Formalizing complex processes and phenomena of a real-world problem may require a large number of variables and constraints,resulting in what is termed a large-scale optimization problem.Nowadays,such large-scale opti...Formalizing complex processes and phenomena of a real-world problem may require a large number of variables and constraints,resulting in what is termed a large-scale optimization problem.Nowadays,such large-scale optimization problems are solved using computing machines,leading to an enormous computational time being required,which may delay deriving timely solutions.Decomposition methods,which partition a large-scale optimization problem into lower-dimensional subproblems,represent a key approach to addressing time-efficiency issues.There has been significant progress in both applied mathematics and emerging artificial intelligence approaches on this front.This work aims at providing an overview of the decomposition methods from both the mathematics and computer science points of view.We also remark on the state-of-the-art developments and recent applications of the decomposition methods,and discuss the future research and development perspectives.展开更多
To solve large-scale optimization problems,Fragrance coefficient and variant Particle Swarm local search Butterfly Optimization Algorithm(FPSBOA)is proposed.In the position update stage of Butterfly Optimization Algor...To solve large-scale optimization problems,Fragrance coefficient and variant Particle Swarm local search Butterfly Optimization Algorithm(FPSBOA)is proposed.In the position update stage of Butterfly Optimization Algorithm(BOA),the fragrance coefficient is designed to balance the exploration and exploitation of BOA.The variant particle swarm local search strategy is proposed to improve the local search ability of the current optimal butterfly and prevent the algorithm from falling into local optimality.192000-dimensional functions and 201000-dimensional CEC 2010 large-scale functions are used to verify FPSBOA for complex large-scale optimization problems.The experimental results are statistically analyzed by Friedman test and Wilcoxon rank-sum test.All attained results demonstrated that FPSBOA can better solve more challenging scientific and industrial real-world problems with thousands of variables.Finally,four mechanical engineering problems and one ten-dimensional process synthesis and design problem are applied to FPSBOA,which shows FPSBOA has the feasibility and effectiveness in real-world application problems.展开更多
A modified bottleneck-based (MB) heuristic for large-scale job-shop scheduling problems with a welldefined bottleneck is suggested, which is simpler but more tailored than the shifting bottleneck (SB) procedure. I...A modified bottleneck-based (MB) heuristic for large-scale job-shop scheduling problems with a welldefined bottleneck is suggested, which is simpler but more tailored than the shifting bottleneck (SB) procedure. In this algorithm, the bottleneck is first scheduled optimally while the non-bottleneck machines are subordinated around the solutions of the bottleneck schedule by some effective dispatching rules. Computational results indicate that the MB heuristic can achieve a better tradeoff between solution quality and computational time compared to SB procedure for medium-size problems. Furthermore, it can obtain a good solution in a short time for large-scale jobshop scheduling problems.展开更多
The Traveling Salesman Problem(TSP)is a well-known NP-Hard problem,particularly challenging for conventional solving methods due to the curse of dimensionality in high-dimensional instances.This paper proposes a novel...The Traveling Salesman Problem(TSP)is a well-known NP-Hard problem,particularly challenging for conventional solving methods due to the curse of dimensionality in high-dimensional instances.This paper proposes a novel Double-stage Surrogate-assisted Pigeon-inspired Optimization algorithm(DOSA-PIO)to address this issue.DOSA-PIO integrates the ordering points to identify the clustering structure method for data clustering and employs a local surrogate model to assist the evolution of the Pigeon-inspired Optimization(PIO)algorithm.This combination enhances the algorithm’s ability to explore the solution space and converge to optimal solutions more effectively.Additionally,two novel approaches are introduced to extend the generalizability of continuous algorithms for solving discrete problems,enabling the adaptation of continuous optimization techniques to the discrete nature of TSP.Extensive experiments using benchmark functions and high-dimensional TSP instances demonstrate that DOSA-PIO significantly outperforms comparative algorithms in various dimensions(10D,20D,30D,50D,and 100D).The proposed algorithm provides superior solutions compared to traditional methods,highlighting its potential for solving high-dimensional TSPs.By leveraging advanced data clustering techniques and surrogate-assisted optimization,DOSA-PIO offers an effective solution for high-dimensional TSP instances,with experimental results confirming its superior performance and potential for practical applications in complex optimization problems.展开更多
Unmanned Aerial Vehicle(UAV)stands as a burgeoning electric transportation carrier,holding substantial promise for the logistics sector.A reinforcement learning framework Centralized-S Proximal Policy Optimization(C-S...Unmanned Aerial Vehicle(UAV)stands as a burgeoning electric transportation carrier,holding substantial promise for the logistics sector.A reinforcement learning framework Centralized-S Proximal Policy Optimization(C-SPPO)based on centralized decision process and considering policy entropy(S)is proposed.The proposed framework aims to plan the best scheduling scheme with the objective of minimizing both the timeout of order requests and the flight impact of UAVs that may lead to conflicts.In this framework,the intents of matching act are generated through the observations of UAV agents,and the ultimate conflict-free matching results are output under the guidance of a centralized decision maker.Concurrently,a pre-activation operation is introduced to further enhance the cooperation among UAV agents.Simulation experiments based on real-world data from New York City are conducted.The results indicate that the proposed CSPPO outperforms the baseline algorithms in the Average Delay Time(ADT),the Maximum Delay Time(MDT),the Order Delay Rate(ODR),the Average Flight Distance(AFD),and the Flight Impact Ratio(FIR).Furthermore,the framework demonstrates scalability to scenarios of different sizes without requiring additional training.展开更多
