Large amplitude sloshing in tanks is simulated by the least square particle finite element method (LSPFEM) in this paper. The least square finite element method (LSFEM) is employed to spatially discrete the Navier...Large amplitude sloshing in tanks is simulated by the least square particle finite element method (LSPFEM) in this paper. The least square finite element method (LSFEM) is employed to spatially discrete the Navier-Stokes equations, and to avoid the stabilization issues due to the incompressibility condition for equal-order interpolation of the velocity and the pressure, as usually used in Galerkin method to satisfy the well-known LBB condition. The LSPFEM also uses the Lagrangian description to model the motion of nodes (particles). A mesh which connects these nodes is constructed by a triangulation algorithm to avoid the mesh distortion. A quasi a-shapes algorithm is used to identify the free surface boundary. The nodes are viewed as particles which can freely move and even separate from the main fluid domain. Finally this method is used to study the large amplitude sloshing evolution in two dimensional tanks. The results are compared with those obtained by Flow-3d with good agreement.展开更多
Optimization calculations of 209 polychlorinated biphenyls (PCBs) were carried out at the B3LYP/6-31G^* level. It was found that there is significant correlation between the Cl substitution position and some struct...Optimization calculations of 209 polychlorinated biphenyls (PCBs) were carried out at the B3LYP/6-31G^* level. It was found that there is significant correlation between the Cl substitution position and some structural parameters. Consequently, Cl substitution positions were taken as theoretical descriptors to establish a novel QSPR model for predicting –lgSw of all PCB congeners. The model achieved in this work contains four variables, of which r^2 = 0.9527, q^2 = 0.9490 and SD = 0.25 with large t values. In addition, the variation inflation factors (VIFs) of variables in this model are all less than 5.0, suggesting high accuracy of the –lgSw predicting model. And the results of cross-validation test and method validation also show that the model exhibits optimum stability and better predictive capability than that from the AM1 method.展开更多
This paper proposes a semismooth Newton method for a class of bilinear programming problems(BLPs)based on the augmented Lagrangian,in which the BLPs are reformulated as a system of nonlinear equations with original va...This paper proposes a semismooth Newton method for a class of bilinear programming problems(BLPs)based on the augmented Lagrangian,in which the BLPs are reformulated as a system of nonlinear equations with original variables and Lagrange multipliers.Without strict complementarity,the convergence of the method is studied by means of theories of semismooth analysis under the linear independence constraint qualification and strong second order sufficient condition.At last,numerical results are reported to show the performance of the proposed method.展开更多
In this paper, we apply the particle method to solve the numerical solution of a family of non-li-near Evolutionary Partial Differential Equations. It is called b-equation because of its bi-Hamiltonian structure. We i...In this paper, we apply the particle method to solve the numerical solution of a family of non-li-near Evolutionary Partial Differential Equations. It is called b-equation because of its bi-Hamiltonian structure. We introduce the particle method as an approximation of these equations in Lagrangian representation for simulating collisions between wave fronts. Several numerical examples will be set to illustrate the feasibility of the particle method.展开更多
By means of improved overlapping Muffin-Tin X_a method recently developed the ground state ~2and the first excited state ~2Σ^+ of the XBS^+(X=H,F,Cl)cations are studied.The calculated energies are in good agreement w...By means of improved overlapping Muffin-Tin X_a method recently developed the ground state ~2and the first excited state ~2Σ^+ of the XBS^+(X=H,F,Cl)cations are studied.The calculated energies are in good agreement with experiment.The ionization potentials of sulphi- doborons,XBS(X=H,F,Cl,Br)are also computed and compared with photoelectron spectra re- sults.展开更多
