature distribution and accurately solved the necrotic tissue distribution inside the human skin irradiated by 1064 nm laser.Finally,it is concluded that the maximum human dose of the1064 nm NLLW is 8.93 J/cm^(2),8.29J/cm^(2),and 8.17 J/cm^(2) when the light spots are 5 mm,10 mm and15 mm,respectively,and the corresponding output power of the weapon is 46.74 W,173.72 W and384.77 W.Simultaneously,the temperature and damage distribution in the tissue at the time of ultimate damage are discussed from the axial and radial dimensions,respectively.The conclusions and analysis methods proposed in this paper are of great guiding significance for future research in military,medical and many other related fields.展开更多
In our highly globalized but culturally divided world whereby so-called defense industry is implied as both innovative and progressive, as contemporaneously the international legal doctrine is conceived to be static a...In our highly globalized but culturally divided world whereby so-called defense industry is implied as both innovative and progressive, as contemporaneously the international legal doctrine is conceived to be static and conservative. This doubly bound narrative itself is almost as old as international law wherein the most striking contradictory moments happened in the era of, and between two world wars: In such a way that our thinking of legal and other fields owe much more thereto than we realize today. In this study, it is purported to call attention to some key understandings which may be termed as militarist humanitarianism, humanitarian militarism, or, optimist scientism, and pessimist humanitarianism. As such, it is intended to examine international issues pertaining to humanitarianism and militarism through the lens of different perspectives, doctrine-itself and their history as enshrined in the Protocol IV on Blinding Laser Weapons, issues which are almost totally neglected in the mainstream media and academia.展开更多
Laser anti-drone technology is entering the sequence of actual combat,and it is necessary to consider the vulnerability of typical functional parts of UAVs.Since the concept of"vulnerability"was proposed,a v...Laser anti-drone technology is entering the sequence of actual combat,and it is necessary to consider the vulnerability of typical functional parts of UAVs.Since the concept of"vulnerability"was proposed,a variety of analysis programs for battlefield targets to traditional weapons have been developed,but a comprehensive assessment methodology for targets'vulnerability to laser is still missing.Based on the shotline method,this paper proposes a method that equates laser beam to shotline array,an efficient vulnerability analysis program of target to laser is established by this method,and the program includes the circuit board and the wire into the vulnerability analysis category,which improves the precision of the vulnerability analysis.Taking the UAV engine part as the target of vulnerability analysis,combine with the"life-death unit method"to calculate the laser penetration rate of various materials of the UAV,and the influence of laser weapon system parameters and striking orientation on the killing probability is quantified after introducing the penetration rate into the vulnerability analysis program.The quantitative analysis method proposed in this paper has certain general expansibility,which can provide a fresh idea for the vulnerability analysis of other targets to laser.展开更多
The acquisition,tracking,and pointing(ATP)system is widely used in target tracking,counter-UAV operations,and other related fields.As UAV technology develops,there is a growing demand to enhance the tracking capabilit...The acquisition,tracking,and pointing(ATP)system is widely used in target tracking,counter-UAV operations,and other related fields.As UAV technology develops,there is a growing demand to enhance the tracking capabilities of ATP systems.However,in practical applications,ATP systems face various design constraints and functional limitations,making it infeasible to indefinitely improve hardware performance to meet tracking requirements.As a result,tracking algorithms are required to execute increasingly complex tasks.This study introduces a multi-rate feedforward predictive controller to address issues such as low image feedback frequency and significant delays in ATP systems,which lead to tracking jitter,poor tracking performance,low precision,and target loss.At the same time,the pro-posed approach aims to improve the tracking capabilities of ATP systems for high-speed and highly maneuverable targets under conditions of low sampling feedback rates and high feedback delays.The method suggested is also characterized by its low order,fast response,and robustness to model parameter variations.In this study,an actual ATP system is built for target tracking test,and the proposed algorithm is fully validated in terms of simulation and actual system application verification.Results from both simulations and experiments demonstrate that the method effectively compensates for delays and low sampling rates.For targets with relative angular velocities ranging from 0 to 90°/s and angular accelerations between 0 and 470°/s^(2),the system improved tracking accuracy by 70.0%-89.9%at a sampling frequency of 50 Hz and a delay of 30 m s.Moreover,the compensation algorithm demonstrated consistent performance across actuators with varying characteristics,further confirming its robustness to model insensitivity.In summary,the proposed algorithm considerably enhances the tracking accuracy and capability of ATP systems for high-speed and highly maneuverable targets,reducing the probability of target loss from high speed.This approach offers a practical solution for future multi-target tracking across diverse operational scenarios.展开更多
高能激光武器(high energy laser weapon system,HELWS)依托光速打击、无惯性毁伤及无限弹药等特性,正颠覆传统动能防御模式,跃升为大国军事博弈焦点。结合全球技术进展与实战案例,梳理HELWS从技术验证到实战运用的演进脉络。重点聚焦...高能激光武器(high energy laser weapon system,HELWS)依托光速打击、无惯性毁伤及无限弹药等特性,正颠覆传统动能防御模式,跃升为大国军事博弈焦点。结合全球技术进展与实战案例,梳理HELWS从技术验证到实战运用的演进脉络。重点聚焦高能激光技术发展,系统梳理了中国“神光”聚变装置实现的兆瓦级技术突破及LW-30/60战术激光武器列装进展,通过横向对比美、俄、德、以等国的技术路线,揭示差异化发展格局。进一步探讨了HELWS在近程防御、反导拦截、无人机压制及城市战中的效能优势,并展望其在太空攻防、生化消杀等领域的颠覆性潜力,为定向能武器的体系化部署与战略博弈提供了多维理论框架。展开更多
基金supported by the National Social Science Foundation of China(2022-SKJJ-C-037)the National Natural Science Foundation of China General Program(72071209).
