Pot experiments were conducted to evaluate the effect of water management,namely continuous flooding(CF),intermittent flooding(IF)and non-flooding(NF),on Cd phytoavailaility in three paddy soils that differed in p H a...Pot experiments were conducted to evaluate the effect of water management,namely continuous flooding(CF),intermittent flooding(IF)and non-flooding(NF),on Cd phytoavailaility in three paddy soils that differed in p H and in Cd concentrations.Diffusive gradients in thin films(DGT)technique was employed to monitor soil labile Cd and Fe concentrations simultaneously at three growth stages(tillering,heading and mature stage)of rice.The Cd phytoavailability were generally in the order of NF>IF>CF,and higher rice Cd(over permitted level,0.2 mg/kg)were only found in neutral and acidic soils under NF conditions.DGT measured soil labile Cd rather than total Cd was the most reliable predictor for Cd accumulation in rice.CF enhanced the formation of root plaques,which related to oxidation of large quantities of available Fe on root surfaces due to the O2 secretion of rice root.The Cd concentration in root plaques shared the same trend with DGT-Cd.Generally,root plaques would inhibit Cd uptake by rice under CF conditions,while under IF and NF conditions,root plaques act as a temporarily store of Cd,and soil labile Cd is the key factor that controls the transfer of Cd from soil to rice.The results of principle component analysis revealed that water management had the greatest effect on soil Cd lability and rice Cd in acidic soil.Thus,it is important to consider the availability of Cd and soil p H when assessing current agricultural practices of contaminated soil in China.展开更多
This study examines nine dynamical and three emotional aspects of behavior in depression and anxiety, singly and comorbidly. The study employs the Structure of Temperament Questionnaire Compact (STQ 77), whose 12 scal...This study examines nine dynamical and three emotional aspects of behavior in depression and anxiety, singly and comorbidly. The study employs the Structure of Temperament Questionnaire Compact (STQ 77), whose 12 scales assess the energetic, lability and sensitivity aspects of behavior in the physical, social, mental and emotional domains. The STQ 77 was administered to 86 patients with Major Depression, 85 patients with an anxiety disorder, 43 patients with comorbid depression and anxiety, and 71 subjects without depression or anxiety disorder all presenting to a private outpatient clinical practice. Results: 1) Depression was associated with self-reports of increased impulsivity and rigidity of behavior;2) Depressed patients reported significantly lower physical energy, tempo of physical activity and plasticity of behavior. The presence of comorbid anxiety further worsened these effects;3) The ability to sustain attention on a mental task and to learn new information was lower in depressed patients than in other groups. Conclusions: comorbid depression and anxiety might be associates, decreasing adaptivity and the self-regulatory balance of behavior, leading to the de- velopment of extremes in behavioral reactivity (impulsivity and rigidity).展开更多
Ⅰ. PROBLEM AND ASSUMPTIONS In 1978 J. Henry first discussed the globe controllability problem on a semilinear parabolic system with a distributed control. The author obtained the approximate control lability theory o...Ⅰ. PROBLEM AND ASSUMPTIONS In 1978 J. Henry first discussed the globe controllability problem on a semilinear parabolic system with a distributed control. The author obtained the approximate control lability theory on a semilinear abstract control system unifying finited-dimen-展开更多
Soil microorganisms and labile soil organic carbon(SOC)fractions are essential factors affecting greenhouse gas(GHG)emissions in paddy fields.However,the effects of labile SOC fractions and microorganisms on GHG emiss...Soil microorganisms and labile soil organic carbon(SOC)fractions are essential factors affecting greenhouse gas(GHG)emissions in paddy fields.However,the effects of labile SOC fractions and microorganisms on GHG emissions from flooding to drying after organic fertilizer replacing for chemical fertilizer remain unclear.Here,a long-term experiment was conducted with four treatments:chemical fertilization only(control),organic fertilizer substituting 25%of chemical N fertilizer(NM1),50%of chemical N fertilizer(NM2),and NM2combined with crop straw(NMS).GHG emissions were monitored,and soil samples were collected to determine labile SOC fractions and microorganisms.Results revealed the GHG emissions in the NM2 significantly increased by 196.88%from flooding to drying,mainly due to the higher CO_(2) emissions.The GHG emissions per kg of C input in NMS was the lowest with the value of 9.17.From flooding to drying,organic fertilizer application significantly increased the readily oxidizable organic carbon(ROC)contents and C lability;the NM2 and NMS dramatically increased the SOC and non-readily oxidizable organic carbon(NROC).The bacterial communities showed significant differences among different treatments in the flooding,while the significant difference was only found between the NMS and other treatments in the drying.From flooding to drying,changing soil moisture conditions causes C fractions and microbial communities to jointly affect carbon emissions,and the NMS promoted carbon sequestration and mitigated GHG emissions.Our findings highlight the importance of the labile SOC fractions and microorganisms linked to GHG emissions in paddy fields.展开更多
