A diagnostic study is performed in the paper on the process of typhoon Norris (1980) transforming into an ex-tratropical cyclone after its landing over Southeast China. The main findings are as follows:The changes of ...A diagnostic study is performed in the paper on the process of typhoon Norris (1980) transforming into an ex-tratropical cyclone after its landing over Southeast China. The main findings are as follows:The changes of kinetic energy are mainly attributed to the generation due to non-divergent wind. During the early stage of the typhoon landing, there exits only a small quantity of kinetic energy exchanging with the environment. And after it is transformed into an extratropical cyclone, a large amount of kinetic energy is exported from the system toward the environment.The horizontal and vertical flux-divergence terms of eddy available potenlial energy are the prominent sinks in the budgets of eddy kinetic energy. The generations of eddy kinetic energy due to both the barotropic and baroclinic processes are source terms. The former is remarkable during the initial stage. But after the depression is transformed into an extratropical cyclone, the roles of the generation by the barotropic and baroclinic processes are reversed, 1. e. , the latter has become more significant than the former.Diabatic heating is the most dominant heat source. The terms of vertical heat flux by cumulus and large-scale motion are the major sinks. And the latter is prominent after the system is transformed into an extratropical cycfone.展开更多
In order to study the carrier-based aircraft landing laws landed on the carrier, the dynamics model of carrier-based aircraft landing gears landed on dynamic deck is built. In this model, the interactions of the carri...In order to study the carrier-based aircraft landing laws landed on the carrier, the dynamics model of carrier-based aircraft landing gears landed on dynamic deck is built. In this model, the interactions of the carrier-based aircraft landing attitude and the damping force acting on landing gears are considered, and the influence of dynamic deck is introduced into the model through the deck normal vectors. The wheel-deck coordinate system is put forward to solve the complex simulation problem of force-onwheel which comes from the dynamic deck. At last, by simulation, it is demonstrated that the model can be applied to landing attitude when the carrier-based aircraft is landing on the dynamic deck, it is also proved that the model is comprehensive and suitable for any abnormal landing situation.展开更多
This study investigates the impact of vegetation-climate feedback on the global land monsoon system during the Last Interglacial(LIG,127000 years BP)and the mid-Holocene(MH,6000 years BP)using the earth system model E...This study investigates the impact of vegetation-climate feedback on the global land monsoon system during the Last Interglacial(LIG,127000 years BP)and the mid-Holocene(MH,6000 years BP)using the earth system model EC-Earth3.Our findings indicate that vegetation changes significantly influence the global monsoon area and precipitation patterns,especially in the North African and Indian monsoon regions.The North African monsoon region experienced the most substantial increase in vegetation during both the LIG and MH,resulting in significant increases in monsoonal precipitation by 9.8%and 6.0%,respectively.The vegetation feedback also intensified the Saharan Heat Low,strengthened monsoonal flows,and enhanced precipitation over the North African monsoon region.In contrast,the Indian monsoon region exhibited divergent responses to vegetation changes.During the LIG,precipitation in the Indian monsoon region decreased by 2.2%,while it increased by 1.6%during the MH.These differences highlight the complex and region-specific impacts of vegetation feedback on monsoon systems.Overall,this study demonstrates that vegetation feedback exerts distinct influences on the global monsoon during the MH and LIG.These findings highlight the importance of considering vegetation-climate feedback in understanding past monsoon variability and in predicting future climate change impacts on monsoon systems.展开更多
Global land monsoon precipitation(GLMP)is highly sensitive to changes in interhemispheric thermal contrast(ITC).Amplified interhemispheric asymmetries of GLMP due to enhanced ITC driven by high-level anthropogenic emi...Global land monsoon precipitation(GLMP)is highly sensitive to changes in interhemispheric thermal contrast(ITC).Amplified interhemispheric asymmetries of GLMP due to enhanced ITC driven by high-level anthropogenic emissions are expected to simultaneously increase the probability of regional floods and droughts,threatening ecosystems within global terrestrial monsoon regions and the freshwater supply for billions of residents in these areas.In this study,the responses of GLMP to the evolution of ITC toward the carbon neutrality goal are assessed using multimodel outputs from a new model intercomparison project(CovidMIP).The results show that the Northern Hemisphere-Southern Hemisphere(NH-SH)asymmetry of GLMP in boreal summer weakens during the 2040s,as a persistent reduction in well-mixed greenhouse gas(WMGHG)emissions leads to a downward trend in the ITC after 2040.At the same time,the reduction in WMGHG emissions dampens the Eastern Hemisphere-Western Hemisphere(EH-WH)asymmetry of GLMP by inducing La Niña-like cooling and enhancing moisture transport to Inner America.The resulting increases in land monsoon precipitation(LMP)may alleviate drought under the global warming scenario by about 19%-25%and 7%-9%in the WH and SH monsoon regions,respectively.However,a persistent reduction in aerosol emissions in Asia will dominate the increases in LMP in this region until the mid-21st century,and these increases may be approximately 23%-60%of the growth under the global warming scenario.Our results highlight the different rates of response of aerosol and WMGHG concentrations to the carbon neutrality goal,leading to various changes in LMP at global and regional scales.展开更多
The onset,cessation,and length of the rainy season are crucial for global water resources,agricultural practices,and food security.However,the response of precipitation seasonality to global warming remains uncertain....The onset,cessation,and length of the rainy season are crucial for global water resources,agricultural practices,and food security.However,the response of precipitation seasonality to global warming remains uncertain.In this study,we analyze how global warming levels(GWLs)of 1.5℃ and 2℃ could affect the timing of rainfall onset(RODs),rainfall cessation(RCDs),and the overall duration of the rainy season(LRS)over global land monsoon(GLM)regions using simulations from CMIP6 under the SSP2-4.5 and SSP5-8.5 scenarios.With high model consensus,our results reveal that RODs are projected to occur later over Southern Africa,North Africa,and South America,but earlier over South Asia and Australia,in a warmer climate.The projected early RODs in Australia are more pronounced at the 2℃ GWL under SSP5-8.5.On the other hand,early RCDs are projected over South America and East Asia,while late RCDs are projected over North Africa,with high inter-model agreement.These changes are associated with a future decrease in LRS in most GLM regions.Additionally,we found that continuous warming over 1.5℃ will further reduce the length of the rainy season,especially over the South America,North Africa,and Southern Africa monsoon regions.The findings underscore the urgent need to mitigate global warming.展开更多
