As a major component of speech signal processing, speech emotion recognition has become increasingly essential to understanding human communication. Benefitting from deep learning, many researchers have proposed vario...As a major component of speech signal processing, speech emotion recognition has become increasingly essential to understanding human communication. Benefitting from deep learning, many researchers have proposed various unsupervised models to extract effective emotional features and supervised models to train emotion recognition systems. In this paper, we utilize semi-supervised ladder networks for speech emotion recognition. The model is trained by minimizing the supervised loss and auxiliary unsupervised cost function. The addition of the unsupervised auxiliary task provides powerful discriminative representations of the input features, and is also regarded as the regularization of the emotional supervised task. We also compare the ladder network with other classical autoencoder structures. The experiments were conducted on the interactive emotional dyadic motion capture (IEMOCAP) database, and the results reveal that the proposed methods achieve superior performance with a small number of labelled data and achieves better performance than other methods.展开更多
The theory of RC uniform ladder networks based upon the recurrence of voltage and cur-rent functions is extended as a vehicle to analyse the dynamic characteristics of reg lines. Meth-ods for computing the time consta...The theory of RC uniform ladder networks based upon the recurrence of voltage and cur-rent functions is extended as a vehicle to analyse the dynamic characteristics of reg lines. Meth-ods for computing the time constants and simplifying the transfer functions for reg lines are alsopresented.展开更多
To achieve the goals of sustainable development of the energy system and the construction of a lowcarbon society,this study proposes a multi-energy storage collaborative optimization strategy for industrial park that ...To achieve the goals of sustainable development of the energy system and the construction of a lowcarbon society,this study proposes a multi-energy storage collaborative optimization strategy for industrial park that integrates the laddered carbon trading mechanism with demand response.Firstly,a dual dimensional DR model is constructed based on the characteristics of load elasticity.The alternativeDRenables flexible substitution of energy loads through complementary conversion of electricity/heat/cold multi-energy sources,while the price DR relies on timeof-use electricity price signals to guide load spatiotemporal migration;Secondly,the LCT mechanism is introduced to achieve optimal carbon emission costs through a tiered carbon quota allocation mechanism.On this basis,an optimization decision model is established with the core objective of maximizing the annual net profit of the park.The objective function takes into account energy sales revenue,generator unit costs,and investment and operation costs of multiple types of energy storage facilities.Themodel constraint system covers three key dimensions:dynamic operation constraints of power generation units,including unit output limits,ramping capability,and minimum start-stop time;the physical boundary of an electric/hot/cold multi-energy storage system involves energy storage capacity and charge/discharge efficiency;The multi-energy network coupling balance equation ensures that the energy conversion and transmission process satisfies the law of conservation of energy.Using CPLEX mathematical programming solver for simulation verification,construct an energy storage capacity configuration decision process that includes LCT-DR synergistic effect.The research results show that compared with the traditional single energy storage configuration mode,this strategy effectively enhances the economic feasibility and engineering practicality of industrial park operation by coordinating demand side resource scheduling and finely controlling carbon costs,while maintaining stable system operation.Its methodological framework provides a technical path that combines theoretical rigor and practical operability for the low-carbon transformation of regional integrated energy systems.展开更多