Dear Editor,Descemet’s membrane detachment(DMD)is considered as a potential sight-threatening complication following various intraocular surgeries,particularly cataract surgery[1].The labile adhesion between the Desc...Dear Editor,Descemet’s membrane detachment(DMD)is considered as a potential sight-threatening complication following various intraocular surgeries,particularly cataract surgery[1].The labile adhesion between the Descemet’s membrane(DM)and the posterior corneal stromal layer can be easily separated with minimal mechanical force.Several risk factors have been associated with the development of DMD including old age,improper intraoperative operation,corneal ectatic disorders,and endothelial disorders and so on[1-4].展开更多
Strict regulations on heavy metal(HM)limits impede the sludge land utilization for carbon emission reduction.This study aimed to evaluate the impact of bioavailable HMs(Cd,Cu,and Zn)on soil nitrification and determine...Strict regulations on heavy metal(HM)limits impede the sludge land utilization for carbon emission reduction.This study aimed to evaluate the impact of bioavailable HMs(Cd,Cu,and Zn)on soil nitrification and determine toxicity thresholds via two cycles of sludge land application tests over 185 days.HMs inhibited gene abundance in their labile fractions,with the most affected being nitrite-oxidizing bacteria(NOB)-nxrB,followed by ammonia-oxidizing bacteria(AOB)-amoA,NOB-nxrA,and ammonia oxidizing archaea(AOA)-amoA.Toxicity thresholds for incremental labile fractions of HMs(in mg/kg)were determined as 0.35 for Cd,21.73 for Cu,and 84.04 for Zn.Additionally,AOB,as the core nitrifiers,significantly correlated(P<0.05)with ammonia nitrogen,soil organic matter,total phosphorus,and total potassium,playing a pivotal role in maintaining intricate interactions within HMs-spiked sludge-treated soil systems.The acute toxicity effects of HMs on potential ammonia oxidation(PAO),measured by inhibition rates,were 77.04%,73.63%,and 67.06%for Cd,Cu,and Zn,with labile fractions contributing 33.79%,40.19%,and 28.37%,respectively.Long-term sludge land application revealed chronic toxicity of HMs to PAO through the reshaping of ammonia-oxidizing microorganisms,particularly Cu and Zn.These findings provide insights into HM toxicity thresholds and their impact on nitrification,supporting sustainable sludge land management.展开更多
Understanding long-term effects of agricultural management on soil organic carbon(C)(SOC)dynamics and aggregate stability is essential for crop production sustainability.In this study,effects of crop rotation,cover cr...Understanding long-term effects of agricultural management on soil organic carbon(C)(SOC)dynamics and aggregate stability is essential for crop production sustainability.In this study,effects of crop rotation,cover crop,and nitrogen(N)fertilization on SOC physical and molecular fractions and water-stable aggregate stability were evaluated by characterizing soils of the world's oldest,century-long(>120 years)continuous cotton experiment located in the southern USA.Field treatments included continuous cotton with no winter legume and no mineral N fertilizer(control,CK),continuous cotton with winter legume(CWL),cotton-corn rotation with winter legume(CCWL),cotton-corn rotation with winter legume and mineral N fertilizer(CCWLN),and continuous cotton with mineral N fertilizer(CN).Total organic C(TOC),total nitrogen(TN),acid-hydrolysis C(AHC),and water-extractable organic C(WEOC)in both bulk soils and different aggregate fractions were determined.Soil organic matter(SOM)composition was characterized using pyrolysis-gas chromatography/mass spectrometry(Py-GC/MS).Results showed that CCWL and CCWLN increased bulk soil TOC,AHC,and TN by 150%–165%,300%–315%,and 198%–223%,respectively,as well as aggregate-associated C by 180%–246%over CK.The CWL and CN treatments also increased TOC,AHC,and TN compared to CK but to a lesser degree.The CCWL treatment increased macroaggregates(250–2000μm)by 92%followed by CCWLN by 46%,whereas CWL and CN had limited effects in increasing macroaggregates(by 1%–7%)compared to CK.Moreover,SOM showed more diversified polysaccharide-derived compounds,aliphatic compounds,aromatic compounds,lignin,and phenols in CCWL and CCWLN followed by CWL,CN,and CK.Across different field treatments,aggregate stability indices,mean weight diameter(MWD)and geometric mean diameter(GMD),were positively related to TOC and TN(R2=0.57–0.65),and N-containing compounds and phenols(R^(2)=0.71–0.89),as well as polysaccharide-derived and aliphatic compounds(R^(2)=0.53–0.71).It was concluded that the diversified inputs of SOM composition brought by synergistic interactions between corn rotation and winter legume inclusion were mainly responsible for the observed TOC accumulation and aggregate formation and stability in these subtropical cotton production systems.展开更多
The exchange of inorganic nutrients at the coastal sediment-water interface(SWI)plays a crucial role in regulating the nutrient budget in overlying water.The related studies mainly focus on the mid-to high-latitude re...The exchange of inorganic nutrients at the coastal sediment-water interface(SWI)plays a crucial role in regulating the nutrient budget in overlying water.The related studies mainly focus on the mid-to high-latitude regions,leaving a significant gap in the quantitative assessment of nutrient exchange and environmental controls at the SWI in lowlatitude coastal regions.We quantitatively assess the exchange of inorganic nutrients at the SWI in three tropical bays(Dongzhai Harbor,Xiaohai Lagoon,Qinglan Harbor).Sediments act as a source of ammonium,phosphate,and silicate,but for nitrate,sediments can be both a source and sink,although with substantial spatial and temporal