As power systems expand,solving the unit commitment problem(UCP)becomes increasingly challenging due to the curse of dimensionality,and traditional methods often struggle to balance computational efficiency and soluti...As power systems expand,solving the unit commitment problem(UCP)becomes increasingly challenging due to the curse of dimensionality,and traditional methods often struggle to balance computational efficiency and solution optimality.To tackle this issue,we propose a problem-structure-informed quantum approximate optimization algorithm(QAOA)framework that fully exploits the quantum advantage under extremely limited quantum resources.Specifically,we leverage the inherent topological structure of power systems to decompose large-scale UCP instances into smaller subproblems,which are solvable in parallel by limited number of qubits.This decomposition not only circumvents the current hardware limitations of quantum computing but also achieves higher performance as the graph structure of the power system becomes more sparse.Consequently,our approach can be extended to future power systems that are larger and more complex.展开更多
The performance of analytical derivative and sparse matrix techniques applied to a traditional dense sequential quadratic programming (SQP) is studied, and the strategy utilizing those techniques is also presented.Com...The performance of analytical derivative and sparse matrix techniques applied to a traditional dense sequential quadratic programming (SQP) is studied, and the strategy utilizing those techniques is also presented.Computational results on two typical chemical optimization problems demonstrate significant enhancement in efficiency, which shows this strategy is promising and suitable for large-scale process optimization problems.展开更多
Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to tr...Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges.展开更多
The singular boundary method (SBM) is a recent meshless boundary collocation method that remedies the perplexing drawback of fictitious boundary in the method of fundamental solutions (MFS). The basic idea is to u...The singular boundary method (SBM) is a recent meshless boundary collocation method that remedies the perplexing drawback of fictitious boundary in the method of fundamental solutions (MFS). The basic idea is to use the origin intensity factor to eliminate singularity of the fundamental solution at source. The method has so far been applied successfully to the potential and elasticity problems. However, the SBM solution for large-scale problems has been hindered by the operation count of O(N^3) with direct solvers or O(N^2) with iterative solvers, as well as the memory requirement of O(N^2). In this study, the first attempt was made to combine the fast multipole method (FMM) and the SBM to significantly reduce CPU time and memory requirement by one degree of magnitude, namely, O(N). Based on the complex variable represen- tation of fundamental solutions, the FMM-SBM formulations for both displacement and traction were presented. Numerical examples with up to hundreds of thousands of unknowns have successfully been tested on a desktop computer. These results clearly illustrated that the proposed FMM-SBM was very efficient and promising in solving large-scale plane elasticity problems.展开更多
A modified shifting bottleneck algorithm was proposed to solve scheduling problems of a large-scale job shop.Firstly,a new structured algorithm was employed for sub-problems so as to reduce the computational burden an...A modified shifting bottleneck algorithm was proposed to solve scheduling problems of a large-scale job shop.Firstly,a new structured algorithm was employed for sub-problems so as to reduce the computational burden and suit for large-scale instances more effectively.The modified cycle avoidance method,incorporating with the disjunctive graph model and topological sort algorithm,was applied to guaranteeing the feasibility of solutions with considering delayed precedence constraints.Finally,simulation experiments were carried out to verify the feasibility and effectiveness of the modified method.The results demonstrate that the proposed algorithm can solve the large-scale job shop scheduling problems(JSSPs) within a reasonable period of time and obtaining satisfactory solutions simultaneously.展开更多
The financial aspects of large-scale engineering construction projects profoundly influence their success.Strengthening cost control and establishing a scientific financial evaluation system can enhance the project’s...The financial aspects of large-scale engineering construction projects profoundly influence their success.Strengthening cost control and establishing a scientific financial evaluation system can enhance the project’s economic benefits,minimize unnecessary costs,and provide decision-makers with a robust financial foundation.Additionally,implementing an effective cash flow control mechanism and conducting a comprehensive assessment of potential project risks can ensure financial stability and mitigate the risk of fund shortages.Developing a practical and feasible fundraising plan,along with stringent fund management practices,can prevent fund wastage and optimize fund utilization efficiency.These measures not only facilitate smooth project progression and improve project management efficiency but also enhance the project’s economic and social outcomes.展开更多
