In this work, we first derive the one-point large deviations principle (LDP) for both the stochastic Cahn–Hilliard equation with small noise and its spatial finite difference method (FDM). Then, we focus on giving th...In this work, we first derive the one-point large deviations principle (LDP) for both the stochastic Cahn–Hilliard equation with small noise and its spatial finite difference method (FDM). Then, we focus on giving the convergence of the one-point large deviations rate function (LDRF) of the spatial FDM, which is about the asymptotical limit of a parametric variational problem. The main idea for proving the convergence of the LDRF of the spatial FDM is via the Γ-convergence of objective functions. This relies on the qualitative analysis of skeleton equations of the original equation and the numerical method. In order to overcome the difficulty that the drift coefficient is not one-sided Lipschitz continuous, we derive the equivalent characterization of the skeleton equation of the spatial FDM and the discrete interpolation inequality to obtain the uniform boundedness of the solution to the underlying skeleton equation. These play important roles in deriving the T-convergence of objective functions.展开更多
In this work, the sample path large deviations for independent, identically distributed random variables under sub-linear expectations are established. The results obtained in sublinear expectation spaces extend the c...In this work, the sample path large deviations for independent, identically distributed random variables under sub-linear expectations are established. The results obtained in sublinear expectation spaces extend the corresponding ones in probability space.展开更多
M-negatively associated random variables, which generalizes the classical one of negatively associated random variables and includes m-dependent sequences as its particular case, are introduced and studied. Large devi...M-negatively associated random variables, which generalizes the classical one of negatively associated random variables and includes m-dependent sequences as its particular case, are introduced and studied. Large deviation principles and moderate deviation upper bounds for stationary m-negatively associated random variables are proved. Kolmogorov-type and Marcinkiewicz-type strong laws of large numbers as well as the three series theorem for m-negatively associated random variables are also given.展开更多
Let(Z_(n))be a branching process with immigration in a random environmentξ,whereξis an independent and identically distributed sequence of random variables.We show asymptotic properties for all the moments of Z_(n) ...Let(Z_(n))be a branching process with immigration in a random environmentξ,whereξis an independent and identically distributed sequence of random variables.We show asymptotic properties for all the moments of Z_(n) and describe the decay rates of the n-step transition probabilities.As applications,a large deviation principle for the sequence log Z_(n) is established,and related large deviations are also studied.展开更多
In this paper, we study the case of independent sums in multi-risk model. Assume that there exist k types of variables. The ith are denoted by (Xij,j ≥ 1), which are i.i.d. with common density function fi(x) ∈ O...In this paper, we study the case of independent sums in multi-risk model. Assume that there exist k types of variables. The ith are denoted by (Xij,j ≥ 1), which are i.i.d. with common density function fi(x) ∈ OR and finite mean, i =- 1,., k. We investigate local large deviations for partial sums ∑i=1^k Sni=∑i=1^k ∑j=1^ni Xij.展开更多
In this paper, we study the precise large deviations for the prospectiveloss process with consistently varying tails. The obtained results improve some related known ones.
We study the asymptotics tot the statistic of chi-square in type Ⅱ error. By the contraction principle, the large deviations and moderate deviations are obtained, and the rate function of moderate deviations can be c...We study the asymptotics tot the statistic of chi-square in type Ⅱ error. By the contraction principle, the large deviations and moderate deviations are obtained, and the rate function of moderate deviations can be calculated explicitly which is a squared function.展开更多
Assume that f_(n)is the nonparametric kernel density estimator of directional data based on a kernel function K and a sequence of independent and identically distributed random variables taking values in d-dimensional...Assume that f_(n)is the nonparametric kernel density estimator of directional data based on a kernel function K and a sequence of independent and identically distributed random variables taking values in d-dimensional unit sphere S^(d-1).We established that the large deviation principle for{sup_(x∈S^(d-1))|fn(x)-fn(-x)|,n≥1}holds if the kernel function is a function with bounded variation,and the density function f of the random variables is continuous and symmetric.展开更多
We give a definition of relative entropy with respect to a sublinear expectation and establish large deviation principle for the empirical measures for independent random variables under the sublinear expectation.
