期刊文献+
共找到184篇文章
< 1 2 10 >
每页显示 20 50 100
High-Temperature Oxidation Property and Corrosion and Wear Resistance of Laser Cladding Co-based Coatings on Pure Zr Surface
1
作者 Xia Chaoqun Yang Bo +3 位作者 Liu Shuguang Zhang Bo Zhong Hua Li Qiang 《稀有金属材料与工程》 北大核心 2025年第6期1397-1409,共13页
Co-based alloy coating was prepared on Zr alloy using laser melting and cladding technique to study the difference in the high-temperature oxidation behavior between pure metal Co coatings and Co-T800 alloy coatings,a... Co-based alloy coating was prepared on Zr alloy using laser melting and cladding technique to study the difference in the high-temperature oxidation behavior between pure metal Co coatings and Co-T800 alloy coatings,as well as the wear resistance of the coatings.Besides,the effect of changing the laser melting process on the coatings was also investigated.The oxidation mass gain at 800–1200℃and the high-temperature oxidation behavior during high-temperature treatment for 1 h of two coated Zr alloy samples were studied.Results show that the Co coating and the Co-T800 coating have better resistance against high-temperature oxidation.After oxidizing at 1000℃for 1 h,the thickness of the oxide layer of the uncoated sample was 241.0μm,whereas that of the sample with Co-based coating is only 11.8–35.5μm.The friction wear test shows that the depth of the abrasion mark of the coated sample is only 1/2 of that of the substrate,indicating that the hardness and wear resistance of the Zr substrate are greatly improved.The disadvantage of Co-based coatings is the inferior corrosion resistance in 3.5wt%NaCl solution. 展开更多
关键词 Zr metal laser cladding Co-based coating high-temperature oxidation resistance wear resistance
原文传递
Influence of Si Content on the Mechanical and Tribological Properties of Laser Cladding FeCoNiBSiNb Amorphous Alloy Composite Materials
2
作者 DU Xian YU Dongxin +3 位作者 LIU Jian CAI Zhihai HE Dongyu WANG Xiaolong 《材料导报》 北大核心 2025年第12期156-162,共7页
Aseries of [(Fe_(0.6)Co_(0.2)Ni_(0.2))_(0.75-0.03x)B_(0.2)Si_(0.05+0.03x)]_(96)Nb_(4) amorphous alloy composite coatings were prepared by adjusting the silicon content(x=0,1,2,3,4,5,and 6)and their microstructures and... Aseries of [(Fe_(0.6)Co_(0.2)Ni_(0.2))_(0.75-0.03x)B_(0.2)Si_(0.05+0.03x)]_(96)Nb_(4) amorphous alloy composite coatings were prepared by adjusting the silicon content(x=0,1,2,3,4,5,and 6)and their microstructures and tribological properties were investigated by laser cladding technique.Additionally,the effect of Si on the glass forming ability(GFA)of the layers was understood.Results show that an appropriate Si content can refine the microstructure of the FeCoNiBSiNb laser cladding layers and improve the mechanical and tribological properties.The hardness of the coating layer increases monotonically with the Si content.At the Si content of 4.8at%(x=0),the coating layer exhibits a relatively low hardness(734.2HV 0.1).Conversely,at the silicon content of 13.44at%(x=3),the coating layer exhibits the highest hardness(1106HV 0.1).The non-crystalline content and tensile strength exhibit an initial increase,followed by a subsequent decrease.At x=2,the coating exhibits its maximum fracture strength(2880 MPa).However,when x>2,the fracture strength of the coating decreases with an increase in x.Conversely,with an increase in Si content,the wear volume loss initially decreases and then increases.At a Si content of 10.56at%(x=2),the coating exhibits the highest non-crystalline content(42%),the highest tensile strength(2880 MPa),and the most favorable dry friction performance. 展开更多
关键词 laser cladding FeCoNiBSiNb composite layer tribological property Si content
在线阅读 下载PDF
Review of rare earth oxide doping-modified laser cladding of Fe-based alloy coatings
3
作者 Han-yu Zhou Li-yao Li +4 位作者 Yang Zhao Ming-xue Shen Huo-ping Zhao Ye-long Xiao Shao-peng Liu 《China Foundry》 2025年第1期12-22,共11页