1.Introduction Climate change mitigation pathways aimed at limiting global anthropogenic carbon dioxide(CO_(2))emissions while striving to constrain the global temperature increase to below 2℃—as outlined by the Int...1.Introduction Climate change mitigation pathways aimed at limiting global anthropogenic carbon dioxide(CO_(2))emissions while striving to constrain the global temperature increase to below 2℃—as outlined by the Intergovernmental Panel on Climate Change(IPCC)—consistently predict the widespread implementation of CO_(2)geological storage on a global scale.展开更多
The recent upsurge in metro construction emphasizes the necessity of understanding the mechanical performance of metro shield tunnel subjected to the influence of ground fissures.In this study,a largescale experiment,...The recent upsurge in metro construction emphasizes the necessity of understanding the mechanical performance of metro shield tunnel subjected to the influence of ground fissures.In this study,a largescale experiment,in combination with numerical simulation,was conducted to investigate the influence of ground fissures on a metro shield tunnel.The results indicate that the lining contact pressure at the vault increases in the hanging wall while decreases in the footwall,resulting in a two-dimensional stress state of vertical shear and axial tension-compression,and simultaneous vertical dislocation and axial tilt for the segments around the ground fissure.In addition,the damage to curved bolts includes tensile yield,flexural yield,and shear twist,leading to obvious concrete lining damage,particularly at the vault,arch bottom,and hance,indicating that the joints in these positions are weak areas.The shield tunnel orthogonal to the ground fissure ultimately experiences shear failure,suggesting that the maximum actual dislocation of ground fissure that the structure can withstand is approximately 20 cm,and five segment rings in the hanging wall and six segment rings in the footwall also need to be reinforced.This study could provide a reference for metro design in ground fissure sites.展开更多
The titanium alloy strut serves as a key load-bearing component of aircraft landing gear,typically manufactured via forging.The friction condition has important influence on material flow and cavity filling during the...The titanium alloy strut serves as a key load-bearing component of aircraft landing gear,typically manufactured via forging.The friction condition has important influence on material flow and cavity filling during the forging process.Using the previously optimized shape and initial position of preform,the influence of the friction condition(friction factor m=0.1–0.3)on material flow and cavity filling was studied by numerical method with a shear friction model.A novel filling index was defined to reflect material flow into left and right flashes and zoom in on friction-induced results.The results indicate that the workpiece moves rigidly to the right direction,with the displacement decreasing as m increases.When m<0.18,the underfilling defect will occur in the left side of strut forging,while overflow occurs in the right forging die cavity.By combining the filling index and analyses of material flow and filling status,a reasonable friction factor interval of m=0.21–0.24 can be determined.Within this interval,the cavity filling behavior demonstrates robustness,with friction fluctuations exerting minimal influence.展开更多
Automatically answer math word problems is a challenging task in artificial intelligence.Previous solvers constructed mathematical expressions in sequence or binary tree.However,these approaches may suffer from the fo...Automatically answer math word problems is a challenging task in artificial intelligence.Previous solvers constructed mathematical expressions in sequence or binary tree.However,these approaches may suffer from the following issues:Models relying on such structures exhibit fixed-order reasoning(e.g.,left-to-right),limiting flexibility and increasing error susceptibility;prior models rely on autoregressive reasoning in a single pass,accumulating minor errors(e.g.,incorrect math symbols)during generation,resulting in reduced accuracy.To address the above issues,we emulate the human“check and modify”process in reasoning and propose a unified M-tree self-correction solver(UTSCSolver)by iterative inference with self-correction mechanism.First,we use an iterative,non-autoregressive process for generating mathematical expressions,free from fixed generation orders to handle complex and diverse problems.Additionally,we design a self-correction mechanism based on alternating execution between a generator and a discriminator.This module iteratively detects and rectifies errors in generated expressions,leveraging previous iteration information for subsequent generation guidance.Experimental results show that our UTSC-Solver outperforms traditional models in accuracy on two popular datasets,while it improves the interpretability of mathematical reasoning.展开更多