In the morning of August 20,Heilongjiang Zijin Copper Project formally signed agreement at Fularji District in Qiqihar City.This also signals that the copper smelting project with a total investment of 4 billion yuan,...In the morning of August 20,Heilongjiang Zijin Copper Project formally signed agreement at Fularji District in Qiqihar City.This also signals that the copper smelting project with a total investment of 4 billion yuan,a project under planning since 2011,has formally landed in Qiqihar City.展开更多
On December 24,a new industrial partner entered the friend circle of new energy vehicle industrial cluster in Daye;a new material project with a total investment of 3 billion yuan held ground-breaking ceremony,signali...On December 24,a new industrial partner entered the friend circle of new energy vehicle industrial cluster in Daye;a new material project with a total investment of 3 billion yuan held ground-breaking ceremony,signaling its formal landing in Daye.This Project is invested and constructed by Hubei Zhongxing New Advanced Material Co.,Ltd,the Project involves total investment of展开更多
On April 10,North United Aluminum Company respectively signed investment cooperation agreements with Qijiang Industrial Park and Qineng Electricity&Aluminum Co.,Ltd,signifying the landing of North United Aluminum...On April 10,North United Aluminum Company respectively signed investment cooperation agreements with Qijiang Industrial Park and Qineng Electricity&Aluminum Co.,Ltd,signifying the landing of North United Aluminum’s aluminum deep processing project in Qijiang.展开更多
英国作家立德夫人的民族志作品The Land of the Blue Gown有多个汉语无本回译译本。本文选取其中三个代表性译本,尝试从民族志翻译理论出发,通过对不同译本的语言风格传达和文化信息还原进行比较,总结各无本回译译本的翻译策略选择以及...英国作家立德夫人的民族志作品The Land of the Blue Gown有多个汉语无本回译译本。本文选取其中三个代表性译本,尝试从民族志翻译理论出发,通过对不同译本的语言风格传达和文化信息还原进行比较,总结各无本回译译本的翻译策略选择以及译者在各自翻译过程中扮演的不同角色,为民族志翻译相关研究作学理探讨。展开更多
The increased frequency and intensity of heavy rainfall events due to climate change could potentially influence the movement of nutrients from land-based regions into recipient rivers.However,little information is av...The increased frequency and intensity of heavy rainfall events due to climate change could potentially influence the movement of nutrients from land-based regions into recipient rivers.However,little information is available on how the rainfall affect nutrient dynamics in subtropicalmontane rivers with complex land use.This study conducted high-frequency monitoring to study the effects of rainfall on nutrients dynamics in an agricultural river draining to Lake Qiandaohu,a montane reservoir of southeast China.The results showed that riverine total nitrogen(TN)and total phosphorus(TP)concentrations increased continuously with increasing rainfall intensity,while TN:TP decreased.The heavy rainfall and rainstorm drove more than 30%of the annual N and P loading in only 5.20%of the total rainfall period,indicating that increased storm runoff is likely to exacerbate eutrophication in montane reservoirs.NO_(3)^(−)-N is the primary nitrogen form lost,while particulate phosphorus(PP)dominated phosphorus loss.Themain source of N is cropland,and themain source of P is residential area.Spatially,forestedwatersheds have better drainage quality,while it is still a potential source of nonpoint pollution during rainfall events.TN and TP concentrations were significantly higher at sites dominated by cropland and residential area,indicating their substantial contributions to deteriorating river water quality.Temporally,TN and TP concentrations reached high values in May-August when rainfall was most intense,while they were lower in autumn and winter than that in spring and summer under the same rainfall intensities.The results emphasize the influence of rainfall-runoff and land use on dynamics of riverine N and P loads,providing guidance for nutrient load reduction planning for Lake Qiandaohu.展开更多
1.Introduction Changes in land use are key factors promoting global climate change,and the side effects of mining activity that destroy the soil,vegetation,and biodiversity lead to imbalanced carbon cycling in terrest...1.Introduction Changes in land use are key factors promoting global climate change,and the side effects of mining activity that destroy the soil,vegetation,and biodiversity lead to imbalanced carbon cycling in terrestrial ecosystems.展开更多
Land use transformations in Sonipat District,Haryana,driven by urbanization,industrialization,and land acquisitions,have posed significant ecological and socio-economic challenges,particularly concerning food security...Land use transformations in Sonipat District,Haryana,driven by urbanization,industrialization,and land acquisitions,have posed significant ecological and socio-economic challenges,particularly concerning food security.This study investigates the interplay between these land use changes and their environmental implications at macro(district)and micro(village)levels,focusing on agricultural productivity and resource sustainability.The study employs a mixed-method approach,integrating secondary data from official datasets and primary data gathered through structured household surveys,focus group discussions,and visual analysis techniques.Data from 20 villages,selected based on predominant land use characteristics,were analysed using statistical and geospatial tools,including ArcGIS and STATA,to quantify food grain losses and evaluate environmental degradation.Findings of this study reveal a 19%reduction in agricultural land over two decades(2000-2024),correlating with increased residential and industrial areas.Groundwater resources face severe overexploitation,with pollution from industrial clusters further degrading water and soil quality.The study estimates a total food grain loss of 1.5 million kilograms across surveyed villages due to land acquisitions.A strong positive correlation(R^(2)=0.98)between land acquisition and food loss underscores the direct impact of urbanization on agricultural output.The research underscores the urgency of sustainable land management practices,including preserving agricultural lands,optimizing groundwater usage,and enhancing community involvement in planning.By addressing these challenges,the study advocates for balanced urban expansion and food security to ensure ecological and economic resilience in the region.展开更多
Human well-being and livelihoods depend on natural ecosystem services(ESs).Following the increment of population,ESs have been deteriorated over time.Ultimately,land use/land cover(LULC)changes have a profound impact ...Human well-being and livelihoods depend on natural ecosystem services(ESs).Following the increment of population,ESs have been deteriorated over time.Ultimately,land use/land cover(LULC)changes have a profound impact on the change of ecosystem.The primary goal of this study is to determine the impacts of LULC changes on ecosystem service values(ESVs)in the upper Gilgel Abbay watershed,Ethiopia.Changes in LULC types were studied using three Landsat images representing 1986,2003,and 2021.The Landsat images were classified using a supervised image classification technique in Earth Resources Data Analysis System(ERDAS)Imagine 2014.We classified ESs in this study into four categories(including provisioning,regulating,supporting,and cultural services)based on global ES classification scheme.The adjusted ESV coefficient benefit approach was employed to measure the impacts of LULC changes on ESVs.Five LULC types were identified in this study,including cultivated land,forest,shrubland,grassland,and water body.The result revealed that the area of cultivated land accounted for 64.50%,71.50%,and 61.50%of the total area in 1986,2003,and 2021,respectively.The percentage of the total area covered by forest was 9.50%,5.90%,and 14.80%in 1986,2003,and 2021,respectively.Result revealed that the total ESV decreased from 7.42×10^(7) to 6.44×10^(7) USD between 1986 and 2003.This is due to the expansion of cultivated land at the expense of forest and shrubland.However,the total ESV increased from 6.44×10^(7) to 7.76×10^(7) USD during 2003-2021,because of the increment of forest and shrubland.The expansion of cultivated land and the reductions of forest and shrubland reduced most individual ESs during 1986-2003.Nevertheless,the increase in forest and shrubland at the expense of cultivated land enhanced many ESs during 2003-2021.Therefore,the findings suggest that appropriate land use practices should be scaled-up to sustainably maintain ESs.展开更多
