期刊文献+
共找到107,019篇文章
< 1 2 250 >
每页显示 20 50 100
Agri-Eval:Multi-level Large Language Model Valuation Benchmark for Agriculture
1
作者 WANG Yaojun GE Mingliang +2 位作者 XU Guowei ZHANG Qiyu BIE Yuhui 《农业机械学报》 北大核心 2026年第1期290-299,共10页
Model evaluation using benchmark datasets is an important method to measure the capability of large language models(LLMs)in specific domains,and it is mainly used to assess the knowledge and reasoning abilities of LLM... Model evaluation using benchmark datasets is an important method to measure the capability of large language models(LLMs)in specific domains,and it is mainly used to assess the knowledge and reasoning abilities of LLMs.Therefore,in order to better assess the capability of LLMs in the agricultural domain,Agri-Eval was proposed as a benchmark for assessing the knowledge and reasoning ability of LLMs in agriculture.The assessment dataset used in Agri-Eval covered seven major disciplines in the agricultural domain:crop science,horticulture,plant protection,animal husbandry,forest science,aquaculture science,and grass science,and contained a total of 2283 questions.Among domestic general-purpose LLMs,DeepSeek R1 performed best with an accuracy rate of 75.49%.In the realm of international general-purpose LLMs,Gemini 2.0 pro exp 0205 standed out as the top performer,achieving an accuracy rate of 74.28%.As an LLMs in agriculture vertical,Shennong V2.0 outperformed all the LLMs in China,and the answer accuracy rate of agricultural knowledge exceeded that of all the existing general-purpose LLMs.The launch of Agri-Eval helped the LLM developers to comprehensively evaluate the model's capability in the field of agriculture through a variety of tasks and tests to promote the development of the LLMs in the field of agriculture. 展开更多
关键词 large language models assessment systems agricultural knowledge agricultural datasets
在线阅读 下载PDF
LinguTimeX a Framework for Multilingual CTC Detection Using Explainable AI and Natural Language Processing
2
作者 Omar Darwish Shorouq Al-Eidi +4 位作者 Abdallah Al-Shorman Majdi Maabreh Anas Alsobeh Plamen Zahariev Yahya Tashtoush 《Computers, Materials & Continua》 2026年第1期2231-2251,共21页
Covert timing channels(CTC)exploit network resources to establish hidden communication pathways,posing signi cant risks to data security and policy compliance.erefore,detecting such hidden and dangerous threats remain... Covert timing channels(CTC)exploit network resources to establish hidden communication pathways,posing signi cant risks to data security and policy compliance.erefore,detecting such hidden and dangerous threats remains one of the security challenges. is paper proposes LinguTimeX,a new framework that combines natural language processing with arti cial intelligence,along with explainable Arti cial Intelligence(AI)not only to detect CTC but also to provide insights into the decision process.LinguTimeX performs multidimensional feature extraction by fusing linguistic attributes with temporal network patterns to identify covert channels precisely.LinguTimeX demonstrates strong e ectiveness in detecting CTC across multiple languages;namely English,Arabic,and Chinese.Speci cally,the LSTM and RNN models achieved F1 scores of 90%on the English dataset,89%on the Arabic dataset,and 88%on the Chinese dataset,showcasing their superior performance and ability to generalize across multiple languages. is highlights their robustness in detecting CTCs within security systems,regardless of the language or cultural context of the data.In contrast,the DeepForest model produced F1-scores ranging from 86%to 87%across the same datasets,further con rming its e ectiveness in CTC detection.Although other algorithms also showed reasonable accuracy,the LSTM and RNN models consistently outperformed them in multilingual settings,suggesting that deep learning models might be better suited for this particular problem. 展开更多