In order to improve the multiplexing capability of the optical sensors based on the lower interferential optic fiber sensing technology and the white light fiber-optic Mach-Zehnder interferometer,reflective ladder top...In order to improve the multiplexing capability of the optical sensors based on the lower interferential optic fiber sensing technology and the white light fiber-optic Mach-Zehnder interferometer,reflective ladder topology network ( RLT) with tailored formula was proposed. The topology network consists of 6 rungs sensing elements linked by 5 couplers. Two cases with different choices of couplers were contrasted: one is equal coupling ratio,and the other is tailored coupling ratio. Through the simulation of these two cases,the detailed multiplexing capability was analyzed,and accordingly the experiments were also carried out. The simulation results showed that,the tailored formula enhances the multiplexing capability of the structure. In the first case, the maximum number of sensors which can be multiplexed is 8,and in the other case is 12 fiber optic sensors. The experimental results have a good agreement with numerical simulation results. Thus,it is considered expedient to incorporate RLT into large-scale building,grounds,bridges,dams,tunnels,highways and perimeter security.展开更多
By applying Bogoliubov's ineguality to double-exchange(DE) ladders, we show that the ferromagnetic(FM) order is absent in the new DE systems at finite temperatures. The incorporation of Jahn-Teller electron-phonon...By applying Bogoliubov's ineguality to double-exchange(DE) ladders, we show that the ferromagnetic(FM) order is absent in the new DE systems at finite temperatures. The incorporation of Jahn-Teller electron-phonon coupling, orbital degeneracy and on-site Coulomb interaction with the DE interaction do not preserve these orders. The long-wavelength thermal fluctuations of the spins oversome the DEFM correlation and destroy the FM orders. The implication of the absence of FM order on the transport of the DE ladders is discussed.展开更多
The title complex, {[Cu2(4,4'-bipyridine)2(μ-O2CMe)2(O2CMe)2],H2O}n 1, was synthesized and structurally characterized by X-ray crystallography. It crystallizes in monoclinic, space group C2/c with a = 13.4474...The title complex, {[Cu2(4,4'-bipyridine)2(μ-O2CMe)2(O2CMe)2],H2O}n 1, was synthesized and structurally characterized by X-ray crystallography. It crystallizes in monoclinic, space group C2/c with a = 13.4474(5), b = 11.7566(2), c = 19.5380(6)A, β = 92.930(2)°, V = 3084.84(16) A^3, Z = 4, Cu2C28N409H30, Mr = 693.64, Dc = 1.494 g/cm^3, F(000) = 1424 and μ(MoKα) = 1.436 mm^-1. With the use of 2062 observed reflections (I 〉 2σ(I)), the structure was refined to R = 0.0769 and wR = 0.2154. In complex 1, the dimeric copper acetate units are linked through 4,4’-bipyridine to yield ID molecular ladders. These ladders are connected via O-H…O hydrogen bonds to generate 2D layers, which are further linked through C-H…O hydrogen bonds to give a 3D supramolecular network.展开更多
We study a mixed spin-(3/2,1) ladder system with antiferromagnetic rung coupling and next-nearest-neighbor interaction.The exactly solved Ising-chain model is employed to investigate the ground-state properties and ...We study a mixed spin-(3/2,1) ladder system with antiferromagnetic rung coupling and next-nearest-neighbor interaction.The exactly solved Ising-chain model is employed to investigate the ground-state properties and thermodynamics of the low-dimensional ladder system.Our results show that the competition between different exchange couplings brings in a large variety of ground states characterized by various values of normalized magnetization equal to 0,1/5,2/5,3/5,1.Moreover,an interesting double-peak structure is also detected in the thermal dependence of magnetic susceptibility and specific heat when the frustration comes into play.It is shown that the double-peak phenomenon at zero-field for the case of AF2 ground-state arises from the very strong antiferromagnetic rung coupling,while other cases are attributed to the excitations induced by temperature and external field around the phase boundary.展开更多
We conduct a dynamical Gutzwiller mean-field study of interacting bosons on a four-leg ladder,subject to a uniform flux.The ground states dependent on the magnetic flux and kinetic tunneling strength are explored.Cons...We conduct a dynamical Gutzwiller mean-field study of interacting bosons on a four-leg ladder,subject to a uniform flux.The ground states dependent on the magnetic flux and kinetic tunneling strength are explored.Consequently,we identify the super-vortical lattice,as well as the inner-Meissner phase,which presents Meissner currents just along the intimal legs within the flux ladder.The staggered-current phase is also allowed,with its formation condition altered because of the four-leg construction.The number of legs on the flux ladder can make an effect.展开更多