The classical Lagrangian particle tracing method is widely used in the evaluation of the ocean annual subduction rate.However,our analysis indicates that in addition to neglecting the effect of mixing,there are two po...The classical Lagrangian particle tracing method is widely used in the evaluation of the ocean annual subduction rate.However,our analysis indicates that in addition to neglecting the effect of mixing,there are two possible deviations in the method:one is an overestimation due to not considering that the amount of subducted water at the source location may be inadequate during the late winter of the first year when the mixed layer becomes shallow;the other one is an underestimation due to the neglect of the effective subduction caused by strong vertical pumping.Quantitative analysis shows that these two deviations mainly exist in the low-latitude subduction areas of the South Pacific and South Atlantic.The two deviations have very similar distribution areas and can partially off set each other.However,the overall deviation is still large,and the maximum relative deviation ratio can reach 50%;therefore,it cannot be ignored.展开更多
We give a detailed examination of potential energy curves of the singlet and triplet states of CFC1 correlated with the lowest three dissociation limits. The calculations are carried out at the internally contracted m...We give a detailed examination of potential energy curves of the singlet and triplet states of CFC1 correlated with the lowest three dissociation limits. The calculations are carried out at the internally contracted multi- reference configuration interaction/cc-pV(T+d)Z level with the other two geometric parameters fixed at the state equilibrium conformation. The vertical transition energy, the oscillator strength, the main configuration and the electron transition are also investigated at the same level.展开更多
A fluid-structure interaction approach is proposed in this paper based onNon-Ordinary State-Based Peridynamics(NOSB-PD)and Updated Lagrangian Particle Hydrodynamics(ULPH)to simulate the fluid-structure interaction pro...A fluid-structure interaction approach is proposed in this paper based onNon-Ordinary State-Based Peridynamics(NOSB-PD)and Updated Lagrangian Particle Hydrodynamics(ULPH)to simulate the fluid-structure interaction problem with large geometric deformation and material failure and solve the fluid-structure interaction problem of Newtonian fluid.In the coupled framework,the NOSB-PD theory describes the deformation and fracture of the solid material structure.ULPH is applied to describe the flow of Newtonian fluids due to its advantages in computational accuracy.The framework utilizes the advantages of NOSB-PD theory for solving discontinuous problems and ULPH theory for solving fluid problems,with good computational stability and robustness.A fluidstructure coupling algorithm using pressure as the transmission medium is established to deal with the fluidstructure interface.The dynamic model of solid structure and the PD-ULPH fluid-structure interaction model involving large deformation are verified by numerical simulations.The results agree with the analytical solution,the available experimental data,and other numerical results.Thus,the accuracy and effectiveness of the proposed method in solving the fluid-structure interaction problem are demonstrated.The fluid-structure interactionmodel based on ULPH and NOSB-PD established in this paper provides a new idea for the numerical solution of fluidstructure interaction and a promising approach for engineering design and experimental prediction.展开更多
Natural convection is a heat transfer mechanism driven by temperature or density differences,leading to fluid motion without external influence.It occurs in various natural and engineering phenomena,influencing heat t...Natural convection is a heat transfer mechanism driven by temperature or density differences,leading to fluid motion without external influence.It occurs in various natural and engineering phenomena,influencing heat transfer,climate,and fluid mixing in industrial processes.This work aims to use the Updated Lagrangian Particle Hydrodynamics(ULPH)theory to address natural convection problems.The Navier-Stokes equation is discretized using second-order nonlocal differential operators,allowing a direct solution of the Laplace operator for temperature in the energy equation.Various numerical simulations,including cases such as natural convection in square cavities and two concentric cylinders,were conducted to validate the reliability of the model.The results demonstrate that the proposed model exhibits excellent accuracy and performance,providing a promising and effective numerical approach for natural convection problems.展开更多