Conventional Fe-C alloy parts used in mechanical transmission and braking systems exposed to the external environment often suffer from wear and corrosion failures.Surface coating strengthening technologies have been ... Conventional Fe-C alloy parts used in mechanical transmission and braking systems exposed to the external environment often suffer from wear and corrosion failures.Surface coating strengthening technologies have been explored to improve the surface performance and prolong service life of these parts.Among these technologies,laser cladding has shown promise in producing Fe-based alloy coatings with superior interfacial bonding properties to the Fe-C alloy substrate.Additionally,the microstructure of the Fe-based alloy coating is more uniform and the grain size is finer than that of surfacing welding,thermal spraying,and plasma cladding,and the oxide film of alloying elements on the coating surface can improve the coating performance.However,Fe-based alloy coatings produced by laser cladding typically exhibit lower hardness,lower wear resistance,corrosion resistance,and oxidation resistance compared to coatings based on Co and Ni alloys.Moreover,these coatings are susceptible to defects such as pores and cracks.To address these limitations,the incorporation of rare-earth oxides through doping in the laser cladding process has garnered significant attention.This approach has demonstrated substantial improvements in the microstructure and properties of Fe-based alloy coatings.This paper reviewed recent research on the structure and properties of laser-cladded Fe-based alloy coatings doped with various rare earth oxides,including La_(2)O_(3),CeO_(2),and Y_(2)O_(3).Specifically,it discussed the effects of rare earth oxides and their concentrations on the structure,hardness,friction,wear,corrosion,and oxidation characteristics of these coatings.Furthermore,the mechanisms by which rare earth oxides influence the coating’s structure and properties were summarized.This review aimed to serve as a valuable reference for the application and advancement of laser cladding technology for rare earth modified Fe-based alloy coatings. 展开更多
关键词 Fe-based alloys laser cladding rare-earth oxides MICROSTRUCTURE tribological properties
在线阅读 下载PDF
Effect of WC morphology on microstructure and properties of Stellite 6/WC composite layer by laser cladding
4
作者 Yan Yin Hui Li +4 位作者 Ruihua Zhang Yingbo Liu Qian Zheng Xunlong Ma Pengyu Liu 《China Welding》 2025年第3期239-251,共13页
In order to enhance the wear resistance of 45 steel,a WC/Stellite 6 composite layer with 30%WC which with different morphologies(spherical and irregular)was prepared on the surface of 45 steel by laser cladding techno... In order to enhance the wear resistance of 45 steel,a WC/Stellite 6 composite layer with 30%WC which with different morphologies(spherical and irregular)was prepared on the surface of 45 steel by laser cladding technology.The effects of WC morphology on the phase composition,microstructure,microhardness,and wear resistance of the cladding layer were compared and analyzed.The res-ults show that the surface of the cladding layer was well formed.M_(23)C_(6),M_(7)C_(3),WC,and W_(2)C exist in both cladding layers.With the ad-dition of spherical WC,the diffraction peaks of γ-Co appear on the left side of the main peak of Co6W6C.The area of intergranular carbides accounts for a large proportion in the surface layer which with the fine grains.During the process of laser cladding the spherical WC particles with loose structure are prone to melting,including their interior.However,the melting amount of irregular WC particles is finite,which only occurs on the periphery of the particles,and the particle interior is relatively intact.The microhard-ness of two cladding layers gradient increases from the substrate to the surface layer.The surface layer added spherical WC has high-er microhardness,which reaches 790.6 HV1.Nevertheless,the wear resistance of the cladding layer added irregular WC is better than that of the cladding layer added spherical WC.The reason is because that the incompletely melted irregular WC particles are uni-formly distributed in the cladding layer which provided the support points for the cladding layer matrix during the wear process,the wear of the cladding layer by the grinding pair is reduced consequently. 展开更多
关键词 laser cladding Stellite 6 WC morphology Composite cladding layer Wear resistance
在线阅读 下载PDF
Effect of Y_(2)O_(3) on microstructure and properties of CoCrFeNiTiNb high entropy alloy coating on Ti-6Al-4V surface by laser cladding 被引量:11
5
作者 Zhen Li Wei Zhao +4 位作者 Kedong Yu Ning Guo Guangchun Xiao Zhiming Wang Hui Zhang 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第3期586-599,I0006,共15页