Low dielectric constant(low-k)materials are critical for advanced packaging in high-density microelectronic devices and high-frequency communication technologies.Ladder polysiloxanes,which are characterized by their u...Low dielectric constant(low-k)materials are critical for advanced packaging in high-density microelectronic devices and high-frequency communication technologies.Ladder polysiloxanes,which are characterized by their unique double-chain structure and intrinsic microporosity,offer remarkable advantages in terms of thermal stability,oxidation resistance,and dielectric performance.However,structural defects in ladder polysiloxanes,such as cage-like and irregular oligomers,and their effects on dielectric properties remain underexplored.In this study,a series of ladder-like polysiloxanes(X-TMS)with diverse side groups weresynthesized via a one-step base-catalyzed method.The influence of the benzocyclobutene(BCB)side groups on the formation of regular ladder structures was systematically investigated.Notably,BCB incorporation disrupted the structural regularity,favoring the formation of cage-like and irregular topologies,which were extensively characterized using 29silicon nuclear magnetic resonance spectroscopy(^(29)Si-NMR),Fourier transform infrared spectroscopy(FTIR),gel permeation chromatography(GPC),and X-ray diffraction(XRD).These structural defects were beneficial for improving the hydrophobicity and thermal stability.Copolymerization of X-TMS with commercial DVS-BCB resins further enhanced the mechanical properties,with the elastic modulus increasing from 3.6 GPa to 4.4 GPa and water absorption reduced from 0.33 wt%to 0.06 wt%.This study establishes a clear correlation between topological structures and material properties.These findings not only advance the understanding of the structure-property relationships in ladder polysiloxanes but also provide a novel approach for designing high-performance interlayer dielectric materials for next-generation microelectronics.展开更多
Objective To systematically evaluate the overall efficacy of external application of traditional Chinese medicine(EA-TCM)in combination with oral three-step analgesic ladder therapy for patients suffering from cancer-...Objective To systematically evaluate the overall efficacy of external application of traditional Chinese medicine(EA-TCM)in combination with oral three-step analgesic ladder therapy for patients suffering from cancer-induced bone pain(CIBP).Methods We conducted a literature search of randomized controlled trials on the combination of EA-TCM and three-step analgesic ladder therapy for CIBP across ten databases and two registration systems.It included four Chinese databases[Chinese Biomedical Literature Database(SinoMed),China National Knowledge Infrastructure(CNKI),Wanfang Database,and China Science and Technology Journal Database(VIP)],six English databases(Scopus,Embase,Web of Science,PubMed,Cochrane Library,and OpenGrey),and two registration systems(Chinese Clinical Trial Registry and ClinicalTrials.gov).The timeframe for the literature search extended from the inception of each database to December 31,2023.Meta-analysis was performed using RevMan(v5.4.1),and the outcome indicators(pain relief rate,analgesic duration,quality of life,pain intensity,breakthrough pain frequency,and adverse reactions)were graded using GRADE profiler(v3.6).Results According to the established inclusion and exclusion criteria,a total of 43 studies was deemed eligible,involving 3142 participants with CIBP.The results of meta-analysis showed that compared with oral three-step analgesic ladder therapy alone,the combined therapy of EA-TCM and three-step analgesic ladder has a significant improvement in pain relief rate[risk ratio(RR)=1.32,95%confidence interval(CI):1.24 to 1.41,P<0.00001],analgesic duration[mean difference(MD)=1.33,95%CI:0.97 to 1.69,P<0.00001],and quality of life(MD=5.66,95%CI:4.88 to 6.44,P<0.00001).Furthermore,the combined therapy significantly reduced pain intensity(MD=-1.00,95%CI:-1.19 to-0.80,P<0.00001),breakthrough pain frequency(MD=-0.43,95%CI:-0.51 to-0.36,P<0.00001),and adverse reactions(RR=0.60,95%CI:0.53 to 0.68,P<0.00001)in CIBP patients.Based on the GRADE assessment,the level of evidence varied from low to moderate.Conclusion EA-TCM combined with the three-step analgesic ladder therapy can effectively alleviate pain symptoms in patients with CIBP and improve their quality of life.Additionally,the EA-TCM can effectively reduce the incidence of adverse reactions associated with threestep analgesic therapy.展开更多