关键词 Arabic language Chinese language covert timing channel CYBERSECURITY deep learning English language language processing machine learning
在线阅读 下载PDF
When Large Language Models and Machine Learning Meet Multi-Criteria Decision Making: Fully Integrated Approach for Social Media Moderation
3
作者 Noreen Fuentes Janeth Ugang +4 位作者 Narcisan Galamiton Suzette Bacus Samantha Shane Evangelista Fatima Maturan Lanndon Ocampo 《Computers, Materials & Continua》 2026年第1期2137-2162,共26页
This study demonstrates a novel integration of large language models,machine learning,and multicriteria decision-making to investigate self-moderation in small online communities,a topic under-explored compared to use... This study demonstrates a novel integration of large language models,machine learning,and multicriteria decision-making to investigate self-moderation in small online communities,a topic under-explored compared to user behavior and platform-driven moderation on social media.The proposed methodological framework(1)utilizes large language models for social media post analysis and categorization,(2)employs k-means clustering for content characterization,and(3)incorporates the TODIM(Tomada de Decisão Interativa Multicritério)method to determine moderation strategies based on expert judgments.In general,the fully integrated framework leverages the strengths of these intelligent systems in a more systematic evaluation of large-scale decision problems.When applied in social media moderation,this approach promotes nuanced and context-sensitive self-moderation by taking into account factors such as cultural background and geographic location.The application of this framework is demonstrated within Facebook groups.Eight distinct content clusters encompassing safety,harassment,diversity,and misinformation are identified.Analysis revealed a preference for content removal across all clusters,suggesting a cautious approach towards potentially harmful content.However,the framework also highlights the use of other moderation actions,like account suspension,depending on the content category.These findings contribute to the growing body of research on self-moderation and offer valuable insights for creating safer and more inclusive online spaces within smaller communities. 展开更多
关键词 Self-moderation user-generated content k-means clustering TODIM large language models
在线阅读 下载PDF
基于SysML的载人月球探测任务人-系统整合设计研究
4
作者 初建杰 原炳坤 +3 位作者 王刚 王波 丁少闻 安启源 《机械设计》 北大核心 2025年第7期213-218,共6页
载人航天器研制过程中,人因要素在早期阶段融入设计仍有待提升,且常规的基于模型的系统工程(model based systems engineering,MBSE)体系缺少将人与系统其余部分进行整合的充分考虑,导致开发迭代周期变长,也大幅增加了研制成本。针对这... 载人航天器研制过程中,人因要素在早期阶段融入设计仍有待提升,且常规的基于模型的系统工程(model based systems engineering,MBSE)体系缺少将人与系统其余部分进行整合的充分考虑,导致开发迭代周期变长,也大幅增加了研制成本。针对这一问题,提出载人月球探测任务人因领域元模型构建方法,在人-系统整合的框架下,采用MBSE将人因需求整合至载人航天器的开发过程中,并基于系统建模语言SysML建立人因领域元模型,以实现在载人月球探测产品开发的全生命周期中融入人因需求,为产品的规划、设计和开发提供支持,有效减少研制中出现人因设计问题,降低研制成本。通过载人月球探测任务的典型案例进行建模,验证人因领域元模型建立方法的有效性,为类似系统设计的MBSE扩展应用提供参考。 展开更多
关键词 载人月球探测 人-系统整合 MBSE 元模型 sysml
原文传递
基于SysML的空中分布式作战体系建模研究 被引量:2
5
作者 王小龙 王暖臣 +2 位作者 穆歌 张旭东 李新津 《电光与控制》 北大核心 2025年第2期1-6,共6页
为开展带有智能、无人特征的空中分布式作战体系研究,支撑装备和能力建设发展,提出一种基于SysML的体系建模方法。在梳理概念发展的基础上,总结空中分布式作战体系特点,分析其制胜机理。借鉴元建模思想,以DoDAF2.0元模型为基础构建空中... 为开展带有智能、无人特征的空中分布式作战体系研究,支撑装备和能力建设发展,提出一种基于SysML的体系建模方法。在梳理概念发展的基础上,总结空中分布式作战体系特点,分析其制胜机理。借鉴元建模思想,以DoDAF2.0元模型为基础构建空中分布式作战体系数据元模型,结合SysML图形特点遴选体系模型、构建建模框架、梳理建模流程。通过智能无人机集群作战体系的示例验证所提方法的有效性,为新型作战体系建模提供思路和技术支撑。 展开更多