BACKGROUND Emotional reactions,such as anxiety,irritability,and aggressive behavior,have attracted clinical attention as behavioral and emotional problems in preschool-age children.AIM To investigate the current statu...BACKGROUND Emotional reactions,such as anxiety,irritability,and aggressive behavior,have attracted clinical attention as behavioral and emotional problems in preschool-age children.AIM To investigate the current status of family rearing,parental stress,and behavioral and emotional problems of preschool children and to analyze the mediating effect of the current status of family rearing on parental stress and behavioral/emo-tional problems.METHODS We use convenience sampling to select 258 preschool children in the physical examination center of our hospital from October 2021 to September 2023.The children and their parents were evaluated using a questionnaire survey.Pearson's correlation was used to analyze the correlation between child behavioral and emotional problems and parental stress and family rearing,and the structural equation model was constructed to test the mediating effect.RESULTS The score for behavioral/emotional problems of 258 preschool children was(27.54±3.63),the score for parental stress was(87.64±11.34),and the score for parental family rearing was(31.54±5.24).There was a positive correlation between the behavioral and emotional problems of the children and the“hostile/mandatory”parenting style;meanwhile,showed a negative correlation with the“support/participation”parenting style(all P<0.05).The intermediary effect value between the family upbringing of parents in parental stress and children's behavior problems was 29.89%.CONCLUSION Parental family upbringing has a mediating effect between parental stress and behavioral and emotional problems of children.Despite paying attention to the behavioral and emotional problems of preschool-age children,clinical medical staff should provide correct and reasonable parenting advice to their parents to promote the mental health of preschool-age children.展开更多
This case study explores the efficacy of school-based intervention to address psychosocial challenges faced by an 11-year-old adolescent. The case study aimed to decrease the agression and acting out behavior as resul...This case study explores the efficacy of school-based intervention to address psychosocial challenges faced by an 11-year-old adolescent. The case study aimed to decrease the agression and acting out behavior as result of being victimized at school by the peers. The aim was to assess and manage the child’s aggressive behavior and academic underperformance which played a significant role in the child’s low self-esteem and emotional regulation. A comprehensive assessment was conducted to rule out the difficulties and a multi-faceted intervention strategy was utilized including anger management and structured activity scheduling that helped that child to improve his academic performance as well as to learn to manage his emotional expression. Throughout 16 sessions, the intervention targeted key behavioural indicators such as emotional expression, and aggression;post-assessment results demonstrated a 22% improvement in the child’s behavioral and academic challenges. The findings suggest that a multi-faceted therapeutic approach can be effective in addressing complex issues of aggression and academic underperformance in children, highlighting the importance of integrated psychological and educational interventions.展开更多
Based on questionnaire surveys and field interviews conducted with various types of agricultural production organizations across five districts and four counties in Daqing City,this study combines relevant theoretical...Based on questionnaire surveys and field interviews conducted with various types of agricultural production organizations across five districts and four counties in Daqing City,this study combines relevant theoretical frameworks to systematically examine the evolution,performance,and influencing factors of governance mechanisms within these organizations.Using both quantitative and inductive analytical methods,the paper proposes innovative designs and supporting measures for improving governance mechanisms.The findings reveal that,amid large-scale farmland circulation,the governance mechanisms of agricultural production organizations in Daqing City are evolving from traditional to modern structures.However,challenges remain in areas such as decision-making efficiency,benefit distribution,and supervision mechanisms.In response,this study proposes innovative governance designs focusing on decision-making processes,profit-sharing mechanisms,and risk prevention.Corresponding policy recommendations are also provided to support the sustainable development of agricultural modernization in China.展开更多
Constraint satisfaction problems(CSPs)are a class of problems that are ubiquitous in science and engineering.They feature a collection of constraints specified over subsets of variables.A CSP can be solved either dire...Constraint satisfaction problems(CSPs)are a class of problems that are ubiquitous in science and engineering.They feature a collection of constraints specified over subsets of variables.A CSP can be solved either directly or by reducing it to other problems.This paper introduces the Julia ecosystem for solving and analyzing CSPs with a focus on the programming practices.We introduce some important CSPs and show how these problems are reduced to each other.We also show how to transform CSPs into tensor networks,how to optimize the tensor network contraction orders,and how to extract the solution space properties by contracting the tensor networks with generic element types.Examples are given,which include computing the entropy constant,analyzing the overlap gap property,and the reduction between CSPs.展开更多
This paper focuses on the direct and inverse problems for a third-order self-adjoint differential operator with non-local potential and anti-periodic boundary conditions.Firstly,we obtain the expressions for the chara...This paper focuses on the direct and inverse problems for a third-order self-adjoint differential operator with non-local potential and anti-periodic boundary conditions.Firstly,we obtain the expressions for the characteristic function and resolvent of this third-order differential operator.Secondly,by using the expression for the resolvent of the operator,we prove that the spectrum for this operator consists of simple eigenvalues and a finite number of eigenvalues with multiplicity 2.Finally,we solve the inverse problem for this operator,which states that the non-local potential function can be reconstructed from four spectra.Specially,we prove the Ambarzumyan theorem and indicate that odd or even potential functions can be reconstructed by three spectra.展开更多
基金The Australian Research Council(DP200101197,DP230101107).
