The approach of Li and Zhou(2014)is adopted to find the Laplace transform of occupation time over interval(0,a)and joint occupation times over semi-infinite intervals(-∞,a)and(b,∞)for a time-homogeneous diffusion pr...The approach of Li and Zhou(2014)is adopted to find the Laplace transform of occupation time over interval(0,a)and joint occupation times over semi-infinite intervals(-∞,a)and(b,∞)for a time-homogeneous diffusion process up to an independent exponential time e_(q)for 0<a<b.The results are expressed in terms of solutions to the differential equations associated with the diffusion generator.Applying these results,we obtain explicit expressions on the Laplace transform of occupation time and joint occupation time for Brownian motion with drift.展开更多
Assume that 0<p<∞ and that B is a connected nonempty open set in R^(n),and that A^(p)(B)is the vector space of all holomorphic functions F in the tubular domains R^(n)+iB such that for any compact set K⊂B,‖ y...Assume that 0<p<∞ and that B is a connected nonempty open set in R^(n),and that A^(p)(B)is the vector space of all holomorphic functions F in the tubular domains R^(n)+iB such that for any compact set K⊂B,‖ y →‖x →F(x+iy)‖Lp(R^(n))‖ L(K)<∞,so A^(p)(B)is a Frechet space with the Heine-Borel property,its topology is induced by a complete invariant metric,is not locally bounded,and hence is not normal.Furthermore,if 1≤p≤2,then the element F of A^(p)(B)can be written as a Laplace transform of some function f∈L(R^(n)).展开更多
The theorems concerning the summation of Fourier series with parameter were given by using Laplace transforms. By means of the known result of Laplace transforms, many new, important problems of summation of Fourier s...The theorems concerning the summation of Fourier series with parameter were given by using Laplace transforms. By means of the known result of Laplace transforms, many new, important problems of summation of Fourier series with parameter in mechanics can be solved.展开更多
The functions studied in the paper are the quaternion-valued functions of a quaternionic variable.It is shown that the left slice regular functions and right slice regular functions are related by a particular involut...The functions studied in the paper are the quaternion-valued functions of a quaternionic variable.It is shown that the left slice regular functions and right slice regular functions are related by a particular involution,and that the intrinsic slice regular functions play a central role in the theory of slice regular functions.The relation between left slice regular functions,right slice regular functions and intrinsic slice regular functions is revealed.As an application,the classical Laplace transform is generalized naturally to quaternions in two different ways,which transform a quaternion-valued function of a real variable to a left or right slice regular function.The usual properties of the classical Laplace transforms are generalized to quaternionic Laplace transforms.展开更多
Here is introduced some novel algorithms which made use of polygarnma functions to get the exact limits of a broad class of infinite series. Moreover, Laplace transform is used to find the sum of many convergent infin...Here is introduced some novel algorithms which made use of polygarnma functions to get the exact limits of a broad class of infinite series. Moreover, Laplace transform is used to find the sum of many convergent infinite series. These exact limits are found in different branches of physics for some special cases series and are in complete agreement with the values found by other authors. Moreover, the methods presented here are generalized and applied to other wide variety of sums, including alternating series. Finally, these methods are simple and quite powerful to calculate the limits of many convergent series as you can see from the examples included.展开更多
In this article,we develop the Laplace transform(LT)based Chebyshev spectral collocation method(CSCM)to approximate the time fractional advection-diffusion equation,incorporating the Atangana-Baleanu Caputo(ABC)deriva...In this article,we develop the Laplace transform(LT)based Chebyshev spectral collocation method(CSCM)to approximate the time fractional advection-diffusion equation,incorporating the Atangana-Baleanu Caputo(ABC)derivative.The advection-diffusion equation,which governs the transport of mass,heat,or energy through combined advection and diffusion processes,is central to modeling physical systems with nonlocal behavior.Our numerical scheme employs the LT to transform the time-dependent time-fractional PDEs into a time-independent PDE in LT domain,eliminating the need for classical time-stepping methods that often