We theoretically investigate the Autler-Townes (AT) splitting in the photoelectron spectra of three-level ladder K2 molecule driven by a pump-probe pulse via employing the time- dependent wave packet approach. The d...We theoretically investigate the Autler-Townes (AT) splitting in the photoelectron spectra of three-level ladder K2 molecule driven by a pump-probe pulse via employing the time- dependent wave packet approach. The dependence of AT splitting on two laser intensities and wavelengths are studied in detail. We firstly quantify these effects on peak shift and AT separation. The photoelectron spectra show double splitting with symmetric profiles, but with asymmetric profiles when the wavelength is changed. The magnitude of AT splitting increases with the pump laser intensity, but does not vary with probe intensity. The shifts of the absorption peaks and the splitting between AT doublet are predicted by using an analyt- ical fitting function when the intensity/wavelength of one of the two fields is changed. These novel results are of importance for the molecular spectroscopy and may further stimulate the first principles theoretical studies analytically.展开更多
This study investigates the viscoelastic behavior of soft bio-fibres in association with their fractal structures. A spring-dashpot fractal network with the self-similar topology, named the -type fractal ladder hyper-...This study investigates the viscoelastic behavior of soft bio-fibres in association with their fractal structures. A spring-dashpot fractal network with the self-similar topology, named the -type fractal ladder hyper-cell (FLHC), is abstracted from the micro/nano-structure of ligaments and tendons (LTs). Its constitutive operator is derived by the Heaviside operational calculus, which is of intrinsic fractional order. In terms of this operator, the long-term viscoelastic relaxation of bio-fibres arising from the fractal ladder topology is expounded. In addition, the fractional-order viscoelastic constitutive equation is obtained based on the FLHC of LTs, and its results are consistent with those of available human knee and spinal LT relaxation experiments. Results on the constitutive equation of FLHCs are formulated into two propositions. The multidisciplinary invariance and implications from the fractal ladder pattern of bio-fibres are also discussed.展开更多
基金supported by National Natural Science Foundation of China(Nos.61425017 and 61773379)the National Key Research&Development Plan of China(No.2017YFB1002804)
文摘As a major component of speech signal processing, speech emotion recognition has become increasingly essential to understanding human communication. Benefitting from deep learning, many researchers have proposed various unsupervised models to extract effective emotional features and supervised models to train emotion recognition systems. In this paper, we utilize semi-supervised ladder networks for speech emotion recognition. The model is trained by minimizing the supervised loss and auxiliary unsupervised cost function. The addition of the unsupervised auxiliary task provides powerful discriminative representations of the input features, and is also regarded as the regularization of the emotional supervised task. We also compare the ladder network with other classical autoencoder structures. The experiments were conducted on the interactive emotional dyadic motion capture (IEMOCAP) database, and the results reveal that the proposed methods achieve superior performance with a small number of labelled data and achieves better performance than other methods.
文摘The theory of RC uniform ladder networks based upon the recurrence of voltage and cur-rent functions is extended as a vehicle to analyse the dynamic characteristics of reg lines. Meth-ods for computing the time constants and simplifying the transfer functions for reg lines are alsopresented.
基金funded by Science and Technology Projects from State Grid Corporation of China,(Research on Adaptive Balance Optimization and Simulation Technology of Industrial community Energy System with High Proportion of Distributed Energy,No.:5100-202355752A-3-4-SY).