The effects of Y_(2)O_(3) on the microstructure, microhardness, wear resistance, high-temperature oxidation resistance, hot corrosion resistance, and electrochemical corrosion behaviour of CoCrFeNiTiNb high entropy al... The effects of Y_(2)O_(3) on the microstructure, microhardness, wear resistance, high-temperature oxidation resistance, hot corrosion resistance, and electrochemical corrosion behaviour of CoCrFeNiTiNb high entropy alloy coatings formed on Ti-6Al-4V alloy surfaces were studied. The results show that the addition of Y_(2)O_(3) changes the proportion of the phase but does not change its type. The average grain size is only 1/4.7 of that of the high entropy alloy(HEA) coating, and the fine-grained strengthening leads to increases in the microhardness and wear resistance of 21.8% and 26.9%, respectively. The addition of Y_(2)O_(3) enhances the denseness and bonding properties of the oxide and corrosion product layers, reducing the oxidation and hot corrosion rates by 60.3% and 40.3%, respectively. The addition of Y_(2)O_(3) doubles the corrosion resistance which is attributed to the refinement of the grains, the increased proportion of HCP and TiN, and the weakening of galvanic coupling corrosion. 展开更多
关键词 laser cladding High entropy alloy coatings Rare earths Wear properties High temperature properties Electrochemical corrosion
原文传递
Microstructure and Wear Resistance of Ni-Cr Alloy Laser Cladding Layer with High Cr Content 被引量:2
6
作者 Pan Chaoyang Liu Zongde +4 位作者 Shen Yue Lu Xinjie Mao Jie Wang Xinyu Li Jiaxuan 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2024年第9期2438-2445,共8页
Four kinds of Ni-xCr alloy laser cladding layers(x=20,40,60 and 80,wt%)were prepared by high-speed laser cladding technique,and the relationship between microstructure and wear resistance of Ni-Cr alloy laser cladding... Four kinds of Ni-xCr alloy laser cladding layers(x=20,40,60 and 80,wt%)were prepared by high-speed laser cladding technique,and the relationship between microstructure and wear resistance of Ni-Cr alloy laser cladding layers with different Cr contents was investigated.The results show that the four Ni-Cr alloy laser cladding layers all have reticulated dendritic structures.Among them,Ni-20Cr and Ni-40Cr are single-phaseγ-(Ni,Cr)solid solutions,and their wear mechanisms are adhesive wear and abrasive wear.With the increase in Cr content,Ni-60Cr and Ni-80Cr areγ-(Ni,Cr)phase and Cr phase,as well as Cr-rich precipitates,and their wear mechanisms are adhesive wear,abrasive wear and fatigue wear.A moderate increase in Cr content can enhance the hardness and wear resistance of Ni-Cr alloy laser cladding layer.However,excessive addition of Cr results in the precipitation of Cr-rich precipitates.The hardness of these precipitates is 2430.4 MPa,which is lower than the hardness of the Ni-60Cr matrix(4024.86 MPa)and Ni-80Cr matrix(7022.68 MPa).A hardness transition zone exists between the Cr-rich precipitates and the matrix.Cracks are likely to initiate and expand in this zone,leading to deep spalling,which is not conducive to the wear-resistant properties of the laser cladding layer.Ni-80Cr has the highest hardness,but its high Cr content leads to a large number of penetrating cracks and Cr-rich precipitates on the surface,ultimately resulting in the worst wear resistance.Ni-60Cr exhibits the best wear resistance due to its high hardness and dense microstructure. 展开更多
关键词 Ni-Cr alloy laser cladding Cr-rich precipitate wear resistance
原文传递
Formation and properties of a Zr-based amorphous coating by laser cladding 被引量:1
7
作者 Ning Zhang Ying Liu +1 位作者 Wei Yang Shu-Jie Pang 《Rare Metals》 SCIE EI CAS CSCD 2024年第4期1809-1814,共6页
(Zr_(0.53)Al_(0.1)Ni_(0.05)Cu_(0.3)Ti_(0.02))_(99)Y_1(at%)coating with amorphous layer of about 180μm thick was prepared on a steel substrate by using laser cladding method.The coating is compact and shows good metal... (Zr_(0.53)Al_(0.1)Ni_(0.05)Cu_(0.3)Ti_(0.02))_(99)Y_1(at%)coating with amorphous layer of about 180μm thick was prepared on a steel substrate by using laser cladding method.The coating is compact and shows good metallurgical bonding with substrate.The microstructure,microhardness and corrosion behavior along the depth from the coating surface to the substrate were investigated.It is found that a gradient structure consisted of amorphous surface layer,amorphous-crystalline transitional layer and substrate is formed after the laser cladding.The microhardness and corrosion behavior exhibit variation with the microstructural evolution at different depths from the coating surface.The microhardness and corrosion resistance in 3.5 wt%NaCl solution of the amorphous surface layer are comparable to those of the as-cast Zr-based BMG with the same composition,and higher than those of the steel substrate. 展开更多