关键词 空中分布式作战 体系建模 sysml DoDAF2.0 元模型
在线阅读 下载PDF
SysML建模方法在火控系统中的应用
6
作者 程冰 侯麒麟 +2 位作者 闫建鹏 代跃胜 凌振国 《火力与指挥控制》 北大核心 2025年第7期185-191,共7页
探索了SysML在火控系统复杂性管理中的应用,通过分析需求管理、系统架构设计、行为建模和性能优化等方面,验证SysML在火控系统应用的有效性。采用多视图建模方法,结合实际案例,对火控系统进行系统化建模和分析。结果表明,SysML能够显著... 探索了SysML在火控系统复杂性管理中的应用,通过分析需求管理、系统架构设计、行为建模和性能优化等方面,验证SysML在火控系统应用的有效性。采用多视图建模方法,结合实际案例,对火控系统进行系统化建模和分析。结果表明,SysML能够显著提高设计效率并降低开发风险,为火控系统复杂性管理提供了新的方法与工具。 展开更多
关键词 sysml建模 火控系统 系统工程 多视图建模 复杂性管理
在线阅读 下载PDF
基于SysML2NuSMV的民用飞机电传飞控系统安全性分析
7
作者 赖康 陆中 +1 位作者 程大炜 缪炜润 《系统工程与电子技术》 北大核心 2025年第11期3802-3815,共14页
为解决传统电传飞控系统安全性分析过度依赖分析人员经验的问题,综合利用系统建模语言(system modeling language,SysML)和新符号模型验证器(new symbolic model verifier,NuSMV)描述系统行为,提出一种基于模型的安全性分析方法。首先,... 为解决传统电传飞控系统安全性分析过度依赖分析人员经验的问题,综合利用系统建模语言(system modeling language,SysML)和新符号模型验证器(new symbolic model verifier,NuSMV)描述系统行为,提出一种基于模型的安全性分析方法。首先,利用SysML建立电传飞控系统的名义模型和故障模型,提出面向SysML的故障信息提取方法。然后,建立SysML和NuSMV模型的映射规则,利用提取的故障信息自动生成描述系统故障行为的NuSMV模型。最后,通过模型检测实现电传飞控系统的安全性分析。该方法避免了对人员技术和经验的依赖,并且安全性分析结果由设计模型直接生成。当设计方案修改时能自动更新安全分析结果,避免重新开展安全性分析带来的繁琐工作。 展开更多
关键词 安全性分析 系统建模语言 新符号模型验证器 模型检测 电传飞控系统
在线阅读 下载PDF
Large language models for robotics:Opportunities,challenges,and perspectives 被引量:4
8
作者 Jiaqi Wang Enze Shi +7 位作者 Huawen Hu Chong Ma Yiheng Liu Xuhui Wang Yincheng Yao Xuan Liu Bao Ge Shu Zhang 《Journal of Automation and Intelligence》 2025年第1期52-64,共13页
Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and langua... Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and language comprehension capabilities to formulate precise and efficient action plans based on natural language instructions.However,for embodied tasks,where robots interact with complex environments,textonly LLMs often face challenges due to a lack of compatibility with robotic visual perception.This study provides a comprehensive overview of the emerging integration of LLMs and multimodal LLMs into various robotic tasks.Additionally,we propose a framework that utilizes multimodal GPT-4V to enhance embodied task planning through the combination of natural language instructions and robot visual perceptions.Our results,based on diverse datasets,indicate that GPT-4V effectively enhances robot performance in embodied tasks.This extensive survey and evaluation of LLMs and multimodal LLMs across a variety of robotic tasks enriches the understanding of LLM-centric embodied intelligence and provides forward-looking insights towards bridging the gap in Human-Robot-Environment interaction. 展开更多
关键词 Large language models ROBOTICS Generative AI Embodied intelligence
在线阅读 下载PDF
二语写作研究的现状、反思与展望——基于Journal of Second Language Writing近十年载文分析
9
作者 孙云帆 孙玲 《西部学刊》 2025年第5期164-168,共5页
二语写作是二语习得研究领域的重要组成部分。运用CiteSpace软件对近十年发表在Journal of Second Language Writing的231篇实证研究论文进行可视化分析,研究发现:二语写作研究整体呈波动性上升趋势,研究规模较为稳定,研究关注度逐渐提... 二语写作是二语习得研究领域的重要组成部分。运用CiteSpace软件对近十年发表在Journal of Second Language Writing的231篇实证研究论文进行可视化分析,研究发现:二语写作研究整体呈波动性上升趋势,研究规模较为稳定,研究关注度逐渐提升;二语写作研究领域暂未形成明显的核心作者和机构的合作网络;研究主题主要聚焦二语写作教学方法的多元化、二语写作反馈的多焦点、二语写作评估与测试的科学化,以及学习者个体差异的多维影响等方面。基于此,提出未来该领域发展需加强学者、机构之间的相互合作;关注个体学习者写作过程的认知特征与情感因素,尤其重视青少年二语学习过程的研究;扩大二语写作纵向研究规模,推动研究的深入发展。 展开更多
关键词 二语写作研究 Journal of Second language Writing 可视化分析 现状 反思与展望
在线阅读 下载PDF
复杂空间飞行任务SysML模型设计研究
10
作者 侯振东 黄震 +2 位作者 程子龙 刘炎东 项迪 《宇航学报》 北大核心 2025年第9期1863-1874,共12页