Let (Xi) be a martingale difference sequence and Sn=∑^ni=1Xi Suppose (Xi) i=1 is bounded in L^p. In the case p ≥2, Lesigne and Volny (Stochastic Process. Appl. 96 (2001) 143) obtained the estimation μ(Sn ...Let (Xi) be a martingale difference sequence and Sn=∑^ni=1Xi Suppose (Xi) i=1 is bounded in L^p. In the case p ≥2, Lesigne and Volny (Stochastic Process. Appl. 96 (2001) 143) obtained the estimation μ(Sn 〉 n) ≤ cn^-p/2, Yulin Li (Statist. Probab. Lett. 62 (2003) 317) generalized the result to the case when p ∈ (1,2] and obtained μ(Sn 〉 n) ≤ cn^l-p, these are optimal in a certain sense. In this article, the authors study the large deviation of Sn for some dependent sequences and obtain the same order optimal upper bounds for μ(Sn 〉 n) as those for martingale difference sequence.展开更多
This paper is a further investigation into the large deviations for random sums of heavy-tailed,we extended and improved some results in ref. [1] and [2]. These results can applied to some questions in Insurance and F...This paper is a further investigation into the large deviations for random sums of heavy-tailed,we extended and improved some results in ref. [1] and [2]. These results can applied to some questions in Insurance and Finance.展开更多
In this article, we obtain the large deviations and moderate deviations for negatively dependent (ND) and non-identically distributed random variables defined on (-∞, +∞). The results show that for some non-ide...In this article, we obtain the large deviations and moderate deviations for negatively dependent (ND) and non-identically distributed random variables defined on (-∞, +∞). The results show that for some non-identical random variables, precise large deviations and moderate deviations remain insensitive to negative dependence structure.展开更多
Consider a multidimensional renewal risk model, in which the claim sizes {Xk, k ≥1} form a sequence of independent and identically distributed random vectors with nonnegative components that are allowed to be depende...Consider a multidimensional renewal risk model, in which the claim sizes {Xk, k ≥1} form a sequence of independent and identically distributed random vectors with nonnegative components that are allowed to be dependent on each other. The univariate marginal distributions of these vectors have consistently varying tails and finite means. Suppose that the claim sizes and inter-arrival times correspondingly form a sequence of independent and identically distributed random pairs, with each pair obeying a dependence structure. A precise large deviation for the multidimensional renewal risk model is obtained.展开更多
In this paper the large deviation results for partial and random sums Sn-ESn=n∑i=1Xi-n∑i=1EXi,n≥1;S(t)-ES(t)=N(t)∑i=1Xi-E(N(t)∑i=1Xi),t≥0 are proved, where {N(t);t ≥ 0} is a counting process of non-...In this paper the large deviation results for partial and random sums Sn-ESn=n∑i=1Xi-n∑i=1EXi,n≥1;S(t)-ES(t)=N(t)∑i=1Xi-E(N(t)∑i=1Xi),t≥0 are proved, where {N(t);t ≥ 0} is a counting process of non-negative integer-valued random variables, and {Xn; n ≥ 1} are a sequence of independent non-negative random variables independent of {N(t); t ≥ 0}. These results extend and improve some known conclusions.展开更多
In this article, we prove upper large deviations for the empirical measure generated by stationary mixing random sequence under some suitable assumptions and upper large deviations for the mixing random sequence.
We establish a Freidlin-Wentzell’s large deviation principle for general stochastic evolution equations with Poisson jumps and small multiplicative noises by using weak convergence method.