In this paper, a modified version of the Classical Lagrange Multiplier method is developed for convex quadratic optimization problems. The method, which is evolved from the first order derivative test for optimality o...In this paper, a modified version of the Classical Lagrange Multiplier method is developed for convex quadratic optimization problems. The method, which is evolved from the first order derivative test for optimality of the Lagrangian function with respect to the primary variables of the problem, decomposes the solution process into two independent ones, in which the primary variables are solved for independently, and then the secondary variables, which are the Lagrange multipliers, are solved for, afterward. This is an innovation that leads to solving independently two simpler systems of equations involving the primary variables only, on one hand, and the secondary ones on the other. Solutions obtained for small sized problems (as preliminary test of the method) demonstrate that the new method is generally effective in producing the required solutions.展开更多
基金The project supported by the National Natural Science Foundation of China(10302013,10572022)
文摘Large amplitude sloshing in tanks is simulated by the least square particle finite element method (LSPFEM) in this paper. The least square finite element method (LSFEM) is employed to spatially discrete the Navier-Stokes equations, and to avoid the stabilization issues due to the incompressibility condition for equal-order interpolation of the velocity and the pressure, as usually used in Galerkin method to satisfy the well-known LBB condition. The LSPFEM also uses the Lagrangian description to model the motion of nodes (particles). A mesh which connects these nodes is constructed by a triangulation algorithm to avoid the mesh distortion. A quasi a-shapes algorithm is used to identify the free surface boundary. The nodes are viewed as particles which can freely move and even separate from the main fluid domain. Finally this method is used to study the large amplitude sloshing evolution in two dimensional tanks. The results are compared with those obtained by Flow-3d with good agreement.
基金This work was supported by the 973 National Basic Research Program of China (2003CB415002)the China Postdoctoral Science Foundation (No. 2003033486)
文摘Optimization calculations of 209 polychlorinated biphenyls (PCBs) were carried out at the B3LYP/6-31G^* level. It was found that there is significant correlation between the Cl substitution position and some structural parameters. Consequently, Cl substitution positions were taken as theoretical descriptors to establish a novel QSPR model for predicting –lgSw of all PCB congeners. The model achieved in this work contains four variables, of which r^2 = 0.9527, q^2 = 0.9490 and SD = 0.25 with large t values. In addition, the variation inflation factors (VIFs) of variables in this model are all less than 5.0, suggesting high accuracy of the –lgSw predicting model. And the results of cross-validation test and method validation also show that the model exhibits optimum stability and better predictive capability than that from the AM1 method.
基金Supported by the National Natural Science Foundation of China(No.11671183)the Fundamental Research Funds for the Central Universities(No.2018IB016,2019IA004,No.2019IB010)
文摘This paper proposes a semismooth Newton method for a class of bilinear programming problems(BLPs)based on the augmented Lagrangian,in which the BLPs are reformulated as a system of nonlinear equations with original variables and Lagrange multipliers.Without strict complementarity,the convergence of the method is studied by means of theories of semismooth analysis under the linear independence constraint qualification and strong second order sufficient condition.At last,numerical results are reported to show the performance of the proposed method.
文摘In this paper, we apply the particle method to solve the numerical solution of a family of non-li-near Evolutionary Partial Differential Equations. It is called b-equation because of its bi-Hamiltonian structure. We introduce the particle method as an approximation of these equations in Lagrangian representation for simulating collisions between wave fronts. Several numerical examples will be set to illustrate the feasibility of the particle method.
文摘By means of improved overlapping Muffin-Tin X_a method recently developed the ground state ~2and the first excited state ~2Σ^+ of the XBS^+(X=H,F,Cl)cations are studied.The calculated energies are in good agreement with experiment.The ionization potentials of sulphi- doborons,XBS(X=H,F,Cl,Br)are also computed and compared with photoelectron spectra re- sults.