文摘The emergence of laser technology has led to the gradual integration of laser weapon system(LaWS)into military scene,particularly in the field of anti-unmanned aerial vehicle(UAV),showcasing significant potential.However,A current limitation lies in the absence of a comprehensive quantitative approach to assess the capabilities of LaWS.To address this issue,a damage effectiveness characterization model for LaWS is established,taking into account the properties of laser transmission through the atmosphere and the thermal damage effects.By employing this model,key parameters pertaining to the effectiveness of laser damage are determined.The impact of various spatial positions and atmospheric conditions on the damage effectiveness of LaWS have been examined,employing simulation experiments with diverse parameters.The conclusions indicate that the damage effectiveness of LaWS is contingent upon the spatial position of the target,resulting in a diminished effectiveness to damage on distant,low-altitude targets.Additionally,the damage effectiveness of LaWS is heavily reliant on the atmospheric condition,particularly in complex settings such as midday and low visibility conditions,where the damage effectiveness is substantially reduced.This paper provides an accurate and effective calculation method for the rapid decisionmaking of the operators.
文摘The laser weapons will play a special role in the future high-tech war.To study the impact of airborne laser weapon on the System-of-System(SoS)effectiveness in cooperative com-bat,this paper proposes an indicator construction method based on the combination of the weapon capability indicator system and the combat simulation.The indicator system of capability is divided into 4 layers by the bottom-to-up generation mechanism of indicators.It can describe the logical relationship between the indicator layers from a qualitative perspective.Together with the 4 layers capability indicator system,a hierarchical framework of airborne laser weapon is established by the agent-based modeling and simulation.Impact analyses show that the SoS effectiveness improves with the increase of the laser weapon output power,the laser launcher diameter,and the photoelectric sensor pixel.But the SoS effectiveness promotion brought by the photoelectric sensor pixel is limited.The results can be used for the development of tactical airborne laser weapon.
文摘In order to maximize the lethality and reversibility of the non-lethal laser weapons(NLLW) at the same time and thus provide a theoretical basis for the R&D of laser weapons in the future,this paper accurately analyzed the limiting biological dose of irreversible damage to human skin caused by the NLLW.Firstly,based on the burn theory in medicine and the actual tactical background,this paper redefines the evaluation criteria of the limiting laser dose of NLLW to the human body.Secondly,on the basis of anatomical knowledge,a 5-layer finite element model(FEM) of superficial skin is proposed,constructed and verified,which can accurately describe the limiting reversible damage.Based on the optimized Pennes bioheat transfer equation,the diffusion approximation theory,the modified Beer-Lambert law,the Arrhenius equation,and combined with dynamic thermophysical parameters,this paper highly restored the temperature distribution and accurately solved the necrotic tissue distribution inside the human skin irradiated by 1064 nm laser.Finally,it is concluded that the maximum human dose of the1064 nm NLLW is 8.93 J/cm^(2),8.29J/cm^(2),and 8.17 J/cm^(2) when the light spots are 5 mm,10 mm and15 mm,respectively,and the corresponding output power of the weapon is 46.74 W,173.72 W and384.77 W.Simultaneously,the temperature and damage distribution in the tissue at the time of ultimate damage are discussed from the axial and radial dimensions,respectively.The conclusions and analysis methods proposed in this paper are of great guiding significance for future research in military,medical and many other related fields.