文摘Formalizing complex processes and phenomena of a real-world problem may require a large number of variables and constraints,resulting in what is termed a large-scale optimization problem.Nowadays,such large-scale optimization problems are solved using computing machines,leading to an enormous computational time being required,which may delay deriving timely solutions.Decomposition methods,which partition a large-scale optimization problem into lower-dimensional subproblems,represent a key approach to addressing time-efficiency issues.There has been significant progress in both applied mathematics and emerging artificial intelligence approaches on this front.This work aims at providing an overview of the decomposition methods from both the mathematics and computer science points of view.We also remark on the state-of-the-art developments and recent applications of the decomposition methods,and discuss the future research and development perspectives.
基金funded by the National Natural Science Foundation of China(No.72104069)the Science and Technology Department of Henan Province,China(No.182102310886 and 162102110109)the Postgraduate Meritocracy Scheme,hina(No.SYL19060145).
文摘To solve large-scale optimization problems,Fragrance coefficient and variant Particle Swarm local search Butterfly Optimization Algorithm(FPSBOA)is proposed.In the position update stage of Butterfly Optimization Algorithm(BOA),the fragrance coefficient is designed to balance the exploration and exploitation of BOA.The variant particle swarm local search strategy is proposed to improve the local search ability of the current optimal butterfly and prevent the algorithm from falling into local optimality.192000-dimensional functions and 201000-dimensional CEC 2010 large-scale functions are used to verify FPSBOA for complex large-scale optimization problems.The experimental results are statistically analyzed by Friedman test and Wilcoxon rank-sum test.All attained results demonstrated that FPSBOA can better solve more challenging scientific and industrial real-world problems with thousands of variables.Finally,four mechanical engineering problems and one ten-dimensional process synthesis and design problem are applied to FPSBOA,which shows FPSBOA has the feasibility and effectiveness in real-world application problems.
基金the National Natural Science Foundation of China (6027401360474002)Shanghai Development Found for Science and Technology (04DZ11008).
文摘A modified bottleneck-based (MB) heuristic for large-scale job-shop scheduling problems with a welldefined bottleneck is suggested, which is simpler but more tailored than the shifting bottleneck (SB) procedure. In this algorithm, the bottleneck is first scheduled optimally while the non-bottleneck machines are subordinated around the solutions of the bottleneck schedule by some effective dispatching rules. Computational results indicate that the MB heuristic can achieve a better tradeoff between solution quality and computational time compared to SB procedure for medium-size problems. Furthermore, it can obtain a good solution in a short time for large-scale jobshop scheduling problems.
基金funded by National Natural Science Foundation of China(Project No.52072314,52172321,52102391)China Shenhua Energy Co.,Ltd.,Science and Technology Program(Project No.GJNY-22-7)+2 种基金China State Railway Group Co.,Ltd.Science and Technology Program(P2022×013,K2023×030)Key science and technology projects in the transportation industry of the Ministry of Transport(2022-ZD7-131)the fundamental research funds for the central universities(2682022ZTPY068).
文摘The Traveling Salesman Problem(TSP)is a well-known NP-Hard problem,particularly challenging for conventional solving methods due to the curse of dimensionality in high-dimensional instances.This paper proposes a novel Double-stage Surrogate-assisted Pigeon-inspired Optimization algorithm(DOSA-PIO)to address this issue.DOSA-PIO integrates the ordering points to identify the clustering structure method for data clustering and employs a local surrogate model to assist the evolution of the Pigeon-inspired Optimization(PIO)algorithm.This combination enhances the algorithm’s ability to explore the solution space and converge to optimal solutions more effectively.Additionally,two novel approaches are introduced to extend the generalizability of continuous algorithms for solving discrete problems,enabling the adaptation of continuous optimization techniques to the discrete nature of TSP.Extensive experiments using benchmark functions and high-dimensional TSP instances demonstrate that DOSA-PIO significantly outperforms comparative algorithms in various dimensions(10D,20D,30D,50D,and 100D).The proposed algorithm provides superior solutions compared to traditional methods,highlighting its potential for solving high-dimensional TSPs.By leveraging advanced data clustering techniques and surrogate-assisted optimization,DOSA-PIO offers an effective solution for high-dimensional TSP instances,with experimental results confirming its superior performance and potential for practical applications in complex optimization problems.