suffer from stability constraints.For spatial discretization,we employ the CSCM,where the solution is approximated using Lagrange interpolation polynomial based on the Chebyshev collocation nodes,achieving exponential convergence that outperforms the algebraic convergence rates of finite difference and finite element methods.Finally,the solution is reverted to the time domain using contour integration technique.We also establish the existence and uniqueness of the solution for the proposed problem.The performance,efficiency,and accuracy of the proposed method are validated through various fractional advection-diffusion problems.The computed results demonstrate that the proposed method has less computational cost and is highly accurate.展开更多
Heat transfers at the interface of adjacent saturated soil primarily through the soil particles and the water in the voids.The presence of water induces the contraction of heat flow lines at the interface,leading to t...Heat transfers at the interface of adjacent saturated soil primarily through the soil particles and the water in the voids.The presence of water induces the contraction of heat flow lines at the interface,leading to the emergence of the thermal contact resistance effect.In this paper,four thermal contact models were developed to predict the thermal contact resistance at the interface of multilayered saturated soils.Based on the theory of thermal-hydro-mechanical coupling,semi-analytical solutions of thermal consolidation subjected to time-dependent heating and loading were obtained by employing Laplace transform and its inverse transformation.Thermal consolidation characteristics of multilayered saturated soils under four different thermal contact models were discussed,and the effects of thermal resistance coefficient,partition thermal contact coefficient,and temperature amplitude on the thermal consolidation process were investigated.The outcomes indicate that the general thermal contact model results in the most pronounced thermal gradient at the interface,which can be degenerated to the other three thermal contact models.The perfect thermal contact model overestimates the deformation of the saturated soil during the thermal consolidation.Moreover,the effect of temperature on consolidation properties decreases gradually with increasing interfacial contact thermal resistance.展开更多
This study proposes a general imperfect thermal contact model to predict the thermal contact resistance at the interface among multi-layered composite structures.Based on the Green-Lindsay(GL)thermoelastic theory,semi...This study proposes a general imperfect thermal contact model to predict the thermal contact resistance at the interface among multi-layered composite structures.Based on the Green-Lindsay(GL)thermoelastic theory,semi analytical solutions of temperature increment and displacement of multi-layered composite structures are obtained by using the Laplace transform method,upon which the effects of thermal resistance coefficient,partition coefficient,thermal conductivity ratio and heat capacity ratio on the responses are studied.The results show that the generalized imperfect thermal contact model can realistically describe the imperfect thermal contact problem.Accordingly,it may degenerate into other thermal contact models by adjusting the thermal resistance coefficient and partition coefficient.展开更多
The accurate estimation of lithium battery state of health(SOH)plays an important role in the health management of battery systems.In order to improve the prediction accuracy of SOH,this paper proposes a stochastic co...The accurate estimation of lithium battery state of health(SOH)plays an important role in the health management of battery systems.In order to improve the prediction accuracy of SOH,this paper proposes a stochastic configuration network based on a multi-converged black-winged kite search algorithm,called SBKA-CLSCN.Firstly,the indirect health index(HI)of the battery is extracted by combining it with Person correlation coefficients in the battery charging and discharging cycle point data.Secondly,to address the problem that the black-winged kite optimization algorithm(BKA)falls into the local optimum problem and improve the convergence speed,the Sine chaotic black-winged kite search algorithm(SBKA)is designed,which mainly utilizes the Sine mapping and the golden-sine strategy to enhance the algorithm’s global optimality search ability;secondly,the Cauchy distribution and Laplace regularization techniques are used in the SCN model,which is referred to as CLSCN,thereby improving the model’s overall search capability and generalization ability.Finally,the performance of SBKA and SBKA-CLSCN is evaluated using eight benchmark functions and the CALCE battery dataset,respectively,and compared in comparison with the Long Short-Term Memory(LSTM)model and the Gated Recurrent Unit(GRU)model,and the experimental results demonstrate the feasibility and effectiveness of the SBKA-CLSCN algorithm.展开更多