文摘To achieve the goals of sustainable development of the energy system and the construction of a lowcarbon society,this study proposes a multi-energy storage collaborative optimization strategy for industrial park that integrates the laddered carbon trading mechanism with demand response.Firstly,a dual dimensional DR model is constructed based on the characteristics of load elasticity.The alternativeDRenables flexible substitution of energy loads through complementary conversion of electricity/heat/cold multi-energy sources,while the price DR relies on timeof-use electricity price signals to guide load spatiotemporal migration;Secondly,the LCT mechanism is introduced to achieve optimal carbon emission costs through a tiered carbon quota allocation mechanism.On this basis,an optimization decision model is established with the core objective of maximizing the annual net profit of the park.The objective function takes into account energy sales revenue,generator unit costs,and investment and operation costs of multiple types of energy storage facilities.Themodel constraint system covers three key dimensions:dynamic operation constraints of power generation units,including unit output limits,ramping capability,and minimum start-stop time;the physical boundary of an electric/hot/cold multi-energy storage system involves energy storage capacity and charge/discharge efficiency;The multi-energy network coupling balance equation ensures that the energy conversion and transmission process satisfies the law of conservation of energy.Using CPLEX mathematical programming solver for simulation verification,construct an energy storage capacity configuration decision process that includes LCT-DR synergistic effect.The research results show that compared with the traditional single energy storage configuration mode,this strategy effectively enhances the economic feasibility and engineering practicality of industrial park operation by coordinating demand side resource scheduling and finely controlling carbon costs,while maintaining stable system operation.Its methodological framework provides a technical path that combines theoretical rigor and practical operability for the low-carbon transformation of regional integrated energy systems.
基金Sponsored by the Natural Science Foundation of Heilongjiang Province (Grant No. QC2012C081)the Creative Qualified Scientists and Technicians Foundation of Harbin City (Grant No. RC2012QN001025)the National Natural Science Foundation of China (Grant No. 61107069 and 41174161)
文摘In order to improve the multiplexing capability of the optical sensors based on the lower interferential optic fiber sensing technology and the white light fiber-optic Mach-Zehnder interferometer,reflective ladder topology network ( RLT) with tailored formula was proposed. The topology network consists of 6 rungs sensing elements linked by 5 couplers. Two cases with different choices of couplers were contrasted: one is equal coupling ratio,and the other is tailored coupling ratio. Through the simulation of these two cases,the detailed multiplexing capability was analyzed,and accordingly the experiments were also carried out. The simulation results showed that,the tailored formula enhances the multiplexing capability of the structure. In the first case, the maximum number of sensors which can be multiplexed is 8,and in the other case is 12 fiber optic sensors. The experimental results have a good agreement with numerical simulation results. Thus,it is considered expedient to incorporate RLT into large-scale building,grounds,bridges,dams,tunnels,highways and perimeter security.
基金Supported by the Pandeng Projectthe National Natural Science Foundation of China under Grant No.19677202the Chinese Academy of Sciences。
文摘By applying Bogoliubov's ineguality to double-exchange(DE) ladders, we show that the ferromagnetic(FM) order is absent in the new DE systems at finite temperatures. The incorporation of Jahn-Teller electron-phonon coupling, orbital degeneracy and on-site Coulomb interaction with the DE interaction do not preserve these orders. The long-wavelength thermal fluctuations of the spins oversome the DEFM correlation and destroy the FM orders. The implication of the absence of FM order on the transport of the DE ladders is discussed.
基金This work was supported by the Science Foundation of Fujian Provincial Key Laboratory of Polymer Materials
文摘The title complex, {[Cu2(4,4'-bipyridine)2(μ-O2CMe)2(O2CMe)2],H2O}n 1, was synthesized and structurally characterized by X-ray crystallography. It crystallizes in monoclinic, space group C2/c with a = 13.4474(5), b = 11.7566(2), c = 19.5380(6)A, β = 92.930(2)°, V = 3084.84(16) A^3, Z = 4, Cu2C28N409H30, Mr = 693.64, Dc = 1.494 g/cm^3, F(000) = 1424 and μ(MoKα) = 1.436 mm^-1. With the use of 2062 observed reflections (I 〉 2σ(I)), the structure was refined to R = 0.0769 and wR = 0.2154. In complex 1, the dimeric copper acetate units are linked through 4,4’-bipyridine to yield ID molecular ladders. These ladders are connected via O-H…O hydrogen bonds to generate 2D layers, which are further linked through C-H…O hydrogen bonds to give a 3D supramolecular network.