关键词 laser cladding Amorphous coating MICROSTRUCTURE HARDNESS Corrosion resistance
原文传递
Preparation of Laser Cladding Coating Undercooling Cu-based Alloy and Co on Non-equilibrium Solidification Structure 被引量:1
8
作者 田徐铭 CAO Shichao +3 位作者 HOU Kai HOU Xiaopeng WANG Hongfu 张煜 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期463-472,共10页
The effect of the gradient content of Co element on the solidification process of Cu-based alloy under deep under cooling conditions was explored.The non-equilibrium solidification structure of the under cooled alloy ... The effect of the gradient content of Co element on the solidification process of Cu-based alloy under deep under cooling conditions was explored.The non-equilibrium solidification structure of the under cooled alloy samples were analyzed.It is found that the rapidly solidified alloy has undergone twice grain refinement during the undercooling process.Characterization and significance of the maximum undercooling refinement structure of Cu60Ni35Co5 at T=253 K were analyzed.High-density defects were observed,such as dislocations,stacking faults networks,and twinning structures.The standard FCC diffraction pattern represents that it is still a single-phase structure.Based on the metallographic diagram,EBSD and TEM data analysis,it is illustrated that the occurrence of grain refinement under high undercooling is due to stress induced recrystallization.In addition,the laser cladding technology is used to coat Co-based alloy(Stellite12) coating on 304 stainless steel substrate;the microstructure of the coating cross-section was analyzed.It was found that the microstructure of the cross-section is presented as columnar crystals,planar crystals,and disordered growth direction,so that the coating has better hardness and wear resistance.By electrochemical corrosion of the substrate and coating,it can be seen that the Co and Cr elements present in the coating are more likely to form a dense passivation film,which improved the corrosion resistance of the coating. 展开更多
关键词 non-equilibrium solidification structure UNDERCOOLING RECRYSTALLIZATION laser cladding coating
原文传递
Microstructure and Properties of AlCoCrFeNiTi High-Entropy Alloy Coatings Prepared by Laser Cladding 被引量:2
9
作者 Mengxian Li Zhiping Sun +1 位作者 Zhaomin Xu Zhiming Wang 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第2期50-61,共12页
21-4N(5Cr21Mn9Ni4N)is extensively employed in the production of engine valves,operating under severe conditions.Apart from withstanding high-temperature gas corrosion,it must also endure the impact of cylinder explosi... 21-4N(5Cr21Mn9Ni4N)is extensively employed in the production of engine valves,operating under severe conditions.Apart from withstanding high-temperature gas corrosion,it must also endure the impact of cylinder explosion pressure.The predominant failure mode of 21-4N valves is abrasive wear.Surface coatings serve as an effective approach to prevent such failures.In this investigation,Laser cladding technology was utilized to fabricate AlCoCrFeNiTi high entropy alloy coatings onto the surfaces of 21-4N valves.According to the findings,the cladding zone has a normal dendritic microstructure,a good substrate-to-cladding layer interaction,and no obvious flaws.In terms of hardness,the cladding demonstrates an average hardness of 620 HV.The hardness has increased by 140%compared to the substrate.The average hardness of the cladding remains at approximately 520 HV even at elevated temperatures.Regarding frictional wear performance,between 400℃and 800℃,the cladding layer exhibits an average friction coefficient of 0.4,with the primary wear mechanisms being abrasive wear,adhesive wear,and a minor degree of plastic deformation. 展开更多
关键词 high entropy alloy laser cladding MICROSTRUCTURE microstructure and properties
在线阅读 下载PDF
Research on the process and molten pool flow mechanism of laser cladding Inconel 625 被引量:1
10
作者 Hu Xiaofeng Pan Jiajing +3 位作者 An Zhou Lyu Xingyue Lu Kun Wang Zifu 《China Welding》 2024年第4期32-41,共10页
