期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Landau quantization effects on damping Kawahara solitons in electron–positron–ion plasma in rotating ionized medium
1
作者 E I El-Awady S Hussain N Akhtar 《Communications in Theoretical Physics》 SCIE CAS CSCD 2024年第10期141-150,共10页
For the dynamics of three-dimensional electron–positron–ion plasmas,a fluid quantum hydrodynamic model is proposed by considering Landau quantization effects in dense plasma.Ion–neutral collisions in the presence o... For the dynamics of three-dimensional electron–positron–ion plasmas,a fluid quantum hydrodynamic model is proposed by considering Landau quantization effects in dense plasma.Ion–neutral collisions in the presence of the Coriolis force are also considered.The application of the reductive perturbation technique produces a wave evolution equation represented by a damped Korteweg–de Vries equation.This equation,however,is insufficient for describing waves in our system at very low dispersion coefficients.As a result,we considered the highest-order perturbation,which resulted in the damped Kawahara equation.The effects of the magnetic field,Landau quantization,the ratio of positron density to electron density,the ratio of positron density to ion density,and the direction cosine on linear dispersion laws as well as soliton and conoidal solutions of the damped Kawahara equation are explored.The understanding from this research can contribute to the broader field of astrophysics and aid in the interpretation of observational data from white dwarfs. 展开更多
关键词 Kawahara equation solitary and cnoidal waves quantum plasma magnetoplasmas landau quantization Coriolis force
原文传递
Relativistic Landau quantization in the spiral dislocation spacetime
2
作者 A V D M Maia K Bakke 《Communications in Theoretical Physics》 SCIE CAS CSCD 2021年第2期68-72,共5页
We analyse the interaction of a relativistic electron with a uniform magnetic field in the spiral dislocation spacetime.We show that analytical solutions to the Dirac equation can be obtained,where the spectrum of ene... We analyse the interaction of a relativistic electron with a uniform magnetic field in the spiral dislocation spacetime.We show that analytical solutions to the Dirac equation can be obtained,where the spectrum of energy corresponds to the relativistic Landau levels.We also analyse the influence of the spiral dislocation on the relativistic Landau levels by showing that there exists an analogue of the Aharonov–Bohm effect for bound states. 展开更多
关键词 spiral dislocation spacetime relativistic landau quantization Aharonov-Bohm effect relativistic wave equations Dirac equation
原文传递
Landau quantization of Dirac fermions in graphene and its multilayers 被引量:1
3
作者 Long-Jing Yin Ke-Ke Bai +3 位作者 Wen-Xiao Wang Si-Yu Li Yu Zhang Lin He 《Frontiers of physics》 SCIE CSCD 2017年第4期85-121,共37页
When electrons are confined in a two-dimensional (2D) system, typical quantum-mechanical phenonl- ena such as Landau quantization can be detected. Graphene systems, including the single atomic layer and few-layer st... When electrons are confined in a two-dimensional (2D) system, typical quantum-mechanical phenonl- ena such as Landau quantization can be detected. Graphene systems, including the single atomic layer and few-layer stacked crystals, are ideal 2D materials for studying a variety of quantum-mechanical problems. In this article, we review the experimental progress in the unusual Landau quantized behav- iors of Dirac fernlions in monolayer and multilayer graphene by using scanning tunneling microscopy (STM) and scanning tulmeling spectroscopy (STS). Through STS measurement of the strong mag- netic fields, distinct Landau-level spectra and rich level-splitting phenomena are observed in different graphene layers. These unique properties provide an effective method for identifying the number of layers, as well as the stacking orders, and investigating the fllndamentally physical phenomena of graphene. Moreover, in the presence of a strain and charged defects, the Landau quantization of graphene can be significantly modified, leading to unusual spectroscopic and electronic properties. 展开更多
关键词 landau quantization GRAPHENE STM/STS stacking order strain and defect
原文传递
An Inquiry into Two Intriguing Values of the Critical Current Density of Bi-2212
4
作者 Gulshan Prakash Malik Vijaya Shankar Varma 《World Journal of Condensed Matter Physics》 CAS 2021年第3期53-64,共12页