针对复杂飞行任务设计过程中面临的系统间协同耦合强、故障应急分支多、规划约束复杂、程序指令交错等难题,应用系统论方法建立飞行任务模型体系,提出一种应用SysML活动图建模的飞行任务设计方法,通过纵向4级分层、横向关联利益相关方... 针对复杂飞行任务设计过程中面临的系统间协同耦合强、故障应急分支多、规划约束复杂、程序指令交错等难题,应用系统论方法建立飞行任务模型体系,提出一种应用SysML活动图建模的飞行任务设计方法,通过纵向4级分层、横向关联利益相关方的矩阵式架构,覆盖从飞行阶段到程序指令的全研制周期设计内容,实现正常和应急飞行方案的同规划、同设计。针对该设计方法,从云协同、输入输出传递、标准化、复用等维度提出相匹配的数字化设计方法,对结合逻辑仿真和参数仿真的设计结果仿真验证方法、基于网页版模式的一体化质量确认方法进行探讨分析。该方法已在载人航天器工程研制中得到落地应用,相较于传统基于文档的设计方法在逻辑表达、要素覆盖、显性设计、数据传递、拓展应用等方面均有优势,为推动载人航天器数字化设计模式转型提供了参考。 展开更多
关键词 飞行任务 sysml建模 数字化设计 仿真验证
在线阅读 下载PDF
On large language models safety,security,and privacy:A survey 被引量:3
11
作者 Ran Zhang Hong-Wei Li +2 位作者 Xin-Yuan Qian Wen-Bo Jiang Han-Xiao Chen 《Journal of Electronic Science and Technology》 2025年第1期1-21,共21页
The integration of artificial intelligence(AI)technology,particularly large language models(LLMs),has become essential across various sectors due to their advanced language comprehension and generation capabilities.De... The integration of artificial intelligence(AI)technology,particularly large language models(LLMs),has become essential across various sectors due to their advanced language comprehension and generation capabilities.Despite their transformative impact in fields such as machine translation and intelligent dialogue systems,LLMs face significant challenges.These challenges include safety,security,and privacy concerns that undermine their trustworthiness and effectiveness,such as hallucinations,backdoor attacks,and privacy leakage.Previous works often conflated safety issues with security concerns.In contrast,our study provides clearer and more reasonable definitions for safety,security,and privacy within the context of LLMs.Building on these definitions,we provide a comprehensive overview of the vulnerabilities and defense mechanisms related to safety,security,and privacy in LLMs.Additionally,we explore the unique research challenges posed by LLMs and suggest potential avenues for future research,aiming to enhance the robustness and reliability of LLMs in the face of emerging threats. 展开更多
关键词 Large language models Privacy issues Safety issues Security issues
在线阅读 下载PDF
When Software Security Meets Large Language Models:A Survey 被引量:2
12
作者 Xiaogang Zhu Wei Zhou +3 位作者 Qing-Long Han Wanlun Ma Sheng Wen Yang Xiang 《IEEE/CAA Journal of Automatica Sinica》 2025年第2期317-334,共18页
Software security poses substantial risks to our society because software has become part of our life. Numerous techniques have been proposed to resolve or mitigate the impact of software security issues. Among them, ... Software security poses substantial risks to our society because software has become part of our life. Numerous techniques have been proposed to resolve or mitigate the impact of software security issues. Among them, software testing and analysis are two of the critical methods, which significantly benefit from the advancements in deep learning technologies. Due to the successful use of deep learning in software security, recently,researchers have explored the potential of using large language models(LLMs) in this area. In this paper, we systematically review the results focusing on LLMs in software security. We analyze the topics of fuzzing, unit test, program repair, bug reproduction, data-driven bug detection, and bug triage. We deconstruct these techniques into several stages and analyze how LLMs can be used in the stages. We also discuss the future directions of using LLMs in software security, including the future directions for the existing use of LLMs and extensions from conventional deep learning research. 展开更多
关键词 Large language models(LLMs) software analysis software security software testing
在线阅读 下载PDF
The Security of Using Large Language Models:A Survey With Emphasis on ChatGPT 被引量:2