In order to investigate the process of laser cladding(LC)Inconel 625 alloy powder on Q235 steel plate,this paper focuses on analyzing the effects of different process parameters on the temperature field,stress field a... In order to investigate the process of laser cladding(LC)Inconel 625 alloy powder on Q235 steel plate,this paper focuses on analyzing the effects of different process parameters on the temperature field,stress field and flow behavior of the molten pool through a combination of finite element simulation and experiment.The simulation part established a geometric model,applied the Goldak double el-lipsoid heat source model,and simulated the LC process by varying the laser power and scanning speed.For the experimental part,LC equipment was used,parameters such as laser power and scanning speed were adjusted,and the molten pool dynamics were observed by in-frared temperature measurement and high-speed photography.The results show that the laser power and scanning speed are the key factors affecting the quality of cladding,and the experimental observation coincides with the simulation results,which verifies the validity of the simulation method and provides theoretical basis and experimental support for the optimization of the LC process. 展开更多
关键词 laser cladding Inconel 625 numerical simulation temperature field molten pool flow
在线阅读 下载PDF
Process Parameters Optimization of Laser Cladding for HT200 with 316L Coating Based on Response Surface Method
11
作者 KONG Huaye ZHU Xijing +2 位作者 LI Zejun ZHANG Jinzhe LI Zuoxiu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1569-1579,共11页
In order to improve the sealing surface performance of gray cast iron gas gate valves and achieve precise molding control of the cladding layer,as well as to reveal the influence of laser cladding process parameters o... In order to improve the sealing surface performance of gray cast iron gas gate valves and achieve precise molding control of the cladding layer,as well as to reveal the influence of laser cladding process parameters on the morphology and structure of the cladding layer,we prepared the 316L coating on HT 200 by using Design-Expert software central composite design(CCD)based on response surface analysis.We built a regression prediction model and analyzed the ANOVA with the inspection results.With a target cladding layer width of 3.5 mm and height of 1.3 mm,the process parameters were optimized to obtain the best combination of process parameters.The microstructure,phases,and hardness variations of the cladding layer from experiments with optimal parameters were analyzed by the metallographic microscope,confocal microscope,and microhardness instrument.The experimental results indicate that laser power has a significant impact on the cladding layer width,followed by powder feed rate;scan speed has a significant impact on the cladding layer height,followed by powder feed rate.The HT200 substrate and 316L can metallurgically bond well,and the cladding layer structure consists of dendritic crystals,columnar crystals,and equiaxed crystals in sequence.The optimal process parameter combination satisfying the morphology requirements is laser power(A)of 1993 W,scan speed(B)of 8.949 mm/s,powder feed rate(C)of 1.408 r/min,with a maximum hardness of 1564.3 HV0.5,significantly higher than the hardness of the HT200 substrate. 展开更多
关键词 HT200 laser cladding 316L stainless steel response surface methodology process parameter optimization
原文传递
Microstructure and high temperature tribological behavior of laser cladding Ni60A alloys coatings on 45 steel substrate 被引量:22
12
作者 张健 胡玉 +2 位作者 谭小军 郭亮 张庆茂 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第5期1525-1532,共8页
The crack-free Ni60 A coating was fabricated on 45 steel substrate by laser cladding and the microstructure including solidification characteristics, phases constitution and phase distribution was systematically inves... The crack-free Ni60 A coating was fabricated on 45 steel substrate by laser cladding and the microstructure including solidification characteristics, phases constitution and phase distribution was systematically investigated. The high temperature friction and wear behavior of the cladding coating and substrate sliding against GCr15 ball under different loads was systematically evaluated. It was found that the coating has homogenous and fine microstructure consisting of γ(Ni) solid solution, a considerable amount of network Ni-Ni3 B eutectics, m^23C6 with the floret-shape structure and Cr B with the dark spot-shape structure uniformly distributing in interdendritic eutectics. The microhardness of the coating is about 2.6 times as much as that of the substrate. The coating produces higher friction values than the substrate under the same load condition, but the friction process on the coating keeps relatively stable. Wear rates of the coating are about 1/6.2 of that of the substrate under the higher load(300 g). Wear mechanism of the substrate includes adhesion wear, abrasive wear, severe plastic deformation and oxidation wear, while that of the coating is merely a combination of mild abrasive wear and moderate oxidation wear. 展开更多