This paper introduces some concepts such as q- process in random environment, Laplace transformation, ergodic potential kernel, error function and some basic lemmas.We study the continuity and Laplace transformation o...This paper introduces some concepts such as q- process in random environment, Laplace transformation, ergodic potential kernel, error function and some basic lemmas.We study the continuity and Laplace transformation of random transition function. Finally, we give the sufficient condition for the existence of ergodic potential kernel for homogeneous q- processes in random environments.展开更多
In this paper, the modification of double Laplace decomposition method is pro- posed for the analytical approximation solution of a coupled system of pseudo-parabolic equation with initial conditions. Some examples ar...In this paper, the modification of double Laplace decomposition method is pro- posed for the analytical approximation solution of a coupled system of pseudo-parabolic equation with initial conditions. Some examples are given to support our presented method. In addition, we prove the convergence of double Laplace transform decomposition method applied to our problems.展开更多
We intend to realize the step-up and step-down operators of the potential V (x) = V1 e 2βx+V2 e βx. It is found that these operators satisfy the commutation relations for the SU(2) group. We find the eigenfunctions ...We intend to realize the step-up and step-down operators of the potential V (x) = V1 e 2βx+V2 e βx. It is found that these operators satisfy the commutation relations for the SU(2) group. We find the eigenfunctions and the eigenvalues of the potential by using the Laplace transform approach to study the Lie algebra satisfied the ladder operators of the potential under consideration. Our results are similar to the ones obtained for the Morse potential (β→β).展开更多
This paper analyzes the long-run effects and short-run effects of foreign aid on the domestic economy by using the Hamilton system and Laplace transform. It is found that an increase in the foreign aid has no long-run...This paper analyzes the long-run effects and short-run effects of foreign aid on the domestic economy by using the Hamilton system and Laplace transform. It is found that an increase in the foreign aid has no long-run effect on the foreigll borrowing, domestic capital accumulation and the foreign direct investment in the home country, but increases the steady-state consumption level the same amount. However, the short-run analysis presents that increasing foreign aid does not affect the initial consumptioll level and the initial consumption increase rate; but it affects the initial savings positively.展开更多
The calculations of unsteady flow to a multiple well system with the application of boundary elementmethod (BEM) are discussed. The mathematical model of unsteady well flow is a boundary value problem ofparabolic diff...The calculations of unsteady flow to a multiple well system with the application of boundary elementmethod (BEM) are discussed. The mathematical model of unsteady well flow is a boundary value problem ofparabolic differential equation. It is changed into an elliptic one by Laplace transform to eliminate time varia-ble. The image function of water head H can be solved by BEM. We derived the boundary integral equation ofthe transformed variable H and the discretization form of it, so that there is no need to discretize the bounda-ries of well walls and it becomes easier to solve the groundwater head H by numerical inversion.展开更多
Jordan's lemma can be used for a wider range than the original one. The extended Jordan's lemma can be described as follows. Let f(z) be analytic in the upper half of the z plane (Imz≥0), with the exception o...Jordan's lemma can be used for a wider range than the original one. The extended Jordan's lemma can be described as follows. Let f(z) be analytic in the upper half of the z plane (Imz≥0), with the exception of a finite number of isolated singularities, and for P>o, if then where z=Rei and CR is the open semicircle in the upper half of the z plane.With the extended Jordan's lemma one can find that Laplace transform and Fourier transform are a pair of integral transforms which relate to each other.展开更多