13
作者 Wei Zhou Xiaogang Zhu +4 位作者 Qing-Long Han Lin Li Xiao Chen Sheng Wen Yang Xiang 《IEEE/CAA Journal of Automatica Sinica》 2025年第1期1-26,共26页
ChatGPT is a powerful artificial intelligence(AI)language model that has demonstrated significant improvements in various natural language processing(NLP) tasks. However, like any technology, it presents potential sec... ChatGPT is a powerful artificial intelligence(AI)language model that has demonstrated significant improvements in various natural language processing(NLP) tasks. However, like any technology, it presents potential security risks that need to be carefully evaluated and addressed. In this survey, we provide an overview of the current state of research on security of using ChatGPT, with aspects of bias, disinformation, ethics, misuse,attacks and privacy. We review and discuss the literature on these topics and highlight open research questions and future directions.Through this survey, we aim to contribute to the academic discourse on AI security, enriching the understanding of potential risks and mitigations. We anticipate that this survey will be valuable for various stakeholders involved in AI development and usage, including AI researchers, developers, policy makers, and end-users. 展开更多
关键词 Artificial intelligence(AI) ChatGPT large language models(LLMs) SECURITY
在线阅读 下载PDF
Evaluating research quality with Large Language Models:An analysis of ChatGPT’s effectiveness with different settings and inputs 被引量:1
14
作者 Mike Thelwall 《Journal of Data and Information Science》 2025年第1期7-25,共19页
Purpose:Evaluating the quality of academic journal articles is a time consuming but critical task for national research evaluation exercises,appointments and promotion.It is therefore important to investigate whether ... Purpose:Evaluating the quality of academic journal articles is a time consuming but critical task for national research evaluation exercises,appointments and promotion.It is therefore important to investigate whether Large Language Models(LLMs)can play a role in this process.Design/methodology/approach:This article assesses which ChatGPT inputs(full text without tables,figures,and references;title and abstract;title only)produce better quality score estimates,and the extent to which scores are affected by ChatGPT models and system prompts.Findings:The optimal input is the article title and abstract,with average ChatGPT scores based on these(30 iterations on a dataset of 51 papers)correlating at 0.67 with human scores,the highest ever reported.ChatGPT 4o is slightly better than 3.5-turbo(0.66),and 4o-mini(0.66).Research limitations:The data is a convenience sample of the work of a single author,it only includes one field,and the scores are self-evaluations.Practical implications:The results suggest that article full texts might confuse LLM research quality evaluations,even though complex system instructions for the task are more effective than simple ones.Thus,whilst abstracts contain insufficient information for a thorough assessment of rigour,they may contain strong pointers about originality and significance.Finally,linear regression can be used to convert the model scores into the human scale scores,which is 31%more accurate than guessing.Originality/value:This is the first systematic comparison of the impact of different prompts,parameters and inputs for ChatGPT research quality evaluations. 展开更多
关键词 ChatGPT Large language Models LLMs SCIENTOMETRICS Research Assessment
在线阅读 下载PDF
Diffusion-based generative drug-like molecular editing with chemical natural language 被引量:1