关键词 laser cladding Ni60A alloy 45 steel MICROSTRUCTURE tribological behavior
在线阅读 下载PDF
Synthesis of Y_2O_3 particle enhanced Ni/TiC composite on TC4 Ti alloy by laser cladding 被引量:19
13
作者 张可敏 邹建新 +2 位作者 李军 于治水 王慧萍 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第8期1817-1823,共7页
A Y2O3 particle enhanced Ni/TiC composite coating was fabricated in-situ on a TC4 Ti alloy by laser surface cladding. The phase component, microstructure, composition distribution and properties of the composite layer... A Y2O3 particle enhanced Ni/TiC composite coating was fabricated in-situ on a TC4 Ti alloy by laser surface cladding. The phase component, microstructure, composition distribution and properties of the composite layer were investigated. The composite layer has graded microstructures and compositions, due to the fast melting followed by rapid solidification and cooling during laser cladding. The TiC powders are completely dissolved into the melted layer during melting and segregated as fine dendrites when solidified. The size of TiC dendrites decreases with increasing depth. Y2O3 fine particles distribute in the whole clad layer. The Y2O3 particle enhanced Ni/TiC composite layer has a quite uniform hardness along depth with a maximum value of HV1380, which is 4 times higher than the initial hardness. The wear resistance of the Ti alloy is significantly improved after laser cladding due to the high hardness of the composite coating. 展开更多
关键词 TC4 Ti alloy Ni/TiC composite Y2O3 laser cladding HARDNESS surface modification
在线阅读 下载PDF
Microstructure and tribological properties of laser cladding Fe-based coating on pure Ti substrate 被引量:20
14
作者 陈建敏 郭纯 周健松 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第9期2171-2178,共8页
Fe-based coating was produced on pure Ti substrate by the laser cladding technology. The composition and microstructure of the fabricated coating were analyzed by scanning electron microscopy (SEM), X-ray diffracti... Fe-based coating was produced on pure Ti substrate by the laser cladding technology. The composition and microstructure of the fabricated coating were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM) technique. The tribological properties were tested through sliding against AISI52100 steel ball at different normal loads and sliding speeds. Besides, the morphologies of the worn surfaces and wear debris were analyzed by scanning electron microscopy (SEM) and three dimensional (3D) non-contact surface mapping. The results show that the prepared Fe-based coating has a high hardness of about 860 HV0.2 and exhibits an average wear rate of (0.70-2.32)×10-6 mm3/(N-m), showing that the Fe-based coating can greatly improve the wear resistance of pure Ti substrate. The wear mechanism of the coating involves moderate adhesive and abrasive wear. 展开更多
关键词 TITANIUM Fe-based coating laser cladding WEAR
在线阅读 下载PDF
Interface characteristics of Al_2O_3-13%TiO_2 ceramic coatings prepared by laser cladding 被引量:4
15
作者 高雪松 田宗军 +1 位作者 刘志东 沈理达 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2498-2503,共6页
Al2O3-13%TiO2 (mass fraction) coatings, prepared by laser cladding on nickel-based alloy, were heated using high frequency induction sources. The coating microstructure and the interface between bond coating and cer... Al2O3-13%TiO2 (mass fraction) coatings, prepared by laser cladding on nickel-based alloy, were heated using high frequency induction sources. The coating microstructure and the interface between bond coating and ceramic coating were characterized by SEM, XRD and EDS. The results show that two-layer substructure exists in the ceramic coating: one layer evolving from fully melted region where the sintered grains grow fully; another layer resembling the liquid-phase-sintered structure consisting of three-dimensional net where the melted Al2O3 particles are embedded in the TiO2-rich matrix. The mechanism of the two-layer substructure formation is also explained in terms of the melting and flattening behavior of the powders during laser cladding processing. The spinel compounds NiAl2O4 and acicular compounds Cr2O3 are discovered in the interface between bond coating and ceramic coating. It proves that the chemical reactions in the laser cladding process will significantly enhance the coating adhesion. 展开更多