Histogram equalization is a traditional algorithm improving the image contrast,but it comes at the cost of mean brightness shift and details loss.In order to solve these problems,a novel approach to processing foregro...Histogram equalization is a traditional algorithm improving the image contrast,but it comes at the cost of mean brightness shift and details loss.In order to solve these problems,a novel approach to processing foreground pixels and background pixels independently is proposed and investigated.Since details are mainly contained in the foreground,the weighted coupling of histogram equalization and Laplace transform were adopted to balance contrast enhancement and details preservation.The weighting factors of image foreground and background were determined by the amount of their respective information.The proposed method was conducted to images acquired from CVG⁃UGR and US⁃SIPI image databases and then compared with other methods such as clipping histogram spikes,histogram addition,and non⁃linear transformation to verify its validity.Results show that the proposed algorithm can effectively enhance the contrast without introducing distortions,and preserve the mean brightness and details well at the same time.展开更多
A semi-analytical solution is presented using method of Laplace transform for the transient pulse electroosmotic flow (EOF) of Maxwell fluid in a circular micro-channel. The driving mode of pulse EOF here is considere...A semi-analytical solution is presented using method of Laplace transform for the transient pulse electroosmotic flow (EOF) of Maxwell fluid in a circular micro-channel. The driving mode of pulse EOF here is considered as an ideal rectangle pulse. The solution involves solving the linearized Poisson-Boltzmann (P-B) equation, together with the Cauchy momentum equation and the general Maxwell constitutive equation. The results show that the profiles of pulse EOF velocity vary rapidly and gradually stabilize as the increase of time <img src="Edit_440fb0f5-5539-4a78-8311-93b2664c8117.png" alt="" /> within a half period. The velocity profiles at the center of the micro-channel increase significantly with relaxation time <img src="Edit_ffb813ed-0046-40bc-95e6-76057f46ce32.png" alt="" />, especially for the smaller pulse width <em>a</em>. However, as the pulse width <em>a </em>increases, this change will be less obvious. At the same time, the different change frequency of velocity profiles will slow down, which means a long cycle time. Additionally, the time needed to attain the steady status becomes longer with the increase of relaxation time <img src="Edit_d1b31535-84c1-417e-b987-6ca53ab1616b.png" alt="" /> and pulse width <em>a</em>.展开更多
Very recently, it was observed that the temperature of nanofluids is finally governed by second-order ordinary differential equations with variable coefficients of exponential orders. Such coefficients were then trans...Very recently, it was observed that the temperature of nanofluids is finally governed by second-order ordinary differential equations with variable coefficients of exponential orders. Such coefficients were then transformed to polynomials type by using new independent variables. In this paper, a class of second-order ordinary differential equations with variable coefficients of polynomials type has been solved analytically. The analytical solution is expressed in terms of a hypergeometric function with generalized parameters. Moreover, applications of the present results have been applied on some selected nanofluids problems in the literature. The exact solutions in the literature were derived as special cases of our generalized analytical solution.展开更多
A relativistic Mie-type potential for spin-1/2 particles is studied. The Dirac Hamiltonian contains a scalar S(r) and a vector V(r) Mie-type potential in the radial coordinates, as well as a tensor potential U(r...A relativistic Mie-type potential for spin-1/2 particles is studied. The Dirac Hamiltonian contains a scalar S(r) and a vector V(r) Mie-type potential in the radial coordinates, as well as a tensor potential U(r) in the form of Coulomb potential. In the pseudospin(p-spin) symmetry setting Σ = Cps and Δ = V(r), an analytical solution for exact bound states of the corresponding Dirac equation is found. The eigenenergies and normalized wave functions are presented and particular cases are discussed with any arbitrary spin–orbit coupling number κ. Special attention is devoted to the caseΣ = 0 for which p-spin symmetry is exact. The Laplace transform approach(LTA) is used in our calculations. Some numerical results are obtained and compared with those of other methods.展开更多
