期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Laser-thermal reduction synthesis of high-entropy alloys towards high-performance pH universal hydrogen evolution reaction
1
作者 Yingjie Yu Qi Wang +6 位作者 Xiaohan Li Qiao Xie Ke Xu Shaowei Zhang Haijun Zhang Mingxing Gong Wen Lei 《Nano Materials Science》 2025年第3期400-408,共9页
Owing to their multi-elemental compositions and unique high-entropy mixing states,high-entropy alloy(HEA)nanoparticles(NPs)displaying tunable activities and enhanced stabilities thus have become a rapidly growing area... Owing to their multi-elemental compositions and unique high-entropy mixing states,high-entropy alloy(HEA)nanoparticles(NPs)displaying tunable activities and enhanced stabilities thus have become a rapidly growing area of research in recent years.However,the integration of multiple elements into HEA NPs at the nanoscale remains a formidable challenge,especially when it comes to the precise control of particle size,elemental composition and content.Herein,a simple and universal high-energy laser assisted reduction approach is presented,which achieves the preparation of HEA NPs with a wide range of multi-component,controllable particle sizes and constitution on different substrates within seconds.Laser on carbon nanofibers induced momentary high-temperature annealing(>2000 K and ramping/cooling rates>10^(5)K s^(-1))to successfully decorate HEA NPs up to twenty elements with excellent compatibility for large-scale synthesis(20.0×20.0 cm^(2)of carbon cloth).The IrPdPtRhRu exhibit robust electrocatalytic hydrogen evolution reaction(HER)activities and low overpotentials of 16,28,and 12 mV at a current density of 10 mA cm^(-2)in alkaline(1.0 M KOH),alkaline simulated seawater(1.0 M KOH+0.5 M NaCl),and acidic(0.5 M H_(2)SO_(4))electrolytes,respectively,and excellent stability(7 days and>2000 cycles)at the alkaline HER. 展开更多
关键词 High-entropy alloy nanoparticle laser assisted reduction Hydrogen production
在线阅读 下载PDF
Laser-Assisted Reduction of Highly Conductive Circuits Based on Copper Nitrate for Flexible Printed Sensors 被引量:12
2
作者 Shi Bai Shigang Zhang +4 位作者 Weiping Zhou Delong Ma Ying Ma Pooran Joshi Anming Hu 《Nano-Micro Letters》 SCIE EI CAS 2017年第4期49-61,共13页
Stretchable electronic sensing devices are defining the path toward wearable electronics. High-performance flexible strain sensors attached on clothing or human skin are required for potential applications in the ente... Stretchable electronic sensing devices are defining the path toward wearable electronics. High-performance flexible strain sensors attached on clothing or human skin are required for potential applications in the entertainment,health monitoring, and medical care sectors. In this work,conducting copper electrodes were fabricated onpolydimethylsiloxane as sensitive stretchable microsensors by integrating laser direct writing and transfer printing approaches. The copper electrode was reduced from copper salt using laser writing rather than the general approach of printing with pre-synthesized copper or copper oxide nanoparticles. An electrical resistivity of 96 l X cm was achieved on 40-lm-thick Cu electrodes on flexible substrates. The motion sensing functionality successfully demonstrated a high sensitivity and mechanical robustness.This in situ fabrication method leads to a path toward electronic devices on flexible substrates. 展开更多
关键词 laser direct writing Copper circuit Stretchable sensor laser reduction
在线阅读 下载PDF
Generation of super-resolved optical needle and multifocal array using graphene oxide metalenses 被引量:23
3
作者 Hongtao Wang Chenglong Hao +4 位作者 Han Lin Yongtian Wang Tian Lan Chengwei Qiu Baohua Jia 《Opto-Electronic Advances》 SCIE 2021年第2期1-11,共11页
Ultrathin flat metalenses have emerged as promising alternatives to conventional diffractive lenses,offering new possibilities for myriads of miniaturization and interfacial applications.Graphene-based materials can a... Ultrathin flat metalenses have emerged as promising alternatives to conventional diffractive lenses,offering new possibilities for myriads of miniaturization and interfacial applications.Graphene-based materials can achieve both phase and amplitude modulations simultaneously at a single position due to the modification of the complex refractive index and thickness by laser conversion from graphene oxide into graphene like materials.In this work,we develop graphene oxide metalenses to precisely control phase and amplitude modulations and to achieve a holistic and systematic lens design based on a graphene-based material system.We experimentally validate our strategies via demonstrations of two graphene oxide metalenses:one with an ultra-long(~16λ)optical needle,and the other with axial multifocal spots,at the wavelength of 632.8 nm with a 200 nm thin film.Our proposed graphene oxide metalenses unfold unprecedented opportunities for accurately designing graphene-based ultrathin integratable devices for broad applications. 展开更多
关键词 femtosecond laser reduction graphene oxide metalens multifocal spots optical needle
在线阅读 下载PDF
Generation of nanomaterials by reactive laser-synthesis in liquid 被引量:2
4
作者 Laysa M.Frias Batista Ashish Nag +1 位作者 Victoria K.Meader Katharine Moore Tibbetts 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2022年第7期3-47,共45页
Nanomaterials with tailored structures and surface chemistry are in high demand, as these materials play increasingly important roles in biology, catalysis, energy storage, and manufacturing. Their heightened demand h... Nanomaterials with tailored structures and surface chemistry are in high demand, as these materials play increasingly important roles in biology, catalysis, energy storage, and manufacturing. Their heightened demand has attracted attention towards the development of synthesis routes, particularly, laser-synthesis techniques. These efforts drove the refinement of laser ablation in liquid(LAL) and related methods over the past two decades and have led to the emergence of reactive laser-synthesis techniques that exploit these methods’ characteristic, non-equilibrium conditions. Reactive laser-synthesis approaches foster unique chemical reactions that enable the formation of composite products like multimetallic nanoparticles, supported nanostructures, and complex minerals. This review will examine emerging reactive laser-synthesis methods in the context of established methods like LAL.The focus will be on the chemical reactions initiated within the laser plasma, with the goal of understanding how these reactions lead to the formation of unique nanomaterials. We will provide the first systematic review of laser reaction in liquid(LRL) in the literature, and bring a focus to the chemical reaction mechanisms in LAL and reactive-LAL techniques that have not yet been emphasized in reviews. Discussion of the current challenges and future investigative opportunities into reactive laser-synthesis will impart guidance for researchers interested in designing reactive laser-synthesis approaches to novel nanomaterial production. 展开更多
关键词 laser ablation in liquids laser reduction in liquids NANOPARTICLES
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部