关键词 ceramic coating nickel alloy laser cladding Al2O3-TiO2 high frequency induction
在线阅读 下载PDF
Corrosion behavior of Hastelloy C22 coating produced by laser cladding in static and cavitation acid solution 被引量:3
16
作者 王勤英 白树林 刘宗德 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第5期1610-1618,共9页
The Hastelloy C22 coatings on Q235 steel substrate were produced by high power diode laser cladding technique. Their corrosion behaviors in static and cavitation hydrochloric, sulfuric and nitric acid solutions were i... The Hastelloy C22 coatings on Q235 steel substrate were produced by high power diode laser cladding technique. Their corrosion behaviors in static and cavitation hydrochloric, sulfuric and nitric acid solutions were investigated. The electrochemical results show that corrosion resistance of coatings in static acid solutions is higher than that in cavitation ones. In each case, coating corrosion resistance in descending order is in nitric, sulfuric and hydrochloric acid solutions. Obvious erosion-corrosion morphology and serious intercrystalline corrosion of coating are noticed in cavitation hydrochloric acid solution. This is mainly ascribed to the aggressive ions in hydrochloric acid solution and mechanical effect from cavitation bubbles collapse. While coating after corrosion test in cavitation nitric acid solution shows nearly unchanged surface morphology. The results indicate that the associated action of cavitation and property of acid solution determines the corrosion development of coating. Hastelloy C22 coating exhibits better corrosion resistance in oxidizing acid solution for the stable formation of dense oxide film on the surface. 展开更多
关键词 Hastelloy C22 coating laser cladding acid solution cavitation corrosion electrochemical impedance spectroscopy
在线阅读 下载PDF
Microstructure and properties of laser cladding of 316L stainless steel on hydraulic support tube 被引量:4
17
作者 张美美 刘斌 白培康 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2017年第2期154-161,共8页
In consideration of the special environmental conditions of coal equipment in mining, the seamless steel tube of hy-draulic prop made of 20^# carbon steel was taken as the substrate, and 316L stainless steel powder wa... In consideration of the special environmental conditions of coal equipment in mining, the seamless steel tube of hy-draulic prop made of 20^# carbon steel was taken as the substrate, and 316L stainless steel powder was used to clad the sub-strate by a fiber-coupled semiconductor laser. The microstructure of the cladding layer was determined by metalloscope. The hardness, wear resistance and corrosion resistance of the cladding layer were measured. The results show that metallurgy bind-ing interface between the cladding layer and the substrate is obtained without defects such as cracks and pores. The hardness of the cladding layer is much higher than that of the matrix, and the wear resistance and corrosion resistance are simultaneously better. According to the analysis, it is summarized that the improvement in performance of the cladding layer is closely related to the change of microstructure and the thermal effect in the cladding process. The maximum hardness occurs in the equiaxed zone, and with the grain coarsening, the hardness reduces simultaneously. In addition, the precipitated phase, hard particles and trace elements also have a great influence on the properties of the cladding layer, and they will prevent the surface from ab-rasion and reduce the plastic deformation of the matrix. It is verified that the 316L stainless steel is suitable for the 20^# steel in laser cladding repairing process. Since this study focused on coal machine equipment parts, it has certain practical significance for the repair of hydraulic equipment. 展开更多
关键词 laser cladding hydraulic support tube 316L stainless teel hardness corrosion resistance wear resistance
在线阅读 下载PDF
Segregation of niobium in laser cladding Inconel 718 superalloy 被引量:10