基金Supported by the National Natural Science Foundation of China(No.41676009)the National Key R&D Program of China(No.2016YFC0301203)the State Key Program of National Natural Science of China(No.41730534)。
文摘The classical Lagrangian particle tracing method is widely used in the evaluation of the ocean annual subduction rate.However,our analysis indicates that in addition to neglecting the effect of mixing,there are two possible deviations in the method:one is an overestimation due to not considering that the amount of subducted water at the source location may be inadequate during the late winter of the first year when the mixed layer becomes shallow;the other one is an underestimation due to the neglect of the effective subduction caused by strong vertical pumping.Quantitative analysis shows that these two deviations mainly exist in the low-latitude subduction areas of the South Pacific and South Atlantic.The two deviations have very similar distribution areas and can partially off set each other.However,the overall deviation is still large,and the maximum relative deviation ratio can reach 50%;therefore,it cannot be ignored.
基金Supported by the National Natural Science Foundation of China under Grant No 11447148
文摘We give a detailed examination of potential energy curves of the singlet and triplet states of CFC1 correlated with the lowest three dissociation limits. The calculations are carried out at the internally contracted multi- reference configuration interaction/cc-pV(T+d)Z level with the other two geometric parameters fixed at the state equilibrium conformation. The vertical transition energy, the oscillator strength, the main configuration and the electron transition are also investigated at the same level.
基金open foundation of the Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanicsthe Open Foundation of Hubei Key Laboratory of Engineering Structural Analysis and Safety Assessment.
文摘A fluid-structure interaction approach is proposed in this paper based onNon-Ordinary State-Based Peridynamics(NOSB-PD)and Updated Lagrangian Particle Hydrodynamics(ULPH)to simulate the fluid-structure interaction problem with large geometric deformation and material failure and solve the fluid-structure interaction problem of Newtonian fluid.In the coupled framework,the NOSB-PD theory describes the deformation and fracture of the solid material structure.ULPH is applied to describe the flow of Newtonian fluids due to its advantages in computational accuracy.The framework utilizes the advantages of NOSB-PD theory for solving discontinuous problems and ULPH theory for solving fluid problems,with good computational stability and robustness.A fluidstructure coupling algorithm using pressure as the transmission medium is established to deal with the fluidstructure interface.The dynamic model of solid structure and the PD-ULPH fluid-structure interaction model involving large deformation are verified by numerical simulations.The results agree with the analytical solution,the available experimental data,and other numerical results.Thus,the accuracy and effectiveness of the proposed method in solving the fluid-structure interaction problem are demonstrated.The fluid-structure interactionmodel based on ULPH and NOSB-PD established in this paper provides a new idea for the numerical solution of fluidstructure interaction and a promising approach for engineering design and experimental prediction.
基金support from the National Natural Science Foundations of China(Nos.11972267 and 11802214)the Open Foundation of the Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics and the Open Foundation of Hubei Key Laboratory of Engineering Structural Analysis and Safety Assessment.
文摘Natural convection is a heat transfer mechanism driven by temperature or density differences,leading to fluid motion without external influence.It occurs in various natural and engineering phenomena,influencing heat transfer,climate,and fluid mixing in industrial processes.This work aims to use the Updated Lagrangian Particle Hydrodynamics(ULPH)theory to address natural convection problems.The Navier-Stokes equation is discretized using second-order nonlocal differential operators,allowing a direct solution of the Laplace operator for temperature in the energy equation.Various numerical simulations,including cases such as natural convection in square cavities and two concentric cylinders,were conducted to validate the reliability of the model.The results demonstrate that the proposed model exhibits excellent accuracy and performance,providing a promising and effective numerical approach for natural convection problems.
文摘In this paper, a modified version of the Classical Lagrange Multiplier method is developed for convex quadratic optimization problems. The method, which is evolved from the first order derivative test for optimality of the Lagrangian function with respect to the primary variables of the problem, decomposes the solution process into two independent ones, in which the primary variables are solved for independently, and then the secondary variables, which are the Lagrange multipliers, are solved for, afterward. This is an innovation that leads to solving independently two simpler systems of equations involving the primary variables only, on one hand, and the secondary ones on the other. Solutions obtained for small sized problems (as preliminary test of the method) demonstrate that the new method is generally effective in producing the required solutions.