Northern China is a prominent “hotspot” for land–atmosphere interactions, with substantial gradients in both moisture and thermal conditions. Previous studies have identified a link between land–atmosphere couplin...Northern China is a prominent “hotspot” for land–atmosphere interactions, with substantial gradients in both moisture and thermal conditions. Previous studies have identified a link between land–atmosphere coupling and the individual roles of each factor, but the synergistic effect of the two factors remains unclear. This study considers the covariation of evapotranspiration and precipitation to assess evapotranspiration–precipitation(ET–P) coupling across northern China,exploring its spatial variations and their linkage to water and heat factors. Our findings reveal a transition from strongly positive coupling in the northwest to weakly negative coupling in the southeast, peaking in spring. These spatial variations are attributable to water(soil moisture) and heat(air temperature), which explain 39% and 25% of the variability,respectively. The aridity index(AI), a water–heat synergy factor, is the dominant factor, explaining 66% of the spatial variation in ET–P coupling. As the AI increases, ET–P coupling shifts from strongly positive to weakly negative, with an AI around 0.7. This shift is determined by a shift in the evapotranspiration–lifting condensation level(LCL) coupling under an AI change. Regions with an AI below 0.7 experience water-limited evapotranspiration, where increased soil moisture enhances evapotranspiration, reduces sensible heat(H), and lowers the LCL, resulting in a negative ET–LCL coupling.Conversely, regions with an AI above 0.7 experience energy-limited evapotranspiration, where the positive ET–LCL coupling reflects a positive H–LCL coupling or a positive impact of the LCL on evapotranspiration. This analysis advances our understanding of the intricate influences of multifactor surface interactions on the spatial variations of land–atmosphere coupling.展开更多
Accurate spatio-temporal land cover information in agricultural irrigation districts is crucial for effective agricultural management and crop production.Therefore,a spectralphenological-based land cover classificatio...Accurate spatio-temporal land cover information in agricultural irrigation districts is crucial for effective agricultural management and crop production.Therefore,a spectralphenological-based land cover classification(SPLC)method combined with a fusion model(flexible spatiotemporal data fusion,FSDAF)(abbreviated as SPLC-F)was proposed to map multi-year land cover and crop type(LC-CT)distribution in agricultural irrigated areas with complex landscapes and cropping system,using time series optical images(Landsat and MODIS).The SPLC-F method was well validated and applied in a super-large irrigated area(Hetao)of the upper Yellow River Basin(YRB).Results showed that the SPLC-F method had a satisfactory performance in producing long-term LC-CT maps in Hetao,without the requirement of field sampling.Then,the spatio-temporal variation and the driving factors of the cropping systems were further analyzed with the aid of detailed household surveys and statistics.We clarified that irrigation and salinity conditions were the main factors that had impacts on crop spatial distribution in the upper YRB.Investment costs,market demand,and crop price are the main driving factors in determining the temporal variations in cropping distribution.Overall,this study provided essential multi-year LC-CT maps for sustainable management of agriculture,eco-environments,and food security in the upper YRB.展开更多
Foreign-funded overseas industrial parks(OIPs)are crucial for attracting foreign investment and promoting globalization in developing countries.However,large-scale land acquisition for these parks generates conflicts ...Foreign-funded overseas industrial parks(OIPs)are crucial for attracting foreign investment and promoting globalization in developing countries.However,large-scale land acquisition for these parks generates conflicts between developers and local stakeholders,increasing development costs.A qualitative multicase study was conducted in this study to analyze the land transaction trajectories of China's OIPs.Four OIPs were selected to reveal the underlying mechanisms from the perspectives of institutional arrangements,governance mechanisms,and enterprise heterogeneity.The findings indicate that in host countries with insufficient institutional development,local governments are more inclined to directly engage in OIP land acquisition.High-level intergovernmental mechanisms facilitate land acquisition processes,although their efficacy depends largely on administrative power allocation across parks in host countries.The results also indicate that enterprise characteristics significantly influence land acquisition,where microscale private enterprises lacking political connections often employ low-cost,bottom-up strategies by leveraging international experience.In summary,policy-makers in developing countries should prioritize enhancing OIP governance to mitigate transaction costs,promote diversified land supply,and optimize land allocation.By depicting China's OIP land acquisition processes,this study deepens the academic understanding of OIP governance in developing countries and related international land transactions,offering practical OIP management insights for governments in both host and parent countries.展开更多
Land surface temperature(LST)is the key variable in land-atmosphere interaction,having an important impact on weather and climate forecasting.However,achieving consistent analysis of LST and the atmosphere in assimila...Land surface temperature(LST)is the key variable in land-atmosphere interaction,having an important impact on weather and climate forecasting.However,achieving consistent analysis of LST and the atmosphere in assimilation is quite challenging.This is because there is limited knowledge about the cross-component background error covariance(BEC)between LST and atmospheric state variables.This study aims to clarify whether there is a relationship between the error of LST and atmospheric variables,and whether this relationship varies spatially and temporally.To this end,the BEC coupled with atmospheric variables and LST was constructed(LST-BEC),and its characteristics were analyzed based on the 2023 mei-yu season.The general characteristics of LST-BEC show that the LST is mainly correlated with the atmospheric temperature and the correlation decreases gradually with a rise in atmospheric height,and the error standard deviation of the LST is noticeably larger than that of the low-level atmospheric temperature.The spatiotemporal characteristics of LST-BEC on the heavy-rain day and light-rain day show that the error correlation and error standard deviation of LST and low-level atmospheric temperature and humidity are closely related to the weather background,and also have obvious diurnal variations.These results provide valuable information for strongly coupled land-atmosphere assimilation.展开更多