Letλ=(λ_(1),…,λ_(n))beβ-Jacobi ensembles with parameters p_(1),p_(2),n andβ,withβvarying with n.Set■.Suppose that■and 0≤σγ<1.We offer the large deviation for p_(1)+p_(2)/p_(1)■λ_(i)whenγ>0 via the...Letλ=(λ_(1),…,λ_(n))beβ-Jacobi ensembles with parameters p_(1),p_(2),n andβ,withβvarying with n.Set■.Suppose that■and 0≤σγ<1.We offer the large deviation for p_(1)+p_(2)/p_(1)■λ_(i)whenγ>0 via the large deviation of the corresponding empirical measure and via a direct estimate,respectively,whenγ=0.展开更多
This paper is a further investigation of large deviations for sums of random variables Sn=i=1∑n Xi and S(t)=i=1∑N(t)Xi,(t≥0), where {X_n,n≥1) are independent identically distribution and non-negative random...This paper is a further investigation of large deviations for sums of random variables Sn=i=1∑n Xi and S(t)=i=1∑N(t)Xi,(t≥0), where {X_n,n≥1) are independent identically distribution and non-negative random variables, and {N(t),t≥0} is a counting process of non-negative integer-valued random variables, independent of {X_n,n≥1}. In this paper, under the suppose F∈G, which is a bigger heavy-tailed class than C, proved large deviation results for sums of random variables.展开更多
This paper extends the ordinary renewal risk model to the case where the premium income process,based on a renewal counting process,is no longer a linear function;and the total claim amount process is described by a c...This paper extends the ordinary renewal risk model to the case where the premium income process,based on a renewal counting process,is no longer a linear function;and the total claim amount process is described by a compound renewal process.For this realistic risk model,the large deviations for the claim surplus process is investigated.展开更多
In this paper,a critical Galton-Watson branching process {Z_(n)} is considered.Large deviation rates of SZ_(n):=Σ_(i=1)^_(Z_(n)) Xi are obtained,where {X_(i);i≥1} is a sequence of independent and identically distrib...In this paper,a critical Galton-Watson branching process {Z_(n)} is considered.Large deviation rates of SZ_(n):=Σ_(i=1)^_(Z_(n)) Xi are obtained,where {X_(i);i≥1} is a sequence of independent and identically distributed random variables and X_(1) is in the domain of attraction of an-stable law with α∈(0,2).One shall see that the convergence rate is determined by the tail index of X_(1) and the variance of Z_(1).Our results can be compared with those ones of the supercritical case.展开更多
基金supported by the National Natural Science Foundation of China(12201228,12171047)the Fundamental Research Funds for the Central Universities(3034011102)supported by National Key R&D Program of China(2020YFA0713701).
文摘In this work, we first derive the one-point large deviations principle (LDP) for both the stochastic Cahn–Hilliard equation with small noise and its spatial finite difference method (FDM). Then, we focus on giving the convergence of the one-point large deviations rate function (LDRF) of the spatial FDM, which is about the asymptotical limit of a parametric variational problem. The main idea for proving the convergence of the LDRF of the spatial FDM is via the Γ-convergence of objective functions. This relies on the qualitative analysis of skeleton equations of the original equation and the numerical method. In order to overcome the difficulty that the drift coefficient is not one-sided Lipschitz continuous, we derive the equivalent characterization of the skeleton equation of the spatial FDM and the discrete interpolation inequality to obtain the uniform boundedness of the solution to the underlying skeleton equation. These play important roles in deriving the T-convergence of objective functions.
基金Doctoral Scientific Research Starting Foundation of Jingdezhen Ceramic University (Grant No. 102/01003002031)Academic Achievement Re-cultivation Project of Jingdezhen Ceramic University (Grant No. 215/205062777)the Science and Technology Research Project of Jiangxi Provincial Department of Education of China (Grant No. GJJ2201041)。
文摘In this work, the sample path large deviations for independent, identically distributed random variables under sub-linear expectations are established. The results obtained in sublinear expectation spaces extend the corresponding ones in probability space.