基金the support of the Chinese Special Research Project for Civil Aircraft(No.MJZ17N22)the National Natural Science Foundation of China(Nos.U2133207,U2333214)+1 种基金the China Postdoctoral Science Foundation(No.2023M741687)the National Social Science Fund of China(No.22&ZD169)。
文摘Unmanned Aerial Vehicle(UAV)stands as a burgeoning electric transportation carrier,holding substantial promise for the logistics sector.A reinforcement learning framework Centralized-S Proximal Policy Optimization(C-SPPO)based on centralized decision process and considering policy entropy(S)is proposed.The proposed framework aims to plan the best scheduling scheme with the objective of minimizing both the timeout of order requests and the flight impact of UAVs that may lead to conflicts.In this framework,the intents of matching act are generated through the observations of UAV agents,and the ultimate conflict-free matching results are output under the guidance of a centralized decision maker.Concurrently,a pre-activation operation is introduced to further enhance the cooperation among UAV agents.Simulation experiments based on real-world data from New York City are conducted.The results indicate that the proposed CSPPO outperforms the baseline algorithms in the Average Delay Time(ADT),the Maximum Delay Time(MDT),the Order Delay Rate(ODR),the Average Flight Distance(AFD),and the Flight Impact Ratio(FIR).Furthermore,the framework demonstrates scalability to scenarios of different sizes without requiring additional training.
文摘As power systems expand,solving the unit commitment problem(UCP)becomes increasingly challenging due to the curse of dimensionality,and traditional methods often struggle to balance computational efficiency and solution optimality.To tackle this issue,we propose a problem-structure-informed quantum approximate optimization algorithm(QAOA)framework that fully exploits the quantum advantage under extremely limited quantum resources.Specifically,we leverage the inherent topological structure of power systems to decompose large-scale UCP instances into smaller subproblems,which are solvable in parallel by limited number of qubits.This decomposition not only circumvents the current hardware limitations of quantum computing but also achieves higher performance as the graph structure of the power system becomes more sparse.Consequently,our approach can be extended to future power systems that are larger and more complex.
基金Supported by the National Natural Science Foundation of China(No.29906010).
文摘The performance of analytical derivative and sparse matrix techniques applied to a traditional dense sequential quadratic programming (SQP) is studied, and the strategy utilizing those techniques is also presented.Computational results on two typical chemical optimization problems demonstrate significant enhancement in efficiency, which shows this strategy is promising and suitable for large-scale process optimization problems.
基金support by the Open Project of Xiangjiang Laboratory(22XJ02003)the University Fundamental Research Fund(23-ZZCX-JDZ-28,ZK21-07)+5 种基金the National Science Fund for Outstanding Young Scholars(62122093)the National Natural Science Foundation of China(72071205)the Hunan Graduate Research Innovation Project(CX20230074)the Hunan Natural Science Foundation Regional Joint Project(2023JJ50490)the Science and Technology Project for Young and Middle-aged Talents of Hunan(2023TJZ03)the Science and Technology Innovation Program of Humnan Province(2023RC1002).
文摘Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges.
基金Project supported by the National Basic Research Program of China(973 ProjectNo.2010CB832702)+4 种基金the National Science Funds for Distinguished Young Scholars of China(No.11125208)the National Natural Science Foundation of China(Nos.11125208 and 11302069)the 111 project under Grant B12032Jiangsu Province Graduate Students Research and Innovation Plan(No.KYZZ 0138)the scholarship from the China Scholarship Council(CSC)(No.201306710026)
文摘The singular boundary method (SBM) is a recent meshless boundary collocation method that remedies the perplexing drawback of fictitious boundary in the method of fundamental solutions (MFS). The basic idea is to use the origin intensity factor to eliminate singularity of the fundamental solution at source. The method has so far been applied successfully to the potential and elasticity problems. However, the SBM solution for large-scale problems has been hindered by the operation count of O(N^3) with direct solvers or O(N^2) with iterative solvers, as well as the memory requirement of O(N^2). In this study, the first attempt was made to combine the fast multipole method (FMM) and the SBM to significantly reduce CPU time and memory requirement by one degree of magnitude, namely, O(N). Based on the complex variable represen- tation of fundamental solutions, the FMM-SBM formulations for both displacement and traction were presented. Numerical examples with up to hundreds of thousands of unknowns have successfully been tested on a desktop computer. These results clearly illustrated that the proposed FMM-SBM was very efficient and promising in solving large-scale plane elasticity problems.
基金National Natural Science Foundations of China(Nos.71471135,61273035)
文摘A modified shifting bottleneck algorithm was proposed to solve scheduling problems of a large-scale job shop.Firstly,a new structured algorithm was employed for sub-problems so as to reduce the computational burden and suit for large-scale instances more effectively.The modified cycle avoidance method,incorporating with the disjunctive graph model and topological sort algorithm,was applied to guaranteeing the feasibility of solutions with considering delayed precedence constraints.Finally,simulation experiments were carried out to verify the feasibility and effectiveness of the modified method.The results demonstrate that the proposed algorithm can solve the large-scale job shop scheduling problems(JSSPs) within a reasonable period of time and obtaining satisfactory solutions simultaneously.