The empirically reported values of the critical current density (j<sub>c</sub>) of Bi-2212 as 2.4 × 10<sup>5</sup> (j<sub>c</sub><sub>1</sub>;Sample 1) and 1.0 ... The empirically reported values of the critical current density (j<sub>c</sub>) of Bi-2212 as 2.4 × 10<sup>5</sup> (j<sub>c</sub><sub>1</sub>;Sample 1) and 1.0 × 10<sup>6</sup> A/cm<sup>2</sup> (j<sub>c</sub><sub>2</sub>;Sample 2) are intriguing because both of them correspond to the same values of the temperature T = 4.2 K and the applied magnetic field H = 12 × 10<sup>4</sup> G. This difference is conventionally attributed to such factors—not all of which are quantifiable—as the geometry, dimensions and the nature of dopants and the manners of preparation of the samples which cause their granular structures, grain boundaries, alignment of the grains and so on to differ. Based on the premise that the chemical potential μ subsumes most of these features, given herein is a novel explanation of the said results in terms of the values of μ of the two samples. This paper revisits the problem that was originally addressed in [Malik G.P., Varma V.S. (2020) WJCMP, 10, 53-70] in the more accurate framework of a subsequent paper [Malik G.P., Varma V.S. (2021) JSNM, 34, 1551-1561]. Besides, it distinguishes between the contributions of the electro-electron (e-e) and the hole-hole (h-h) pairs to j<sub>c</sub>—a feature to which no heed was paid earlier. The essence of our findings is that the j<sub>c</sub>s of the two samples differ because they are characterized by different values of the primary variables μ<sub>i</sub><sub> </sub>and <img src="Edit_e1b831e9-dc51-4c3b-bd84-fa905e3e62b5.png" alt="" />, where <img src="Edit_1f775a80-30ab-447d-861f-afb4ba8fba6a.png" alt="" /> is the effective mass of a charge-carrier and m<sub>e</sub><sub> </sub>is the free-electron mass and i = 1 and 2 denote Sample 1 and Sample 2, respectively. In the scenario of the charge-carriers being predominantly h-h pairs, the values of these parameters are estimated to be: μ<sub>1</sub> ≈ 12.3 meV, η<sub>1</sub> ≈ 0.58;μ<sub>2</sub> ≈ 22.7 meV, η<sub>2</sub> ≈ 0.94. Following from these and similar estimates when the charge-carriers are e-e pairs, given below for each sample are the detailed results for the values of the secondary variables viz. the number density of the charge-carriers and their critical velocity, the number of occupied Landau levels and the magnetic interaction parameter. 展开更多
关键词 Chemical Potential- Temperature- and Applied Magnetic Field-Dependent Critical Current Density of Superconductors Number Density landau quantization Law of Equipartition of Energy BI-2212
在线阅读 下载PDF
Low-energy electronic properties of a Weyl semimetal quantum dot 被引量:1
5
作者 Shu-Feng Zhang Chang-Wen Zhang +1 位作者 Pei-Ji Wang Qing-Feng Sun 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2018年第11期84-98,共15页
We investigate the low-energy electronic structure ofa Weyl semimetal quantum dot (QD) with a simple model Hamiltonian with only two Weyl points. Distinguished from the semiconductor and topological insulator QDs, t... We investigate the low-energy electronic structure ofa Weyl semimetal quantum dot (QD) with a simple model Hamiltonian with only two Weyl points. Distinguished from the semiconductor and topological insulator QDs, there exist both surface and bulk states near the Fermi level in Weyl semimetal QDs. The surface state, distributed near the side surface of the QD, contributes a circular persistent current, an orbital magnetic moment, and a chiral spin polarization with spin-current locking. There are always surface states even for a strong magnetic field, even though a given surface state gradually evolves into a Landau level with increasing magnetic field. It indicates that these unique properties can be tuned via the QD size. In addition, we show the correspondence to the electronic structures of a three-dimensional Weyl semimetal, such as Wey[ point and Fermi arc. Because a QD has the largest surface-to-volume ratio, it provides a new platform to verify Weyl semimetal by separating and detecting the signals of surface states. Besides, the study of Weyl QDs is also necessary for potential applications in nanoelectronics. 展开更多
关键词 quantum dot Weyl semimetal landau quantization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部