Laplace transform is one of the powerful tools for solving differential equations in engineering and other science subjects.Using the Laplace transform for solving differential equations,however,sometimes leads to sol...Laplace transform is one of the powerful tools for solving differential equations in engineering and other science subjects.Using the Laplace transform for solving differential equations,however,sometimes leads to solutions in the Laplace domain that are not readily invertible to the real domain by analyticalmeans.Thus,we need numerical inversionmethods to convert the obtained solution fromLaplace domain to a real domain.In this paper,we propose a numerical scheme based on Laplace transform and numerical inverse Laplace transform for the approximate solution of fractal-fractional differential equations with orderα,β.Our proposed numerical scheme is based on three main steps.First,we convert the given fractal-fractional differential equation to fractional-differential equation in Riemann-Liouville sense,and then into Caputo sense.Secondly,we transformthe fractional differential equation in Caputo sense to an equivalent equation in Laplace space.Then the solution of the transformed equation is obtained in Laplace domain.Finally,the solution is converted into the real domain using numerical inversion of Laplace transform.Three inversion methods are evaluated in this paper,and their convergence is also discussed.Three test problems are used to validate the inversion methods.We demonstrate our results with the help of tables and figures.The obtained results show that Euler’s and Talbot’s methods performed better than Stehfest’s method.展开更多
基金Supported by the National Natural Science Foundation of China(12271062,11731012)by the Hunan Provincial National Natural Science Foundation of China(2019JJ50405)。
文摘The approach of Li and Zhou(2014)is adopted to find the Laplace transform of occupation time over interval(0,a)and joint occupation times over semi-infinite intervals(-∞,a)and(b,∞)for a time-homogeneous diffusion process up to an independent exponential time e_(q)for 0<a<b.The results are expressed in terms of solutions to the differential equations associated with the diffusion generator.Applying these results,we obtain explicit expressions on the Laplace transform of occupation time and joint occupation time for Brownian motion with drift.
基金This work was partially supported by NSFC(11971045,12071035 and 11971063).
文摘Assume that 0<p<∞ and that B is a connected nonempty open set in R^(n),and that A^(p)(B)is the vector space of all holomorphic functions F in the tubular domains R^(n)+iB such that for any compact set K⊂B,‖ y →‖x →F(x+iy)‖Lp(R^(n))‖ L(K)<∞,so A^(p)(B)is a Frechet space with the Heine-Borel property,its topology is induced by a complete invariant metric,is not locally bounded,and hence is not normal.Furthermore,if 1≤p≤2,then the element F of A^(p)(B)can be written as a Laplace transform of some function f∈L(R^(n)).
文摘The theorems concerning the summation of Fourier series with parameter were given by using Laplace transforms. By means of the known result of Laplace transforms, many new, important problems of summation of Fourier series with parameter in mechanics can be solved.
基金supported by NSFC(12071422)Zhejiang Province Science Foundation of China(LY14A010018)。
文摘The functions studied in the paper are the quaternion-valued functions of a quaternionic variable.It is shown that the left slice regular functions and right slice regular functions are related by a particular involution,and that the intrinsic slice regular functions play a central role in the theory of slice regular functions.The relation between left slice regular functions,right slice regular functions and intrinsic slice regular functions is revealed.As an application,the classical Laplace transform is generalized naturally to quaternions in two different ways,which transform a quaternion-valued function of a real variable to a left or right slice regular function.The usual properties of the classical Laplace transforms are generalized to quaternionic Laplace transforms.
文摘Here is introduced some novel algorithms which made use of polygarnma functions to get the exact limits of a broad class of infinite series. Moreover, Laplace transform is used to find the sum of many convergent infinite series. These exact limits are found in different branches of physics for some special cases series and are in complete agreement with the values found by other authors. Moreover, the methods presented here are generalized and applied to other wide variety of sums, including alternating series. Finally, these methods are simple and quite powerful to calculate the limits of many convergent series as you can see from the examples included.
基金extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under grant number RGP2/174/46.