15
作者 Jianmin Wang Peng Zhou +6 位作者 Zixu Wang Wei Long Yangyang Chen Kyoung Tai No Dongsheng Ouyang Jiashun Mao Xiangxiang Zeng 《Journal of Pharmaceutical Analysis》 2025年第6期1215-1225,共11页
Recently,diffusion models have emerged as a promising paradigm for molecular design and optimization.However,most diffusion-based molecular generative models focus on modeling 2D graphs or 3D geom-etries,with limited ... Recently,diffusion models have emerged as a promising paradigm for molecular design and optimization.However,most diffusion-based molecular generative models focus on modeling 2D graphs or 3D geom-etries,with limited research on molecular sequence diffusion models.The International Union of Pure and Applied Chemistry(IUPAC)names are more akin to chemical natural language than the simplified molecular input line entry system(SMILES)for organic compounds.In this work,we apply an IUPAC-guided conditional diffusion model to facilitate molecular editing from chemical natural language to chemical language(SMILES)and explore whether the pre-trained generative performance of diffusion models can be transferred to chemical natural language.We propose DiffIUPAC,a controllable molecular editing diffusion model that converts IUPAC names to SMILES strings.Evaluation results demonstrate that our model out-performs existing methods and successfully captures the semantic rules of both chemical languages.Chemical space and scaffold analysis show that the model can generate similar compounds with diverse scaffolds within the specified constraints.Additionally,to illustrate the model’s applicability in drug design,we conducted case studies in functional group editing,analogue design and linker design. 展开更多
关键词 Diffusion model IUPAC Molecular generative model Chemical natural language Transformer
在线阅读 下载PDF
Assessing the possibility of using large language models in ocular surface diseases 被引量:1
16
作者 Qian Ling Zi-Song Xu +11 位作者 Yan-Mei Zeng Qi Hong Xian-Zhe Qian Jin-Yu Hu Chong-Gang Pei Hong Wei Jie Zou Cheng Chen Xiao-Yu Wang Xu Chen Zhen-Kai Wu Yi Shao 《International Journal of Ophthalmology(English edition)》 2025年第1期1-8,共8页
AIM:To assess the possibility of using different large language models(LLMs)in ocular surface diseases by selecting five different LLMS to test their accuracy in answering specialized questions related to ocular surfa... AIM:To assess the possibility of using different large language models(LLMs)in ocular surface diseases by selecting five different LLMS to test their accuracy in answering specialized questions related to ocular surface diseases:ChatGPT-4,ChatGPT-3.5,Claude 2,PaLM2,and SenseNova.METHODS:A group of experienced ophthalmology professors were asked to develop a 100-question singlechoice question on ocular surface diseases designed to assess the performance of LLMs and human participants in answering ophthalmology specialty exam questions.The exam includes questions on the following topics:keratitis disease(20 questions),keratoconus,keratomalaciac,corneal dystrophy,corneal degeneration,erosive corneal ulcers,and corneal lesions associated with systemic diseases(20 questions),conjunctivitis disease(20 questions),trachoma,pterygoid and conjunctival tumor diseases(20 questions),and dry eye disease(20 questions).Then the total score of each LLMs and compared their mean score,mean correlation,variance,and confidence were calculated.RESULTS:GPT-4 exhibited the highest performance in terms of LLMs.Comparing the average scores of the LLMs group with the four human groups,chief