Solitary waves are often used in laboratory experiments to study tsunamis propagation and interaction with coasts. However, the experimental shape of the waves may differ from the theoretical one. In this paper, a cor...Solitary waves are often used in laboratory experiments to study tsunamis propagation and interaction with coasts. However, the experimental shape of the waves may differ from the theoretical one. In this paper, a correction technique aiming at minimizing the discrepancies between the two profiles is presented. Laboratory experiments reveal their effectiveness in correcting the experimental shape of solitary waves, mainly for low nonlinearities.展开更多
A laboratory system was designed to generate bitumen fumes and expose tested samplers in a homogenised chamber. The system was also designed to condense the fumes in the form of oil that could be used as a standard fo...A laboratory system was designed to generate bitumen fumes and expose tested samplers in a homogenised chamber. The system was also designed to condense the fumes in the form of oil that could be used as a standard for further analytical method development. The laboratory system was evaluated in terms of stability, repeatability, aging, and ranges, focusing on the quality and quantity of the fumes and their physical characteristics. The fumes generated with the laboratory system were also compared to fumes emitted at workplaces to evaluate their similarity. The results demonstrated that laboratory fume generation was stable and repeatable. Humidity ranged from 20% to 80% RH and the total fume concentration ranged from 0.01 to 9.36 mg.m<sup>-3</sup>, covering the conditions encountered for road paving worksites. The fumes generated in the laboratory were found to be similar to those of workplaces, with slight differences in light compounds equivalent to C12 and below n-alkanes. Thus, the system designed in this study is considered capable of generating bitumen fumes used to develop sampling and analysis methods.展开更多
基金under the FP7 EU-funded research project SIM.COAST(Numerical Simulation Tools for Protection of Coasts against Flooding and Erosion.)FIRB 2008-FUTURO IN RICERCA(Design,construction and operation of the Submarine Multidisciplinary Observatory experiment)funded by the Italian Ministry for University and Scientific Research(MIUR)
文摘Solitary waves are often used in laboratory experiments to study tsunamis propagation and interaction with coasts. However, the experimental shape of the waves may differ from the theoretical one. In this paper, a correction technique aiming at minimizing the discrepancies between the two profiles is presented. Laboratory experiments reveal their effectiveness in correcting the experimental shape of solitary waves, mainly for low nonlinearities.
文摘A laboratory system was designed to generate bitumen fumes and expose tested samplers in a homogenised chamber. The system was also designed to condense the fumes in the form of oil that could be used as a standard for further analytical method development. The laboratory system was evaluated in terms of stability, repeatability, aging, and ranges, focusing on the quality and quantity of the fumes and their physical characteristics. The fumes generated with the laboratory system were also compared to fumes emitted at workplaces to evaluate their similarity. The results demonstrated that laboratory fume generation was stable and repeatable. Humidity ranged from 20% to 80% RH and the total fume concentration ranged from 0.01 to 9.36 mg.m<sup>-3</sup>, covering the conditions encountered for road paving worksites. The fumes generated in the laboratory were found to be similar to those of workplaces, with slight differences in light compounds equivalent to C12 and below n-alkanes. Thus, the system designed in this study is considered capable of generating bitumen fumes used to develop sampling and analysis methods.