Scientifically understanding the evolution of urbanization and analysing the coupling mechanism of human-land systems are important foundations for solving spatial conflicts and promoting regional sustainable developm...Scientifically understanding the evolution of urbanization and analysing the coupling mechanism of human-land systems are important foundations for solving spatial conflicts and promoting regional sustainable development.This study analyzed the spatiotemporal evolution and landscape pattern change of construction land in the Yangtze River Delta(YRD)region from 1990 to 2018 by integrating Geographical Information System(GIS)spatial analysis and landscape pattern indices,and revealed its driving mechanism by XGBoost and SHapley Additive ex Planations(SHAP).Moreover,we compared the disparities in the core driving factors for construction land evolution in cities with diverse development orientations within the YRD region.Results show that:1)development intensity of construction land continued to increase from 7.54%in 1990 to 13.44%in 2018,primarily by occupying farmland.The landscape fragmentation of construction land in the YRD region decreased,and landscape dominance increased.Spatially,the eastern part of the YRD exhibits a high degree of spatial agglomeration of construction land,whereas the western part shows a high degree of fragmentation,revealing distinct spatial gradient differentiation characteristics.The landscape dominance of the construction land in the eastern region of the YRD is higher than that in the western and northern regions.2)Transportation and infrastructure exert the highest contribution rate on development intensity changes of construction land in the YRD.The industrial structure significantly influences the conversion of farmland to construction land.Additionally,infrastructure plays a crucial role in shaping the spatial agglomeration patterns of construction land.Population distribution is the dominant factor determining the regularity of the landscape shape of construction land.3)The core driving factors for the development intensity of construction land in central cities primarily lies in transportation,whereas for non-central cities,besides transportation,the year-end balance of per capita savings deposits of urban and rural residents also play a significant role.The area change of construction land occupying farmland in central and non-central cities is mainly driven by industrial structure and economic level,respectively.This study informs refined spatial optimization and regional high-quality integrated development.展开更多
In recent years,rapid urbanization has had a profound impact on landscape stability.As a typical example of China's rapid urbanization,Hangzhou has also experienced significant landscape changes,which have profoun...In recent years,rapid urbanization has had a profound impact on landscape stability.As a typical example of China's rapid urbanization,Hangzhou has also experienced significant landscape changes,which have profoundly affected its ecological stability.Taking Hangzhou as an example,this study integrates land use change data from 1980 to 2020,combines dynamic simulation and ecological modeling techniques,and carries out a comprehensive analysis of historical trends and future predictions,to provide valuable insights into the complex interactions between urban expansion and landscape stability.The results indicate that:1)between 1980 and2020,Hangzhou experienced a significant increase in construction land at the expense of arable land,leading to a gradual decline in landscape stability,though the downward trend has slowed in recent years.2)The spatial distribution of landscape stability shows clear aggregation patterns,with lower stability concentrated in economically active flatlands and higher stability in the mountainous western regions.3)By 2040,further urban expansion is predicted to occur alongside increased landscape integration,reflecting the positive effects of ecological protection strategies.This study highlights the universal challenges of balancing economic growth with ecological stability in rapidly urbanizing regions.The combination of advanced simulation models and spatiotemporal analysis demonstrates a replicable framework for assessing urban expansion's ecological impacts.These findings underscore the importance of tailoring urban planning and ecological policies to address regional disparities,providing valuable insights for sustainable urban development and landscape management globally.展开更多
The implementation of long-term shelterbelt programs in the middle reaches of the Yellow River(MRYR),China not only has improved the overall ecological environment,but also has led to the changes of land use pattern,c...The implementation of long-term shelterbelt programs in the middle reaches of the Yellow River(MRYR),China not only has improved the overall ecological environment,but also has led to the changes of land use pattern,causing carbon storage exchanges.However,the relationship between carbon storage and land use change in the MRYR is not concerned,which results in the uncertainty in the simulation of carbon storage in this area.Land use changes directly affect the carbon storage capacity of ecosystems,and as an indicator reflecting the overall state of land use,land use degree has an important relationship with carbon storage.In this study,land use data and the integrated valuation of ecosystem services and trade-offs(InVEST)model were used to assess the trends in land use degree and carbon storage in the MRYR during 1980-2020.The potential impact index and the standard deviation ellipse(SDE)algorithm were applied to quantify and analyze the characteristics of the impact of land use changes on carbon storage.Subsequently,land use transitions that led to carbon storage variations and their spatial variations were determined.The results showed that:(1)the most significant periods of carbon storage changes and land use transitions were observed during 1990-1995 and 1995-2020,with the most changed areas locating in the east of Fenhe River and in northwestern Henan Province;(2)the positive impact of land use degree on carbon storage may be related to the environmental protection measures implemented along the Yellow River,while the negative impact may be associated with the expansion of construction land in plain areas;and(3)the conversion of other land use types to grassland was the primary factor affecting carbon storage changes during 1980-2020.In future land use planning,attention should be given to the direction of grassland conversion,and focus on reasonably limiting the development of construction land.To enhance carbon storage,it will be crucial to increase the area of high-carbon-density land types,such as forest land and grassland under the condition that the area of permanent farmland does not decrease.展开更多
文摘A diagnostic study is performed in the paper on the process of typhoon Norris (1980) transforming into an ex-tratropical cyclone after its landing over Southeast China. The main findings are as follows:The changes of kinetic energy are mainly attributed to the generation due to non-divergent wind. During the early stage of the typhoon landing, there exits only a small quantity of kinetic energy exchanging with the environment. And after it is transformed into an extratropical cyclone, a large amount of kinetic energy is exported from the system toward the environment.The horizontal and vertical flux-divergence terms of eddy available potenlial energy are the prominent sinks in the budgets of eddy kinetic energy. The generations of eddy kinetic energy due to both the barotropic and baroclinic processes are source terms. The former is remarkable during the initial stage. But after the depression is transformed into an extratropical cyclone, the roles of the generation by the barotropic and baroclinic processes are reversed, 1. e. , the latter has become more significant than the former.Diabatic heating is the most dominant heat source. The terms of vertical heat flux by cumulus and large-scale motion are the major sinks. And the latter is prominent after the system is transformed into an extratropical cycfone.