文摘In this article,we develop the Laplace transform(LT)based Chebyshev spectral collocation method(CSCM)to approximate the time fractional advection-diffusion equation,incorporating the Atangana-Baleanu Caputo(ABC)derivative.The advection-diffusion equation,which governs the transport of mass,heat,or energy through combined advection and diffusion processes,is central to modeling physical systems with nonlocal behavior.Our numerical scheme employs the LT to transform the time-dependent time-fractional PDEs into a time-independent PDE in LT domain,eliminating the need for classical time-stepping methods that often suffer from stability constraints.For spatial discretization,we employ the CSCM,where the solution is approximated using Lagrange interpolation polynomial based on the Chebyshev collocation nodes,achieving exponential convergence that outperforms the algebraic convergence rates of finite difference and finite element methods.Finally,the solution is reverted to the time domain using contour integration technique.We also establish the existence and uniqueness of the solution for the proposed problem.The performance,efficiency,and accuracy of the proposed method are validated through various fractional advection-diffusion problems.The computed results demonstrate that the proposed method has less computational cost and is highly accurate.
基金Projects(U24B20113,42477162) supported by the National Natural Science Foundation of ChinaProject(2025C02228) supported by the Primary Research and Development Plan of Zhejiang Province,China。
文摘Heat transfers at the interface of adjacent saturated soil primarily through the soil particles and the water in the voids.The presence of water induces the contraction of heat flow lines at the interface,leading to the emergence of the thermal contact resistance effect.In this paper,four thermal contact models were developed to predict the thermal contact resistance at the interface of multilayered saturated soils.Based on the theory of thermal-hydro-mechanical coupling,semi-analytical solutions of thermal consolidation subjected to time-dependent heating and loading were obtained by employing Laplace transform and its inverse transformation.Thermal consolidation characteristics of multilayered saturated soils under four different thermal contact models were discussed,and the effects of thermal resistance coefficient,partition thermal contact coefficient,and temperature amplitude on the thermal consolidation process were investigated.The outcomes indicate that the general thermal contact model results in the most pronounced thermal gradient at the interface,which can be degenerated to the other three thermal contact models.The perfect thermal contact model overestimates the deformation of the saturated soil during the thermal consolidation.Moreover,the effect of temperature on consolidation properties decreases gradually with increasing interfacial contact thermal resistance.
基金Projects(42477162,52108347,52178371,52168046,52178321,52308383)supported by the National Natural Science Foundation of ChinaProjects(2023C03143,2022C01099,2024C01219,2022C03151)supported by the Zhejiang Key Research and Development Plan,China+6 种基金Project(LQ22E080010)supported by the Exploring Youth Project of Zhejiang Natural Science Foundation,ChinaProject(LR21E080005)supported by the Outstanding Youth Project of Natural Science Foundation of Zhejiang Province,ChinaProject(2022M712964)supported by the Postdoctoral Science Foundation of ChinaProject(2023AFB008)supported by the Natural Science Foundation of Hubei Province for Youth,ChinaProject(202203)supported by Engineering Research Centre of Rock-Soil Drilling&Excavation and Protection,Ministry of Education,ChinaProject(202305-2)supported by the Science and Technology Project of Zhejiang Provincial Communication Department,ChinaProject(2021K256)supported by the Construction Research Founds of Department of Housing and Urban-Rural Development of Zhejiang Province,China。
文摘This study proposes a general imperfect thermal contact model to predict the thermal contact resistance at the interface among multi-layered composite structures.Based on the Green-Lindsay(GL)thermoelastic theory,semi analytical solutions of temperature increment and displacement of multi-layered composite structures are obtained by using the Laplace transform method,upon which the effects of thermal resistance coefficient,partition coefficient,thermal conductivity ratio and heat capacity ratio on the responses are studied.The results show that the generalized imperfect thermal contact model can realistically describe the imperfect thermal contact problem.Accordingly,it may degenerate into other thermal contact models by adjusting the thermal resistance coefficient and partition coefficient.