文摘In our highly globalized but culturally divided world whereby so-called defense industry is implied as both innovative and progressive, as contemporaneously the international legal doctrine is conceived to be static and conservative. This doubly bound narrative itself is almost as old as international law wherein the most striking contradictory moments happened in the era of, and between two world wars: In such a way that our thinking of legal and other fields owe much more thereto than we realize today. In this study, it is purported to call attention to some key understandings which may be termed as militarist humanitarianism, humanitarian militarism, or, optimist scientism, and pessimist humanitarianism. As such, it is intended to examine international issues pertaining to humanitarianism and militarism through the lens of different perspectives, doctrine-itself and their history as enshrined in the Protocol IV on Blinding Laser Weapons, issues which are almost totally neglected in the mainstream media and academia.
基金National Natural Science Foundation of China(Grant Nos.62005276,62175234)the Scientific and Technological Development Program of Jilin,China(Grant No.20230508111RC)to provide fund for this research。
文摘Laser anti-drone technology is entering the sequence of actual combat,and it is necessary to consider the vulnerability of typical functional parts of UAVs.Since the concept of"vulnerability"was proposed,a variety of analysis programs for battlefield targets to traditional weapons have been developed,but a comprehensive assessment methodology for targets'vulnerability to laser is still missing.Based on the shotline method,this paper proposes a method that equates laser beam to shotline array,an efficient vulnerability analysis program of target to laser is established by this method,and the program includes the circuit board and the wire into the vulnerability analysis category,which improves the precision of the vulnerability analysis.Taking the UAV engine part as the target of vulnerability analysis,combine with the"life-death unit method"to calculate the laser penetration rate of various materials of the UAV,and the influence of laser weapon system parameters and striking orientation on the killing probability is quantified after introducing the penetration rate into the vulnerability analysis program.The quantitative analysis method proposed in this paper has certain general expansibility,which can provide a fresh idea for the vulnerability analysis of other targets to laser.
基金supported by the National Natural Science Foun-dation of China(Grant No.52275099).
文摘The acquisition,tracking,and pointing(ATP)system is widely used in target tracking,counter-UAV operations,and other related fields.As UAV technology develops,there is a growing demand to enhance the tracking capabilities of ATP systems.However,in practical applications,ATP systems face various design constraints and functional limitations,making it infeasible to indefinitely improve hardware performance to meet tracking requirements.As a result,tracking algorithms are required to execute increasingly complex tasks.This study introduces a multi-rate feedforward predictive controller to address issues such as low image feedback frequency and significant delays in ATP systems,which lead to tracking jitter,poor tracking performance,low precision,and target loss.At the same time,the pro-posed approach aims to improve the tracking capabilities of ATP systems for high-speed and highly maneuverable targets under conditions of low sampling feedback rates and high feedback delays.The method suggested is also characterized by its low order,fast response,and robustness to model parameter variations.In this study,an actual ATP system is built for target tracking test,and the proposed algorithm is fully validated in terms of simulation and actual system application verification.Results from both simulations and experiments demonstrate that the method effectively compensates for delays and low sampling rates.For targets with relative angular velocities ranging from 0 to 90°/s and angular accelerations between 0 and 470°/s^(2),the system improved tracking accuracy by 70.0%-89.9%at a sampling frequency of 50 Hz and a delay of 30 m s.Moreover,the compensation algorithm demonstrated consistent performance across actuators with varying characteristics,further confirming its robustness to model insensitivity.In summary,the proposed algorithm considerably enhances the tracking accuracy and capability of ATP systems for high-speed and highly maneuverable targets,reducing the probability of target loss from high speed.This approach offers a practical solution for future multi-target tracking across diverse operational scenarios.
文摘高能激光武器(high energy laser weapon system,HELWS)依托光速打击、无惯性毁伤及无限弹药等特性,正颠覆传统动能防御模式,跃升为大国军事博弈焦点。结合全球技术进展与实战案例,梳理HELWS从技术验证到实战运用的演进脉络。重点聚焦高能激光技术发展,系统梳理了中国“神光”聚变装置实现的兆瓦级技术突破及LW-30/60战术激光武器列装进展,通过横向对比美、俄、德、以等国的技术路线,揭示差异化发展格局。进一步探讨了HELWS在近程防御、反导拦截、无人机压制及城市战中的效能优势,并展望其在太空攻防、生化消杀等领域的颠覆性潜力,为定向能武器的体系化部署与战略博弈提供了多维理论框架。