文摘The financial aspects of large-scale engineering construction projects profoundly influence their success.Strengthening cost control and establishing a scientific financial evaluation system can enhance the project’s economic benefits,minimize unnecessary costs,and provide decision-makers with a robust financial foundation.Additionally,implementing an effective cash flow control mechanism and conducting a comprehensive assessment of potential project risks can ensure financial stability and mitigate the risk of fund shortages.Developing a practical and feasible fundraising plan,along with stringent fund management practices,can prevent fund wastage and optimize fund utilization efficiency.These measures not only facilitate smooth project progression and improve project management efficiency but also enhance the project’s economic and social outcomes.
基金supported by the National Key Research and Development Program of China(2022YFE0206700)。
文摘1.Introduction Climate change mitigation pathways aimed at limiting global anthropogenic carbon dioxide(CO_(2))emissions while striving to constrain the global temperature increase to below 2℃—as outlined by the Intergovernmental Panel on Climate Change(IPCC)—consistently predict the widespread implementation of CO_(2)geological storage on a global scale.
基金supported by the National Key Research&Development Program of China(Grant No.2023YFC3008404)the Key Laboratory of Earth Fissures Geological Disaster,Ministry of Natural Resources,China(Grant Nos.EFGD20240609 and EFGD20240610).
文摘The recent upsurge in metro construction emphasizes the necessity of understanding the mechanical performance of metro shield tunnel subjected to the influence of ground fissures.In this study,a largescale experiment,in combination with numerical simulation,was conducted to investigate the influence of ground fissures on a metro shield tunnel.The results indicate that the lining contact pressure at the vault increases in the hanging wall while decreases in the footwall,resulting in a two-dimensional stress state of vertical shear and axial tension-compression,and simultaneous vertical dislocation and axial tilt for the segments around the ground fissure.In addition,the damage to curved bolts includes tensile yield,flexural yield,and shear twist,leading to obvious concrete lining damage,particularly at the vault,arch bottom,and hance,indicating that the joints in these positions are weak areas.The shield tunnel orthogonal to the ground fissure ultimately experiences shear failure,suggesting that the maximum actual dislocation of ground fissure that the structure can withstand is approximately 20 cm,and five segment rings in the hanging wall and six segment rings in the footwall also need to be reinforced.This study could provide a reference for metro design in ground fissure sites.
基金National Natural Science Foundation of China(52375378)National Key Laboratory of Metal Forming Technology and Heavy Equipment(S2308100.W12)Huxiang High-Level Talent Gathering Project of Hunan Province(2021RC5001)。
文摘The titanium alloy strut serves as a key load-bearing component of aircraft landing gear,typically manufactured via forging.The friction condition has important influence on material flow and cavity filling during the forging process.Using the previously optimized shape and initial position of preform,the influence of the friction condition(friction factor m=0.1–0.3)on material flow and cavity filling was studied by numerical method with a shear friction model.A novel filling index was defined to reflect material flow into left and right flashes and zoom in on friction-induced results.The results indicate that the workpiece moves rigidly to the right direction,with the displacement decreasing as m increases.When m<0.18,the underfilling defect will occur in the left side of strut forging,while overflow occurs in the right forging die cavity.By combining the filling index and analyses of material flow and filling status,a reasonable friction factor interval of m=0.21–0.24 can be determined.Within this interval,the cavity filling behavior demonstrates robustness,with friction fluctuations exerting minimal influence.
基金supported by the National Natural Science Foundation of China(62106244)the Fundamental Research Funds for the Central Universities(WK2150110021)the University Synergy Innovation Program of Anhui Province(GXXT-2022-042).
文摘Automatically answer math word problems is a challenging task in artificial intelligence.Previous solvers constructed mathematical expressions in sequence or binary tree.However,these approaches may suffer from the following issues:Models relying on such structures exhibit fixed-order reasoning(e.g.,left-to-right),limiting flexibility and increasing error susceptibility;prior models rely on autoregressive reasoning in a single pass,accumulating minor errors(e.g.,incorrect math symbols)during generation,resulting in reduced accuracy.To address the above issues,we emulate the human“check and modify”process in reasoning and propose a unified M-tree self-correction solver(UTSCSolver)by iterative inference with self-correction mechanism.First,we use an iterative,non-autoregressive process for generating mathematical expressions,free from fixed generation orders to handle complex and diverse problems.Additionally,we design a self-correction mechanism based on alternating execution between a generator and a discriminator.This module iteratively detects and rectifies errors in generated expressions,leveraging previous iteration information for subsequent generation guidance.Experimental results show that our UTSC-Solver outperforms traditional models in accuracy on two popular datasets,while it improves the interpretability of mathematical reasoning.
基金Supported by the Shijiazhuang Science and Technology Research and Development Program,No.221460383.