文摘In order to study the carrier-based aircraft landing laws landed on the carrier, the dynamics model of carrier-based aircraft landing gears landed on dynamic deck is built. In this model, the interactions of the carrier-based aircraft landing attitude and the damping force acting on landing gears are considered, and the influence of dynamic deck is introduced into the model through the deck normal vectors. The wheel-deck coordinate system is put forward to solve the complex simulation problem of force-onwheel which comes from the dynamic deck. At last, by simulation, it is demonstrated that the model can be applied to landing attitude when the carrier-based aircraft is landing on the dynamic deck, it is also proved that the model is comprehensive and suitable for any abnormal landing situation.
基金supported by the Swedish Research Council(Vetenskapsradet,Grant No.202203129)the Project of Youth Science and Technology Fund of Gansu Province(Grant No.24JRRA439)partially funded by the Swedish Research Council(Vetenskapsradet,Grant No.2022-06725)。
文摘This study investigates the impact of vegetation-climate feedback on the global land monsoon system during the Last Interglacial(LIG,127000 years BP)and the mid-Holocene(MH,6000 years BP)using the earth system model EC-Earth3.Our findings indicate that vegetation changes significantly influence the global monsoon area and precipitation patterns,especially in the North African and Indian monsoon regions.The North African monsoon region experienced the most substantial increase in vegetation during both the LIG and MH,resulting in significant increases in monsoonal precipitation by 9.8%and 6.0%,respectively.The vegetation feedback also intensified the Saharan Heat Low,strengthened monsoonal flows,and enhanced precipitation over the North African monsoon region.In contrast,the Indian monsoon region exhibited divergent responses to vegetation changes.During the LIG,precipitation in the Indian monsoon region decreased by 2.2%,while it increased by 1.6%during the MH.These differences highlight the complex and region-specific impacts of vegetation feedback on monsoon systems.Overall,this study demonstrates that vegetation feedback exerts distinct influences on the global monsoon during the MH and LIG.These findings highlight the importance of considering vegetation-climate feedback in understanding past monsoon variability and in predicting future climate change impacts on monsoon systems.
基金funded by the National Natural Science Foundation of China(Grant No.42275039)the Meteorological Joint Fund by NSF and CMA(Grant No.U2342224)+1 种基金the National Key R&D Program of China(Grant No.2022YFC3701202)the S&T Development Fund of CAMS(Grant No.2024KJ019)。
文摘Global land monsoon precipitation(GLMP)is highly sensitive to changes in interhemispheric thermal contrast(ITC).Amplified interhemispheric asymmetries of GLMP due to enhanced ITC driven by high-level anthropogenic emissions are expected to simultaneously increase the probability of regional floods and droughts,threatening ecosystems within global terrestrial monsoon regions and the freshwater supply for billions of residents in these areas.In this study,the responses of GLMP to the evolution of ITC toward the carbon neutrality goal are assessed using multimodel outputs from a new model intercomparison project(CovidMIP).The results show that the Northern Hemisphere-Southern Hemisphere(NH-SH)asymmetry of GLMP in boreal summer weakens during the 2040s,as a persistent reduction in well-mixed greenhouse gas(WMGHG)emissions leads to a downward trend in the ITC after 2040.At the same time,the reduction in WMGHG emissions dampens the Eastern Hemisphere-Western Hemisphere(EH-WH)asymmetry of GLMP by inducing La Niña-like cooling and enhancing moisture transport to Inner America.The resulting increases in land monsoon precipitation(LMP)may alleviate drought under the global warming scenario by about 19%-25%and 7%-9%in the WH and SH monsoon regions,respectively.However,a persistent reduction in aerosol emissions in Asia will dominate the increases in LMP in this region until the mid-21st century,and these increases may be approximately 23%-60%of the growth under the global warming scenario.Our results highlight the different rates of response of aerosol and WMGHG concentrations to the carbon neutrality goal,leading to various changes in LMP at global and regional scales.