基金Project supported by the National Natural Science Foundation of China(Grant No.11547236)the General Project of the Education Department of Liaoning Province,China(Grant No.L2015130)+1 种基金the Fundamental Research Funds for the Central Universities,China(Grant Nos.DC201501065 and DCPY2016014)the Doctoral Starting-up Foundation of Dalian Nationalities University,China
文摘We study a mixed spin-(3/2,1) ladder system with antiferromagnetic rung coupling and next-nearest-neighbor interaction.The exactly solved Ising-chain model is employed to investigate the ground-state properties and thermodynamics of the low-dimensional ladder system.Our results show that the competition between different exchange couplings brings in a large variety of ground states characterized by various values of normalized magnetization equal to 0,1/5,2/5,3/5,1.Moreover,an interesting double-peak structure is also detected in the thermal dependence of magnetic susceptibility and specific heat when the frustration comes into play.It is shown that the double-peak phenomenon at zero-field for the case of AF2 ground-state arises from the very strong antiferromagnetic rung coupling,while other cases are attributed to the excitations induced by temperature and external field around the phase boundary.
基金supported by the Scientific Research Foundation of Hainan Tropical Ocean University(Grant No.RHDRC202301)。
文摘We conduct a dynamical Gutzwiller mean-field study of interacting bosons on a four-leg ladder,subject to a uniform flux.The ground states dependent on the magnetic flux and kinetic tunneling strength are explored.Consequently,we identify the super-vortical lattice,as well as the inner-Meissner phase,which presents Meissner currents just along the intimal legs within the flux ladder.The staggered-current phase is also allowed,with its formation condition altered because of the four-leg construction.The number of legs on the flux ladder can make an effect.
基金financially supported by the National Natural Science Foundation of China(Nos.52373316,22075298,and52373020)the Beijing Municipal Natural Science Foundation(No.2212053)。
文摘Low dielectric constant(low-k)materials are critical for advanced packaging in high-density microelectronic devices and high-frequency communication technologies.Ladder polysiloxanes,which are characterized by their unique double-chain structure and intrinsic microporosity,offer remarkable advantages in terms of thermal stability,oxidation resistance,and dielectric performance.However,structural defects in ladder polysiloxanes,such as cage-like and irregular oligomers,and their effects on dielectric properties remain underexplored.In this study,a series of ladder-like polysiloxanes(X-TMS)with diverse side groups weresynthesized via a one-step base-catalyzed method.The influence of the benzocyclobutene(BCB)side groups on the formation of regular ladder structures was systematically investigated.Notably,BCB incorporation disrupted the structural regularity,favoring the formation of cage-like and irregular topologies,which were extensively characterized using 29silicon nuclear magnetic resonance spectroscopy(^(29)Si-NMR),Fourier transform infrared spectroscopy(FTIR),gel permeation chromatography(GPC),and X-ray diffraction(XRD).These structural defects were beneficial for improving the hydrophobicity and thermal stability.Copolymerization of X-TMS with commercial DVS-BCB resins further enhanced the mechanical properties,with the elastic modulus increasing from 3.6 GPa to 4.4 GPa and water absorption reduced from 0.33 wt%to 0.06 wt%.This study establishes a clear correlation between topological structures and material properties.These findings not only advance the understanding of the structure-property relationships in ladder polysiloxanes but also provide a novel approach for designing high-performance interlayer dielectric materials for next-generation microelectronics.
基金Provincial Key Research and Development Project of Hunan(2018SK2127)Hunan Province Traditional Chinese Medicine Research and Development Project(201946).