文摘BACKGROUND Emotional reactions,such as anxiety,irritability,and aggressive behavior,have attracted clinical attention as behavioral and emotional problems in preschool-age children.AIM To investigate the current status of family rearing,parental stress,and behavioral and emotional problems of preschool children and to analyze the mediating effect of the current status of family rearing on parental stress and behavioral/emo-tional problems.METHODS We use convenience sampling to select 258 preschool children in the physical examination center of our hospital from October 2021 to September 2023.The children and their parents were evaluated using a questionnaire survey.Pearson's correlation was used to analyze the correlation between child behavioral and emotional problems and parental stress and family rearing,and the structural equation model was constructed to test the mediating effect.RESULTS The score for behavioral/emotional problems of 258 preschool children was(27.54±3.63),the score for parental stress was(87.64±11.34),and the score for parental family rearing was(31.54±5.24).There was a positive correlation between the behavioral and emotional problems of the children and the“hostile/mandatory”parenting style;meanwhile,showed a negative correlation with the“support/participation”parenting style(all P<0.05).The intermediary effect value between the family upbringing of parents in parental stress and children's behavior problems was 29.89%.CONCLUSION Parental family upbringing has a mediating effect between parental stress and behavioral and emotional problems of children.Despite paying attention to the behavioral and emotional problems of preschool-age children,clinical medical staff should provide correct and reasonable parenting advice to their parents to promote the mental health of preschool-age children.
文摘This case study explores the efficacy of school-based intervention to address psychosocial challenges faced by an 11-year-old adolescent. The case study aimed to decrease the agression and acting out behavior as result of being victimized at school by the peers. The aim was to assess and manage the child’s aggressive behavior and academic underperformance which played a significant role in the child’s low self-esteem and emotional regulation. A comprehensive assessment was conducted to rule out the difficulties and a multi-faceted intervention strategy was utilized including anger management and structured activity scheduling that helped that child to improve his academic performance as well as to learn to manage his emotional expression. Throughout 16 sessions, the intervention targeted key behavioural indicators such as emotional expression, and aggression;post-assessment results demonstrated a 22% improvement in the child’s behavioral and academic challenges. The findings suggest that a multi-faceted therapeutic approach can be effective in addressing complex issues of aggression and academic underperformance in children, highlighting the importance of integrated psychological and educational interventions.
基金Supported by Daqing City Philosophy and Social Sciences Planning Research Project(DSGB 2025011)the Heilongjiang Province Education Science Planning Key Project(GJB1320229).
文摘Based on questionnaire surveys and field interviews conducted with various types of agricultural production organizations across five districts and four counties in Daqing City,this study combines relevant theoretical frameworks to systematically examine the evolution,performance,and influencing factors of governance mechanisms within these organizations.Using both quantitative and inductive analytical methods,the paper proposes innovative designs and supporting measures for improving governance mechanisms.The findings reveal that,amid large-scale farmland circulation,the governance mechanisms of agricultural production organizations in Daqing City are evolving from traditional to modern structures.However,challenges remain in areas such as decision-making efficiency,benefit distribution,and supervision mechanisms.In response,this study proposes innovative governance designs focusing on decision-making processes,profit-sharing mechanisms,and risk prevention.Corresponding policy recommendations are also provided to support the sustainable development of agricultural modernization in China.
基金funded by the National Key R&D Program of China(Grant No.2024YFE0102500)the National Natural Science Foundation of China(Grant No.12404568)+1 种基金the Guangzhou Municipal Science and Technology Project(Grant No.2023A03J00904)the Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area,China and the Undergraduate Research Project from HKUST(Guangzhou).
文摘Constraint satisfaction problems(CSPs)are a class of problems that are ubiquitous in science and engineering.They feature a collection of constraints specified over subsets of variables.A CSP can be solved either directly or by reducing it to other problems.This paper introduces the Julia ecosystem for solving and analyzing CSPs with a focus on the programming practices.We introduce some important CSPs and show how these problems are reduced to each other.We also show how to transform CSPs into tensor networks,how to optimize the tensor network contraction orders,and how to extract the solution space properties by contracting the tensor networks with generic element types.Examples are given,which include computing the entropy constant,analyzing the overlap gap property,and the reduction between CSPs.
基金supported by the Tianjin Municipal Science and Technology Program of China(No.23JCZDJC00070)。
文摘This paper focuses on the direct and inverse problems for a third-order self-adjoint differential operator with non-local potential and anti-periodic boundary conditions.Firstly,we obtain the expressions for the characteristic function and resolvent of this third-order differential operator.Secondly,by using the expression for the resolvent of the operator,we prove that the spectrum for this operator consists of simple eigenvalues and a finite number of eigenvalues with multiplicity 2.Finally,we solve the inverse problem for this operator,which states that the non-local potential function can be reconstructed from four spectra.Specially,we prove the Ambarzumyan theorem and indicate that odd or even potential functions can be reconstructed by three spectra.