基金supported by the Australian Research Council(Grant No.CE230100012)。
文摘The onset,cessation,and length of the rainy season are crucial for global water resources,agricultural practices,and food security.However,the response of precipitation seasonality to global warming remains uncertain.In this study,we analyze how global warming levels(GWLs)of 1.5℃ and 2℃ could affect the timing of rainfall onset(RODs),rainfall cessation(RCDs),and the overall duration of the rainy season(LRS)over global land monsoon(GLM)regions using simulations from CMIP6 under the SSP2-4.5 and SSP5-8.5 scenarios.With high model consensus,our results reveal that RODs are projected to occur later over Southern Africa,North Africa,and South America,but earlier over South Asia and Australia,in a warmer climate.The projected early RODs in Australia are more pronounced at the 2℃ GWL under SSP5-8.5.On the other hand,early RCDs are projected over South America and East Asia,while late RCDs are projected over North Africa,with high inter-model agreement.These changes are associated with a future decrease in LRS in most GLM regions.Additionally,we found that continuous warming over 1.5℃ will further reduce the length of the rainy season,especially over the South America,North Africa,and Southern Africa monsoon regions.The findings underscore the urgent need to mitigate global warming.
文摘In the morning of August 20,Heilongjiang Zijin Copper Project formally signed agreement at Fularji District in Qiqihar City.This also signals that the copper smelting project with a total investment of 4 billion yuan,a project under planning since 2011,has formally landed in Qiqihar City.
文摘On December 24,a new industrial partner entered the friend circle of new energy vehicle industrial cluster in Daye;a new material project with a total investment of 3 billion yuan held ground-breaking ceremony,signaling its formal landing in Daye.This Project is invested and constructed by Hubei Zhongxing New Advanced Material Co.,Ltd,the Project involves total investment of
文摘On April 10,North United Aluminum Company respectively signed investment cooperation agreements with Qijiang Industrial Park and Qineng Electricity&Aluminum Co.,Ltd,signifying the landing of North United Aluminum’s aluminum deep processing project in Qijiang.
文摘英国作家立德夫人的民族志作品The Land of the Blue Gown有多个汉语无本回译译本。本文选取其中三个代表性译本,尝试从民族志翻译理论出发,通过对不同译本的语言风格传达和文化信息还原进行比较,总结各无本回译译本的翻译策略选择以及译者在各自翻译过程中扮演的不同角色,为民族志翻译相关研究作学理探讨。
基金supported by the National Natural Science Foundation of China(Nos.U2340209,and 42271126)the NIGLAS Foundation(No.NIGLAS2022GS03)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20220041)the US National Science Foundation Projects(Nos.1831096,1803697,and 2108917).
文摘The increased frequency and intensity of heavy rainfall events due to climate change could potentially influence the movement of nutrients from land-based regions into recipient rivers.However,little information is available on how the rainfall affect nutrient dynamics in subtropicalmontane rivers with complex land use.This study conducted high-frequency monitoring to study the effects of rainfall on nutrients dynamics in an agricultural river draining to Lake Qiandaohu,a montane reservoir of southeast China.The results showed that riverine total nitrogen(TN)and total phosphorus(TP)concentrations increased continuously with increasing rainfall intensity,while TN:TP decreased.The heavy rainfall and rainstorm drove more than 30%of the annual N and P loading in only 5.20%of the total rainfall period,indicating that increased storm runoff is likely to exacerbate eutrophication in montane reservoirs.NO_(3)^(−)-N is the primary nitrogen form lost,while particulate phosphorus(PP)dominated phosphorus loss.Themain source of N is cropland,and themain source of P is residential area.Spatially,forestedwatersheds have better drainage quality,while it is still a potential source of nonpoint pollution during rainfall events.TN and TP concentrations were significantly higher at sites dominated by cropland and residential area,indicating their substantial contributions to deteriorating river water quality.Temporally,TN and TP concentrations reached high values in May-August when rainfall was most intense,while they were lower in autumn and winter than that in spring and summer under the same rainfall intensities.The results emphasize the influence of rainfall-runoff and land use on dynamics of riverine N and P loads,providing guidance for nutrient load reduction planning for Lake Qiandaohu.
基金supported by the National Natural Science Foun dation of China(52374170 and 51974313)the National Key Research and Development Plan Project(2022YFF1303300).
文摘1.Introduction Changes in land use are key factors promoting global climate change,and the side effects of mining activity that destroy the soil,vegetation,and biodiversity lead to imbalanced carbon cycling in terrestrial ecosystems.
文摘Land use transformations in Sonipat District,Haryana,driven by urbanization,industrialization,and land acquisitions,have posed significant ecological and socio-economic challenges,particularly concerning food security.This study investigates the interplay between these land use changes and their environmental implications at macro(district)and micro(village)levels,focusing on agricultural productivity and resource sustainability.The study employs a mixed-method approach,integrating secondary data from official datasets and primary data gathered through structured household surveys,focus group discussions,and visual analysis techniques.Data from 20 villages,selected based on predominant land use characteristics,were analysed using statistical and geospatial tools,including ArcGIS and STATA,to quantify food grain losses and evaluate environmental degradation.Findings of this study reveal a 19%reduction in agricultural land over two decades(2000-2024),correlating with increased residential and industrial areas.Groundwater resources face severe overexploitation,with pollution from industrial clusters further degrading water and soil quality.The study estimates a total food grain loss of 1.5 million kilograms across surveyed villages due to land acquisitions.A strong positive correlation(R^(2)=0.98)between land acquisition and food loss underscores the direct impact of urbanization on agricultural output.The research underscores the urgency of sustainable land management practices,including preserving agricultural lands,optimizing groundwater usage,and enhancing community involvement in planning.By addressing these challenges,the study advocates for balanced urban expansion and food security to ensure ecological and economic resilience in the region.