基金Partly supported by the National Natural Science Foundation of China and the Ministry of Education of ChinaPartly supported by the Science and Technology Research Item of Hubei Provincial Department of Education,Jiaghan University
文摘M-negatively associated random variables, which generalizes the classical one of negatively associated random variables and includes m-dependent sequences as its particular case, are introduced and studied. Large deviation principles and moderate deviation upper bounds for stationary m-negatively associated random variables are proved. Kolmogorov-type and Marcinkiewicz-type strong laws of large numbers as well as the three series theorem for m-negatively associated random variables are also given.
基金partially supported by the National Nature Science Foundation of China(11601286,11501146)。
文摘Let(Z_(n))be a branching process with immigration in a random environmentξ,whereξis an independent and identically distributed sequence of random variables.We show asymptotic properties for all the moments of Z_(n) and describe the decay rates of the n-step transition probabilities.As applications,a large deviation principle for the sequence log Z_(n) is established,and related large deviations are also studied.
文摘In this paper, we study the case of independent sums in multi-risk model. Assume that there exist k types of variables. The ith are denoted by (Xij,j ≥ 1), which are i.i.d. with common density function fi(x) ∈ OR and finite mean, i =- 1,., k. We investigate local large deviations for partial sums ∑i=1^k Sni=∑i=1^k ∑j=1^ni Xij.
文摘In this paper, we study the precise large deviations for the prospectiveloss process with consistently varying tails. The obtained results improve some related known ones.
基金the National Natural Science Foundation of China (10571139)
文摘We study the asymptotics tot the statistic of chi-square in type Ⅱ error. By the contraction principle, the large deviations and moderate deviations are obtained, and the rate function of moderate deviations can be calculated explicitly which is a squared function.
基金Supported by the Doctoral Scientific Research Starting Foundation of Jingdezhen Ceramic University(Grant No.102/01003002031)Program of Department of Education of Jiangxi Province of China(Grant Nos.GJJ190732,GJJ180737)the Natural Science Foundation Program of Jiangxi Province(Grant No.20202BABL211005).
文摘Assume that f_(n)is the nonparametric kernel density estimator of directional data based on a kernel function K and a sequence of independent and identically distributed random variables taking values in d-dimensional unit sphere S^(d-1).We established that the large deviation principle for{sup_(x∈S^(d-1))|fn(x)-fn(-x)|,n≥1}holds if the kernel function is a function with bounded variation,and the density function f of the random variables is continuous and symmetric.
基金supported by the National Natural Science Foundation of China(11171262)the Specialized Research Fund for the Doctoral Program of Higher Education (200804860048)
文摘We give a definition of relative entropy with respect to a sublinear expectation and establish large deviation principle for the empirical measures for independent random variables under the sublinear expectation.
基金the National Natural Science Foundation of China(10571001)the Innovation Group Foundation of Anhui University
文摘Let (Xi) be a martingale difference sequence and Sn=∑^ni=1Xi Suppose (Xi) i=1 is bounded in L^p. In the case p ≥2, Lesigne and Volny (Stochastic Process. Appl. 96 (2001) 143) obtained the estimation μ(Sn 〉 n) ≤ cn^-p/2, Yulin Li (Statist. Probab. Lett. 62 (2003) 317) generalized the result to the case when p ∈ (1,2] and obtained μ(Sn 〉 n) ≤ cn^l-p, these are optimal in a certain sense. In this article, the authors study the large deviation of Sn for some dependent sequences and obtain the same order optimal upper bounds for μ(Sn 〉 n) as those for martingale difference sequence.
基金Supported by the Natural Science Foundation of the Education Department of Anhui Province(0505101)
文摘This paper is a further investigation into the large deviations for random sums of heavy-tailed,we extended and improved some results in ref. [1] and [2]. These results can applied to some questions in Insurance and Finance.