文摘Objective To systematically evaluate the overall efficacy of external application of traditional Chinese medicine(EA-TCM)in combination with oral three-step analgesic ladder therapy for patients suffering from cancer-induced bone pain(CIBP).Methods We conducted a literature search of randomized controlled trials on the combination of EA-TCM and three-step analgesic ladder therapy for CIBP across ten databases and two registration systems.It included four Chinese databases[Chinese Biomedical Literature Database(SinoMed),China National Knowledge Infrastructure(CNKI),Wanfang Database,and China Science and Technology Journal Database(VIP)],six English databases(Scopus,Embase,Web of Science,PubMed,Cochrane Library,and OpenGrey),and two registration systems(Chinese Clinical Trial Registry and ClinicalTrials.gov).The timeframe for the literature search extended from the inception of each database to December 31,2023.Meta-analysis was performed using RevMan(v5.4.1),and the outcome indicators(pain relief rate,analgesic duration,quality of life,pain intensity,breakthrough pain frequency,and adverse reactions)were graded using GRADE profiler(v3.6).Results According to the established inclusion and exclusion criteria,a total of 43 studies was deemed eligible,involving 3142 participants with CIBP.The results of meta-analysis showed that compared with oral three-step analgesic ladder therapy alone,the combined therapy of EA-TCM and three-step analgesic ladder has a significant improvement in pain relief rate[risk ratio(RR)=1.32,95%confidence interval(CI):1.24 to 1.41,P<0.00001],analgesic duration[mean difference(MD)=1.33,95%CI:0.97 to 1.69,P<0.00001],and quality of life(MD=5.66,95%CI:4.88 to 6.44,P<0.00001).Furthermore,the combined therapy significantly reduced pain intensity(MD=-1.00,95%CI:-1.19 to-0.80,P<0.00001),breakthrough pain frequency(MD=-0.43,95%CI:-0.51 to-0.36,P<0.00001),and adverse reactions(RR=0.60,95%CI:0.53 to 0.68,P<0.00001)in CIBP patients.Based on the GRADE assessment,the level of evidence varied from low to moderate.Conclusion EA-TCM combined with the three-step analgesic ladder therapy can effectively alleviate pain symptoms in patients with CIBP and improve their quality of life.Additionally,the EA-TCM can effectively reduce the incidence of adverse reactions associated with threestep analgesic therapy.
基金supported by the Project of Science Research from Education Department of Anhui Province(KJ2009B102)the Fund for Excellent Young talents in the Higher Education Institutions of Anhui Province(2009SQRZ087)~~
基金The code used in our calculation is provided by Pro- fessor Ke-li Han from Dalian Institute of Chemical Physics, Chinese Academy of Science, and we appreci- ate his help and kind advice. This work was supported by the National Natural Science Foundation of China (No.11447020), the Natural Science Foundation of Hu- nan province (No.2015JJ3104), and the Scientific Re- search Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.
文摘We theoretically investigate the Autler-Townes (AT) splitting in the photoelectron spectra of three-level ladder K2 molecule driven by a pump-probe pulse via employing the time- dependent wave packet approach. The dependence of AT splitting on two laser intensities and wavelengths are studied in detail. We firstly quantify these effects on peak shift and AT separation. The photoelectron spectra show double splitting with symmetric profiles, but with asymmetric profiles when the wavelength is changed. The magnitude of AT splitting increases with the pump laser intensity, but does not vary with probe intensity. The shifts of the absorption peaks and the splitting between AT doublet are predicted by using an analyt- ical fitting function when the intensity/wavelength of one of the two fields is changed. These novel results are of importance for the molecular spectroscopy and may further stimulate the first principles theoretical studies analytically.
基金Project supported by the National Natural Science Foundation of China(No.11672150)the Beijing Nova Program Interdisciplinary Cooperation Project(No.xxjc201705)+1 种基金the Capital Clinical Special Promotion Project(No.Z161100000516233)the Key Issue of the 12th Five-Year Plan of People’s Liberation Army of China(No.BKJ13J004)
文摘This study investigates the viscoelastic behavior of soft bio-fibres in association with their fractal structures. A spring-dashpot fractal network with the self-similar topology, named the -type fractal ladder hyper-cell (FLHC), is abstracted from the micro/nano-structure of ligaments and tendons (LTs). Its constitutive operator is derived by the Heaviside operational calculus, which is of intrinsic fractional order. In terms of this operator, the long-term viscoelastic relaxation of bio-fibres arising from the fractal ladder topology is expounded. In addition, the fractional-order viscoelastic constitutive equation is obtained based on the FLHC of LTs, and its results are consistent with those of available human knee and spinal LT relaxation experiments. Results on the constitutive equation of FLHCs are formulated into two propositions. The multidisciplinary invariance and implications from the fractal ladder pattern of bio-fibres are also discussed.