文摘Human well-being and livelihoods depend on natural ecosystem services(ESs).Following the increment of population,ESs have been deteriorated over time.Ultimately,land use/land cover(LULC)changes have a profound impact on the change of ecosystem.The primary goal of this study is to determine the impacts of LULC changes on ecosystem service values(ESVs)in the upper Gilgel Abbay watershed,Ethiopia.Changes in LULC types were studied using three Landsat images representing 1986,2003,and 2021.The Landsat images were classified using a supervised image classification technique in Earth Resources Data Analysis System(ERDAS)Imagine 2014.We classified ESs in this study into four categories(including provisioning,regulating,supporting,and cultural services)based on global ES classification scheme.The adjusted ESV coefficient benefit approach was employed to measure the impacts of LULC changes on ESVs.Five LULC types were identified in this study,including cultivated land,forest,shrubland,grassland,and water body.The result revealed that the area of cultivated land accounted for 64.50%,71.50%,and 61.50%of the total area in 1986,2003,and 2021,respectively.The percentage of the total area covered by forest was 9.50%,5.90%,and 14.80%in 1986,2003,and 2021,respectively.Result revealed that the total ESV decreased from 7.42×10^(7) to 6.44×10^(7) USD between 1986 and 2003.This is due to the expansion of cultivated land at the expense of forest and shrubland.However,the total ESV increased from 6.44×10^(7) to 7.76×10^(7) USD during 2003-2021,because of the increment of forest and shrubland.The expansion of cultivated land and the reductions of forest and shrubland reduced most individual ESs during 1986-2003.Nevertheless,the increase in forest and shrubland at the expense of cultivated land enhanced many ESs during 2003-2021.Therefore,the findings suggest that appropriate land use practices should be scaled-up to sustainably maintain ESs.
基金jointly supported by the National Science Foundation of China (Grant No.42230611)the Meteorological Joint Fund (Grant No.U2142208)+2 种基金the Second Tibetan Plateau Scientific Expedition and Research (STEP) program (grant no.2019QZKK0102)the National Science Foundation of China (Grant No.42005071)the Gansu Province Key Talent Project (Grant No.2023RCXM37)。
文摘Northern China is a prominent “hotspot” for land–atmosphere interactions, with substantial gradients in both moisture and thermal conditions. Previous studies have identified a link between land–atmosphere coupling and the individual roles of each factor, but the synergistic effect of the two factors remains unclear. This study considers the covariation of evapotranspiration and precipitation to assess evapotranspiration–precipitation(ET–P) coupling across northern China,exploring its spatial variations and their linkage to water and heat factors. Our findings reveal a transition from strongly positive coupling in the northwest to weakly negative coupling in the southeast, peaking in spring. These spatial variations are attributable to water(soil moisture) and heat(air temperature), which explain 39% and 25% of the variability,respectively. The aridity index(AI), a water–heat synergy factor, is the dominant factor, explaining 66% of the spatial variation in ET–P coupling. As the AI increases, ET–P coupling shifts from strongly positive to weakly negative, with an AI around 0.7. This shift is determined by a shift in the evapotranspiration–lifting condensation level(LCL) coupling under an AI change. Regions with an AI below 0.7 experience water-limited evapotranspiration, where increased soil moisture enhances evapotranspiration, reduces sensible heat(H), and lowers the LCL, resulting in a negative ET–LCL coupling.Conversely, regions with an AI above 0.7 experience energy-limited evapotranspiration, where the positive ET–LCL coupling reflects a positive H–LCL coupling or a positive impact of the LCL on evapotranspiration. This analysis advances our understanding of the intricate influences of multifactor surface interactions on the spatial variations of land–atmosphere coupling.
基金National Natural Science Foundation of China,No.52379053,No.52022108The Key Research Project of Science and Technology in Inner Mongolia Autonomous Region of China,No.NMKJXM202208,No.NMKJXM202301The Project Funded by the Water Resources Department of Inner Mongolia Autonomous Region of China,No.NSK202103。
文摘Accurate spatio-temporal land cover information in agricultural irrigation districts is crucial for effective agricultural management and crop production.Therefore,a spectralphenological-based land cover classification(SPLC)method combined with a fusion model(flexible spatiotemporal data fusion,FSDAF)(abbreviated as SPLC-F)was proposed to map multi-year land cover and crop type(LC-CT)distribution in agricultural irrigated areas with complex landscapes and cropping system,using time series optical images(Landsat and MODIS).The SPLC-F method was well validated and applied in a super-large irrigated area(Hetao)of the upper Yellow River Basin(YRB).Results showed that the SPLC-F method had a satisfactory performance in producing long-term LC-CT maps in Hetao,without the requirement of field sampling.Then,the spatio-temporal variation and the driving factors of the cropping systems were further analyzed with the aid of detailed household surveys and statistics.We clarified that irrigation and salinity conditions were the main factors that had impacts on crop spatial distribution in the upper YRB.Investment costs,market demand,and crop price are the main driving factors in determining the temporal variations in cropping distribution.Overall,this study provided essential multi-year LC-CT maps for sustainable management of agriculture,eco-environments,and food security in the upper YRB.
基金Philosophy and Social Science Planning Projects in Yunnan Province,No.QN202428China Postdoctoral Science Foundation,No.2024M752918。
文摘Foreign-funded overseas industrial parks(OIPs)are crucial for attracting foreign investment and promoting globalization in developing countries.However,large-scale land acquisition for these parks generates conflicts between developers and local stakeholders,increasing development costs.A qualitative multicase study was conducted in this study to analyze the land transaction trajectories of China's OIPs.Four OIPs were selected to reveal the underlying mechanisms from the perspectives of institutional arrangements,governance mechanisms,and enterprise heterogeneity.The findings indicate that in host countries with insufficient institutional development,local governments are more inclined to directly engage in OIP land acquisition.High-level intergovernmental mechanisms facilitate land acquisition processes,although their efficacy depends largely on administrative power allocation across parks in host countries.The results also indicate that enterprise characteristics significantly influence land acquisition,where microscale private enterprises lacking political connections often employ low-cost,bottom-up strategies by leveraging international experience.In summary,policy-makers in developing countries should prioritize enhancing OIP governance to mitigate transaction costs,promote diversified land supply,and optimize land allocation.By depicting China's OIP land acquisition processes,this study deepens the academic understanding of OIP governance in developing countries and related international land transactions,offering practical OIP management insights for governments in both host and parent countries.