文摘The accurate estimation of lithium battery state of health(SOH)plays an important role in the health management of battery systems.In order to improve the prediction accuracy of SOH,this paper proposes a stochastic configuration network based on a multi-converged black-winged kite search algorithm,called SBKA-CLSCN.Firstly,the indirect health index(HI)of the battery is extracted by combining it with Person correlation coefficients in the battery charging and discharging cycle point data.Secondly,to address the problem that the black-winged kite optimization algorithm(BKA)falls into the local optimum problem and improve the convergence speed,the Sine chaotic black-winged kite search algorithm(SBKA)is designed,which mainly utilizes the Sine mapping and the golden-sine strategy to enhance the algorithm’s global optimality search ability;secondly,the Cauchy distribution and Laplace regularization techniques are used in the SCN model,which is referred to as CLSCN,thereby improving the model’s overall search capability and generalization ability.Finally,the performance of SBKA and SBKA-CLSCN is evaluated using eight benchmark functions and the CALCE battery dataset,respectively,and compared in comparison with the Long Short-Term Memory(LSTM)model and the Gated Recurrent Unit(GRU)model,and the experimental results demonstrate the feasibility and effectiveness of the SBKA-CLSCN algorithm.
基金Supported by the National Natural Science Foundation of China (10371092)
文摘This paper introduces some concepts such as q- process in random environment, Laplace transformation, ergodic potential kernel, error function and some basic lemmas.We study the continuity and Laplace transformation of random transition function. Finally, we give the sufficient condition for the existence of ergodic potential kernel for homogeneous q- processes in random environments.
文摘In this paper, the modification of double Laplace decomposition method is pro- posed for the analytical approximation solution of a coupled system of pseudo-parabolic equation with initial conditions. Some examples are given to support our presented method. In addition, we prove the convergence of double Laplace transform decomposition method applied to our problems.
基金supported by the Scientific and Technical Research Council of Turkey
文摘We intend to realize the step-up and step-down operators of the potential V (x) = V1 e 2βx+V2 e βx. It is found that these operators satisfy the commutation relations for the SU(2) group. We find the eigenfunctions and the eigenvalues of the potential by using the Laplace transform approach to study the Lie algebra satisfied the ladder operators of the potential under consideration. Our results are similar to the ones obtained for the Morse potential (β→β).
文摘This paper analyzes the long-run effects and short-run effects of foreign aid on the domestic economy by using the Hamilton system and Laplace transform. It is found that an increase in the foreign aid has no long-run effect on the foreigll borrowing, domestic capital accumulation and the foreign direct investment in the home country, but increases the steady-state consumption level the same amount. However, the short-run analysis presents that increasing foreign aid does not affect the initial consumptioll level and the initial consumption increase rate; but it affects the initial savings positively.
基金supported by the National Natural Science Foundation of China
文摘The calculations of unsteady flow to a multiple well system with the application of boundary elementmethod (BEM) are discussed. The mathematical model of unsteady well flow is a boundary value problem ofparabolic differential equation. It is changed into an elliptic one by Laplace transform to eliminate time varia-ble. The image function of water head H can be solved by BEM. We derived the boundary integral equation ofthe transformed variable H and the discretization form of it, so that there is no need to discretize the bounda-ries of well walls and it becomes easier to solve the groundwater head H by numerical inversion.
文摘Jordan's lemma can be used for a wider range than the original one. The extended Jordan's lemma can be described as follows. Let f(z) be analytic in the upper half of the z plane (Imz≥0), with the exception of a finite number of isolated singularities, and for P>o, if then where z=Rei and CR is the open semicircle in the upper half of the z plane.With the extended Jordan's lemma one can find that Laplace transform and Fourier transform are a pair of integral transforms which relate to each other.
基金Sponsored by the National Key R&D Program of China(Grant No.2018YFB1308700)the Research and Development Project of Key Core Technology and Common Technology in Shanxi Province(Grant Nos.2020XXX001,2020XXX009)。
文摘Histogram equalization is a traditional algorithm improving the image contrast,but it comes at the cost of mean brightness shift and details loss.In order to solve these problems,a novel approach to processing foreground pixels and background pixels independently is proposed and investigated.Since details are mainly contained in the foreground,the weighted coupling of histogram equalization and Laplace transform were adopted to balance contrast enhancement and details preservation.The weighting factors of image foreground and background were determined by the amount of their respective information.The proposed method was conducted to images acquired from CVG⁃UGR and US⁃SIPI image databases and then compared with other methods such as clipping histogram spikes,histogram addition,and non⁃linear transformation to verify its validity.Results show that the proposed algorithm can effectively enhance the contrast without introducing distortions,and preserve the mean brightness and details well at the same time.