18
作者 龙怡彤 聂璞林 +3 位作者 李铸国 黄坚 李想 徐昕媚 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第2期431-436,共6页
Inconel 718 superalloy is widely used in the aerospace and turbine industry. Segregation of niobium appears in the laser cladding Inconel 718 superalloy and consequently influences the phase transformation during the ... Inconel 718 superalloy is widely used in the aerospace and turbine industry. Segregation of niobium appears in the laser cladding Inconel 718 superalloy and consequently influences the phase transformation during the rapid solidification. In order to control the microstructure and improve the mechanical properties of the deposited coating, the the influence of solidification conditions on the segregation of niobium and the resultant formation of Nb-rich Laves phase was studied using the microstructure observation and EDS analysis. The results show that the cooling rate has considerable influence on the microstructure of the deposited coating. High cooling rate is beneficial for suppressing the segregation of Nb and reducing the formation of Laves phase, which is believed to be detrimental to the performance of the Inconel 718 alloy. 展开更多
关键词 Inconel 718 superalloy segregation of niobium laser cladding cooling rate
在线阅读 下载PDF
Effect of rare earth elements and their oxides on tribo-mechanical performance of laser claddings:A review 被引量:67
19
作者 M.M.Quazi M.A.Fazal +3 位作者 A.S.M.A.Haseeb Farazila Yusof H.H.Masjuki A.Arslan 《Journal of Rare Earths》 SCIE EI CAS CSCD 2016年第6期549-564,共16页
Laser cladding is a promising photon-based surface engineering technique broadly utilized for fabricating harder and wear resistant composite coatings. In spite of excellent properties, the practical applications of l... Laser cladding is a promising photon-based surface engineering technique broadly utilized for fabricating harder and wear resistant composite coatings. In spite of excellent properties, the practical applications of laser claddings are relatively restricted when compared with well-established coating techniques because of their inherent defects identified as cracks, pores and inclusions. Substantial evidence suggests that the incorporation of an appropriate amount of rare earth in laser claddings can remarkably prevent these defects. Additionally, the presence of rare earth in laser claddings can notably enhance tribo-mechanical properties such as surface hardness, modulus of elasticity, fracture toughness, friction coefficient and wear rate. In this literature review, the effect of rare earth in reducing dilution and cracks susceptibility of laser claddings in addition to microstructural refinement attained was examined. Mechanical and tribological properties of these claddings along with their underlying mechanism were discussed in detail. Finally, this article summarizes current applications of laser claddings based on rare earth and was concluded with future research directions. 展开更多
关键词 laser cladding rare earth elements MICROSTRUCTURE tribo-mechanical properties
原文传递
Effects of CeO_2 on microstructure and corrosion resistance of TiC-VC reinforced Fe-based laser cladding layers 被引量:30
20
作者 张辉 邹勇 +1 位作者 邹增大 史传伟 《Journal of Rare Earths》 SCIE EI CAS CSCD 2014年第11期1095-1100,共6页
The effects of CeO2 on microstructure and corrosion resistance of TiC-VC reinforced Fe-based laser cladding layers were investigated. The results showed that carbides presented in cladding layers were TiVC2 and VC. A ... The effects of CeO2 on microstructure and corrosion resistance of TiC-VC reinforced Fe-based laser cladding layers were investigated. The results showed that carbides presented in cladding layers were TiVC2 and VC. A small quantity of CeC appeared with 2.0 wt.% CeO2 addition. The amount of lamellar pearlite increased while the amount of residual austenite decreased with increasing CeO2 addition. The corrosion resistance of cladding layers increased firstly and then decreased with the addition of CeO2 increasing. The EIS spectrum of the cladding layer without CeO2 was composed of an inductive arc at low frequency and a capacitive arc at high frequency. The cladding layer with 0.5 wt.% CeO2 addition showed the best corrosion resistance, and then the inductive arc at low frequency transformed into a capacitive arc. 展开更多
关键词 laser cladding rare earths CEO2 corrosion resistance electrochemical impedance spectroscopy
原文传递
上一页 1 2 10 下一页 到第
使用帮助 返回顶部