基金supported by the Youth Foundation of Hubei Province Department of Education of China (Q200710002)
文摘In this article, we obtain the large deviations and moderate deviations for negatively dependent (ND) and non-identically distributed random variables defined on (-∞, +∞). The results show that for some non-identical random variables, precise large deviations and moderate deviations remain insensitive to negative dependence structure.
基金Supported by the National Natural Science Foundation of China(Nos.11571058&11301481)Humanities and Social Science Foundation of the Ministry of Education of China(No.17YJC910007)+1 种基金Zhejiang Provincial Natural Science Foundation of China(No.LY17A010004)Fundamental Research Funds for the Central Universities(No.DUT17LK31)
文摘Consider a multidimensional renewal risk model, in which the claim sizes {Xk, k ≥1} form a sequence of independent and identically distributed random vectors with nonnegative components that are allowed to be dependent on each other. The univariate marginal distributions of these vectors have consistently varying tails and finite means. Suppose that the claim sizes and inter-arrival times correspondingly form a sequence of independent and identically distributed random pairs, with each pair obeying a dependence structure. A precise large deviation for the multidimensional renewal risk model is obtained.
基金Supported by the Science Foundation of the Education Committee of Anhui Province(0505101).
文摘In this paper the large deviation results for partial and random sums Sn-ESn=n∑i=1Xi-n∑i=1EXi,n≥1;S(t)-ES(t)=N(t)∑i=1Xi-E(N(t)∑i=1Xi),t≥0 are proved, where {N(t);t ≥ 0} is a counting process of non-negative integer-valued random variables, and {Xn; n ≥ 1} are a sequence of independent non-negative random variables independent of {N(t); t ≥ 0}. These results extend and improve some known conclusions.
基金The NSF (10571073) of China985 Program of Jilin University
文摘In this article, we prove upper large deviations for the empirical measure generated by stationary mixing random sequence under some suitable assumptions and upper large deviations for the mixing random sequence.
文摘We establish a Freidlin-Wentzell’s large deviation principle for general stochastic evolution equations with Poisson jumps and small multiplicative noises by using weak convergence method.
基金supported by the NSFC (12171038,11871008)985 Projects.
文摘Letλ=(λ_(1),…,λ_(n))beβ-Jacobi ensembles with parameters p_(1),p_(2),n andβ,withβvarying with n.Set■.Suppose that■and 0≤σγ<1.We offer the large deviation for p_(1)+p_(2)/p_(1)■λ_(i)whenγ>0 via the large deviation of the corresponding empirical measure and via a direct estimate,respectively,whenγ=0.
文摘This paper is a further investigation of large deviations for sums of random variables Sn=i=1∑n Xi and S(t)=i=1∑N(t)Xi,(t≥0), where {X_n,n≥1) are independent identically distribution and non-negative random variables, and {N(t),t≥0} is a counting process of non-negative integer-valued random variables, independent of {X_n,n≥1}. In this paper, under the suppose F∈G, which is a bigger heavy-tailed class than C, proved large deviation results for sums of random variables.
基金Supported by Anhui Provincial Colleges and Universities Teaching and Research Projects(2008jyxm556)
文摘This paper extends the ordinary renewal risk model to the case where the premium income process,based on a renewal counting process,is no longer a linear function;and the total claim amount process is described by a compound renewal process.For this realistic risk model,the large deviations for the claim surplus process is investigated.
基金supported by the National Natural Science Foundation of China(No.12101023,No.11871103 and 12271043)the National Key Research and Development Program of China(No.2020YFA0712900)Fundamental Research Funds for the Central Universities(No.2023MS077).
文摘In this paper,a critical Galton-Watson branching process {Z_(n)} is considered.Large deviation rates of SZ_(n):=Σ_(i=1)^_(Z_(n)) Xi are obtained,where {X_(i);i≥1} is a sequence of independent and identically distributed random variables and X_(1) is in the domain of attraction of an-stable law with α∈(0,2).One shall see that the convergence rate is determined by the tail index of X_(1) and the variance of Z_(1).Our results can be compared with those ones of the supercritical case.