基金sponsored by the National Natural Science Foundation of China[grant number U2442218]。
文摘Land surface temperature(LST)is the key variable in land-atmosphere interaction,having an important impact on weather and climate forecasting.However,achieving consistent analysis of LST and the atmosphere in assimilation is quite challenging.This is because there is limited knowledge about the cross-component background error covariance(BEC)between LST and atmospheric state variables.This study aims to clarify whether there is a relationship between the error of LST and atmospheric variables,and whether this relationship varies spatially and temporally.To this end,the BEC coupled with atmospheric variables and LST was constructed(LST-BEC),and its characteristics were analyzed based on the 2023 mei-yu season.The general characteristics of LST-BEC show that the LST is mainly correlated with the atmospheric temperature and the correlation decreases gradually with a rise in atmospheric height,and the error standard deviation of the LST is noticeably larger than that of the low-level atmospheric temperature.The spatiotemporal characteristics of LST-BEC on the heavy-rain day and light-rain day show that the error correlation and error standard deviation of LST and low-level atmospheric temperature and humidity are closely related to the weather background,and also have obvious diurnal variations.These results provide valuable information for strongly coupled land-atmosphere assimilation.
基金Under the auspices of the National Natural Science Foundation of China(No.42301470,42171389)。
文摘Scientifically understanding the evolution of urbanization and analysing the coupling mechanism of human-land systems are important foundations for solving spatial conflicts and promoting regional sustainable development.This study analyzed the spatiotemporal evolution and landscape pattern change of construction land in the Yangtze River Delta(YRD)region from 1990 to 2018 by integrating Geographical Information System(GIS)spatial analysis and landscape pattern indices,and revealed its driving mechanism by XGBoost and SHapley Additive ex Planations(SHAP).Moreover,we compared the disparities in the core driving factors for construction land evolution in cities with diverse development orientations within the YRD region.Results show that:1)development intensity of construction land continued to increase from 7.54%in 1990 to 13.44%in 2018,primarily by occupying farmland.The landscape fragmentation of construction land in the YRD region decreased,and landscape dominance increased.Spatially,the eastern part of the YRD exhibits a high degree of spatial agglomeration of construction land,whereas the western part shows a high degree of fragmentation,revealing distinct spatial gradient differentiation characteristics.The landscape dominance of the construction land in the eastern region of the YRD is higher than that in the western and northern regions.2)Transportation and infrastructure exert the highest contribution rate on development intensity changes of construction land in the YRD.The industrial structure significantly influences the conversion of farmland to construction land.Additionally,infrastructure plays a crucial role in shaping the spatial agglomeration patterns of construction land.Population distribution is the dominant factor determining the regularity of the landscape shape of construction land.3)The core driving factors for the development intensity of construction land in central cities primarily lies in transportation,whereas for non-central cities,besides transportation,the year-end balance of per capita savings deposits of urban and rural residents also play a significant role.The area change of construction land occupying farmland in central and non-central cities is mainly driven by industrial structure and economic level,respectively.This study informs refined spatial optimization and regional high-quality integrated development.
基金Under the auspices of Zhejiang Provincial Natural Science Foundation of China(No.LY19C160007)。
文摘In recent years,rapid urbanization has had a profound impact on landscape stability.As a typical example of China's rapid urbanization,Hangzhou has also experienced significant landscape changes,which have profoundly affected its ecological stability.Taking Hangzhou as an example,this study integrates land use change data from 1980 to 2020,combines dynamic simulation and ecological modeling techniques,and carries out a comprehensive analysis of historical trends and future predictions,to provide valuable insights into the complex interactions between urban expansion and landscape stability.The results indicate that:1)between 1980 and2020,Hangzhou experienced a significant increase in construction land at the expense of arable land,leading to a gradual decline in landscape stability,though the downward trend has slowed in recent years.2)The spatial distribution of landscape stability shows clear aggregation patterns,with lower stability concentrated in economically active flatlands and higher stability in the mountainous western regions.3)By 2040,further urban expansion is predicted to occur alongside increased landscape integration,reflecting the positive effects of ecological protection strategies.This study highlights the universal challenges of balancing economic growth with ecological stability in rapidly urbanizing regions.The combination of advanced simulation models and spatiotemporal analysis demonstrates a replicable framework for assessing urban expansion's ecological impacts.These findings underscore the importance of tailoring urban planning and ecological policies to address regional disparities,providing valuable insights for sustainable urban development and landscape management globally.
基金funded by the National Natural Science Foundation of China(52079103)the Outstanding Youth Science Fund of Xi'an University of Science and Technology(2024YQ2-02).
文摘The implementation of long-term shelterbelt programs in the middle reaches of the Yellow River(MRYR),China not only has improved the overall ecological environment,but also has led to the changes of land use pattern,causing carbon storage exchanges.However,the relationship between carbon storage and land use change in the MRYR is not concerned,which results in the uncertainty in the simulation of carbon storage in this area.Land use changes directly affect the carbon storage capacity of ecosystems,and as an indicator reflecting the overall state of land use,land use degree has an important relationship with carbon storage.In this study,land use data and the integrated valuation of ecosystem services and trade-offs(InVEST)model were used to assess the trends in land use degree and carbon storage in the MRYR during 1980-2020.The potential impact index and the standard deviation ellipse(SDE)algorithm were applied to quantify and analyze the characteristics of the impact of land use changes on carbon storage.Subsequently,land use transitions that led to carbon storage variations and their spatial variations were determined.The results showed that:(1)the most significant periods of carbon storage changes and land use transitions were observed during 1990-1995 and 1995-2020,with the most changed areas locating in the east of Fenhe River and in northwestern Henan Province;(2)the positive impact of land use degree on carbon storage may be related to the environmental protection measures implemented along the Yellow River,while the negative impact may be associated with the expansion of construction land in plain areas;and(3)the conversion of other land use types to grassland was the primary factor affecting carbon storage changes during 1980-2020.In future land use planning,attention should be given to the direction of grassland conversion,and focus on reasonably limiting the development of construction land.To enhance carbon storage,it will be crucial to increase the area of high-carbon-density land types,such as forest land and grassland under the condition that the area of permanent farmland does not decrease.