文摘A semi-analytical solution is presented using method of Laplace transform for the transient pulse electroosmotic flow (EOF) of Maxwell fluid in a circular micro-channel. The driving mode of pulse EOF here is considered as an ideal rectangle pulse. The solution involves solving the linearized Poisson-Boltzmann (P-B) equation, together with the Cauchy momentum equation and the general Maxwell constitutive equation. The results show that the profiles of pulse EOF velocity vary rapidly and gradually stabilize as the increase of time <img src="Edit_440fb0f5-5539-4a78-8311-93b2664c8117.png" alt="" /> within a half period. The velocity profiles at the center of the micro-channel increase significantly with relaxation time <img src="Edit_ffb813ed-0046-40bc-95e6-76057f46ce32.png" alt="" />, especially for the smaller pulse width <em>a</em>. However, as the pulse width <em>a </em>increases, this change will be less obvious. At the same time, the different change frequency of velocity profiles will slow down, which means a long cycle time. Additionally, the time needed to attain the steady status becomes longer with the increase of relaxation time <img src="Edit_d1b31535-84c1-417e-b987-6ca53ab1616b.png" alt="" /> and pulse width <em>a</em>.
文摘Very recently, it was observed that the temperature of nanofluids is finally governed by second-order ordinary differential equations with variable coefficients of exponential orders. Such coefficients were then transformed to polynomials type by using new independent variables. In this paper, a class of second-order ordinary differential equations with variable coefficients of polynomials type has been solved analytically. The analytical solution is expressed in terms of a hypergeometric function with generalized parameters. Moreover, applications of the present results have been applied on some selected nanofluids problems in the literature. The exact solutions in the literature were derived as special cases of our generalized analytical solution.
文摘A relativistic Mie-type potential for spin-1/2 particles is studied. The Dirac Hamiltonian contains a scalar S(r) and a vector V(r) Mie-type potential in the radial coordinates, as well as a tensor potential U(r) in the form of Coulomb potential. In the pseudospin(p-spin) symmetry setting Σ = Cps and Δ = V(r), an analytical solution for exact bound states of the corresponding Dirac equation is found. The eigenenergies and normalized wave functions are presented and particular cases are discussed with any arbitrary spin–orbit coupling number κ. Special attention is devoted to the caseΣ = 0 for which p-spin symmetry is exact. The Laplace transform approach(LTA) is used in our calculations. Some numerical results are obtained and compared with those of other methods.
文摘Laplace transform is one of the powerful tools for solving differential equations in engineering and other science subjects.Using the Laplace transform for solving differential equations,however,sometimes leads to solutions in the Laplace domain that are not readily invertible to the real domain by analyticalmeans.Thus,we need numerical inversionmethods to convert the obtained solution fromLaplace domain to a real domain.In this paper,we propose a numerical scheme based on Laplace transform and numerical inverse Laplace transform for the approximate solution of fractal-fractional differential equations with orderα,β.Our proposed numerical scheme is based on three main steps.First,we convert the given fractal-fractional differential equation to fractional-differential equation in Riemann-Liouville sense,and then into Caputo sense.Secondly,we transformthe fractional differential equation in Caputo sense to an equivalent equation in Laplace space.Then the solution of the transformed equation is obtained in Laplace domain.Finally,the solution is converted into the real domain using numerical inversion of Laplace transform.Three inversion methods are evaluated in this paper,and their convergence is also discussed.Three test problems are used to validate the inversion methods.We demonstrate our results with the help of tables and figures.The obtained results show that Euler’s and Talbot’s methods performed better than Stehfest’s method.