physician,attending physician,regular trainee,and graduate student,it was found that except for ChatGPT-4,the total score of the rest of the LLMs is lower than that of the graduate student group,which had the lowest score in the human group.Both ChatGPT-4 and PaLM2 were more likely to give exact and correct answers,giving very little chance of an incorrect answer.ChatGPT-4 showed higher credibility when answering questions,with a success rate of 59%,but gave the wrong answer to the question 28% of the time.CONCLUSION:GPT-4 model exhibits excellent performance in both answer relevance and confidence.PaLM2 shows a positive correlation(up to 0.8)in terms of answer accuracy during the exam.In terms of answer confidence,PaLM2 is second only to GPT4 and surpasses Claude 2,SenseNova,and GPT-3.5.Despite the fact that ocular surface disease is a highly specialized discipline,GPT-4 still exhibits superior performance,suggesting that its potential and ability to be applied in this field is enormous,perhaps with the potential to be a valuable resource for medical students and clinicians in the future. 展开更多
关键词 ChatGPT-4.0 ChatGPT-3.5 large language models ocular surface diseases
原文传递
Large Language Model Agent with VGI Data for Mapping 被引量:2
17
作者 SONG Jiayu ZHANG Yifan +1 位作者 WANG Zhiyun YU Wenhao 《Journal of Geodesy and Geoinformation Science》 2025年第2期57-73,共17页
In recent years,Volunteered Geographic Information(VGI)has emerged as a crucial source of mapping data,contributed by users through crowdsourcing platforms such as OpenStreetMap.This paper presents a novel approach th... In recent years,Volunteered Geographic Information(VGI)has emerged as a crucial source of mapping data,contributed by users through crowdsourcing platforms such as OpenStreetMap.This paper presents a novel approach that Integrates Large Language Models(LLMs)into a fully automated mapping workflow,utilizing VGI data.The process leverages Prompt Engineering,which involves designing and optimizing input instructions to ensure the LLM produces desired mapping outputs.By constructing precise and detailed prompts,LLM agents are able to accurately interpret mapping requirements,and autonomously extract,analyze,and process VGI geospatial data.They dynamically interact with mapping tools to automate the entire mapping process—from data acquisition to map generation.This approach significantly streamlines the creation of high-quality mapping outputs,reducing the time and resources typically required for such tasks.Moreover,the system lowers the barrier for non-expert users,enabling them to generate accurate maps without extensive technical expertise.Through various case studies,we demonstrate the LLM application across different mapping scenarios,highlighting its potential to enhance the efficiency,accuracy,and accessibility of map production.The results suggest that LLM-powered mapping systems can not only optimize VGI data processing but also expand the usability of ubiquitous mapping across diverse fields,including urban planning and infrastructure development. 展开更多
关键词 Volunteered Geographic Information(VGI) Geospatial Artificial Intelligence(GeoAI) AGENT large language model
在线阅读 下载PDF
GPT2-ICC:A data-driven approach for accurate ion channel identification using pre-trained large language models 被引量:1
18
作者 Zihan Zhou Yang Yu +9 位作者 Chengji Yang Leyan Cao Shaoying Zhang Junnan Li Yingnan Zhang Huayun Han Guoliang Shi Qiansen Zhang Juwen Shen Huaiyu Yang 《Journal of Pharmaceutical Analysis》 2025年第8期1800-1809,共10页
Current experimental and computational methods have limitations in accurately and efficiently classifying ion channels within vast protein spaces.Here we have developed a deep learning algorithm,GPT2 Ion Channel Class... Current experimental and computational methods have limitations in accurately and efficiently classifying ion channels within vast protein spaces.Here we have developed a deep learning algorithm,GPT2 Ion Channel Classifier(GPT2-ICC),which effectively distinguishing ion channels from a test set containing approximately 239 times more non-ion-channel proteins.GPT2-ICC integrates representation learning with a large language model(LLM)-based classifier,enabling highly accurate identification of potential ion channels.Several potential ion channels were predicated from the unannotated human proteome,further demonstrating GPT2-ICC’s generalization ability.This study marks a significant advancement in artificial-intelligence-driven ion channel research,highlighting the adaptability and effectiveness of combining representation learning with LLMs to address the challenges of imbalanced protein sequence data.Moreover,it provides a valuable computational tool for uncovering previously uncharacterized ion channels. 展开更多
关键词 Ion channel Artificial intelligence Representation learning GPT2 Protein language model
在线阅读 下载PDF
AI Chain-Driven Control Flow Graph Generation for Multiple Programming Language 被引量:1
19
作者 ZOU Zhou ZUO Zhengkang HUANG Qing 《Wuhan University Journal of Natural Sciences》 2025年第3期222-230,共9页
Control Flow Graphs(CFGs)are essential for understanding the execution and data flow within software,serving as foundational structures in program analysis.Traditional CFG construction methods,such as bytecode analysi... Control Flow Graphs(CFGs)are essential for understanding the execution and data flow within software,serving as foundational structures in program analysis.Traditional CFG construction methods,such as bytecode analysis and Abstract Syntax Trees(ASTs),often face challenges due to the complex syntax of programming languages like Java and Python.This paper introduces a novel approach that leverages Large Language Models(LLMs)to generate CFGs through a methodical Chain of Thought(CoT)process.By employing CoT,the proposed approach systematically interprets code semantics directly from natural language,enhancing the adaptability across various programming languages and simplifying the CFG construction process.By implementing a modular AI chain strategy that adheres to the single responsibility principle,our approach breaks down CFG generation into distinct,manageable steps handled by separate AI and non-AI units,which can significantly improve the precision and coverage of CFG nodes and edges.The experiments with 245 Java and 281 Python code snippets from Stack Overflow demonstrate that our method achieves efficient performance on different programming languages and exhibits strong robustness. 展开更多
关键词 Control Flow Graph Large language Model Chain of Thought AI chain
原文传递
基于SysML的健康监测系统软件设计
20
作者 周潇雅 李鹏程 +2 位作者 肖进 顾黎 赵博 《计算机测量与控制》 2025年第10期30-36,共7页
航天复杂任务场景导致航天产品规模与复杂度显著增长,航天产品“智能化”“集成化”的发展趋势也使得软件在航天产品中的地位与功能要求不断攀升,传统的基于文档的软件功能设计往往在软件需求文档尚未完全厘清下开展,而软件测试则在软... 航天复杂任务场景导致航天产品规模与复杂度显著增长,航天产品“智能化”“集成化”的发展趋势也使得软件在航天产品中的地位与功能要求不断攀升,传统的基于文档的软件功能设计往往在软件需求文档尚未完全厘清下开展,而软件测试则在软件设计完毕及编码实现后才开展,需求文档的模糊性导致可能出现设计、测试反复等问题,进而影响软件产品研制交付效率和质量;为了避免基于文档的软件设计带来的问题,采用MBSE方法,针对基于SysML的健康监测系统软件设计进行了研究,采用SysML软件模型在软件代码实现之前开展软件功能逻辑验证和软件功能测试;仿真及测试结果表明在软件论证阶段使用该方法,对软件功能设计方案正确性进行验证是可行的和有效的。 展开更多
关键词 sysml MBSE 软件设计 软件测试 基于模型
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部