variations in their fluxes.Labile organic matter is a critical regulator for the fluxes of inorganic nutrients at the SWI.The sedimentary nutrients input with high N/P molar ratio will alter the nutrient stoichiometry to mitigate the nitrogen limitation in coastal waters.However,the internal sediment release in these tropical bays plays a relative weak role in contributing to the nutrient addition in comparison with the other external nutrient sources including riverine input,submarine groundwater discharge,and atmospheric deposition.According to the global compilation on SWI nutrient fluxes,we propose that water column primary production and external inputs to interpret the variation in exchange and fluxes of nutrients at the SWI in different ecosystems.Such a conceptual understanding of these chain biogeochemical processes involving external nutrient input,primary production,particulate organic matter settling,and the accumulation and release of inorganic nutrients in sediments will be helpful for the scientific-based pollution prevent and control in coastal waters.展开更多
Labile organic carbon (LOC) and carbon management index (CMI), which are sensitive factors to the changes of environment, can improve evaluating the effect of land management practices changes on soil quality. The...Labile organic carbon (LOC) and carbon management index (CMI), which are sensitive factors to the changes of environment, can improve evaluating the effect of land management practices changes on soil quality. The objective of this study was to investigate the effects of land use types and landscape positions on soil quality as a function of L0C and CMI. A field study in a small watershed in the red soil hilly region of southern China was conducted, and soil samples were collected from four typical lands (pine forest (PF) on slope land, barren hill (BH) on slope land, citrus orchard (C0) on terrace land and Cinnarnornum Camphora (CC) on terrace land) at a sampling depth of 20 cm. Soil nutrients, soil organic carbon (SOC), L0C and CMI were measured. Results showed that the L0C and CMI correlated to not only soil carbon but also soil nutrients, and the values of LOC and CMI in different land use types followed the order CC 〉 PF 〉 CO 〉 BH at the upper- slope, while CO 〉 CC 〉 BH 〉 PF at mid-slope and down-slope. With respect to slope positions, the values of LOC and CMI in all the lands were followed the order: upper-slope 〉 down-slope 〉 mid- slope. As whole, the mean values of LOC and CMI in different lands followed the order CC 〉 CO 〉 PF 〉 BH. High CMI and LOC content were found in the terrace lands with broadleaf vegetations. These results indicated that the terracing and appropriate vegetations can increase the carbon input and lability and decrease soil erosion. However, the carbon pools and CMI in these lands were significantly lower than that in reference site. This suggested that it may require a long time for the soil to return to a high~ quality. Consequently, it is an efficient way to adopt the measures of terracing and appropriate vegetations planting in improving the content of LOC and CMI and controlling water and soil loss in fragile ecosystems.展开更多
Considering the flexibility and controllability of heat exchanger networks (HENs), bypasses are widely used for effective control of process stream target temperatures. However, the optimal location for the bypass is ...Considering the flexibility and controllability of heat exchanger networks (HENs), bypasses are widely used for effective control of process stream target temperatures. However, the optimal location for the bypass is generally difficult to design with the trade-off between controllability and capital investments. In this paper, based on the steady-state model of heat exchanger networks the optimal bypass location was firstly selected by iteratively calculating the non-square Relative Gain Array (ns-RGA). To simplify the calculation process, rules of bypass selection were also proposed. In order to evaluate this method, then, the structural controllability of heat exchanger networks was analyzed. With both the consideration of the controllability and capital investments, the bypasses locations were finally selected. A case study on the HEN in Crude Distillation Unit was presented in which the ns-RGA and structural controllability were used to select bypasses and also to evaluate the results.展开更多
It is known that patients infected with H pylori can spontaneously become free from infection, and that the reverse change can occur. The time-scale of these conversions is expressed as percentages per year. Since the...It is known that patients infected with H pylori can spontaneously become free from infection, and that the reverse change can occur. The time-scale of these conversions is expressed as percentages per year. Since they have been investigated in terms of serology, the changes are called sero-reversion and sero-conversion respectively. Using serological evidence to investigate these phenomena is open to the criticisms that positive serology can be present in the absence of all other evidence of infection, and that a time-lag of 6-12 mo or longer can occur between eradication of the infection and sero-reversion. Investigations using direct evidence of current infection are sparse. The few that exist suggest that some individuals can seroconvert or sero- revert within six to twelve weeks. If these findings are confirmed, it means that some patients have an ability that is variable in time to resist, or spontaneously recover from, H pylori infection. Evidence suggests that the deciding factor of susceptibility is the level of gastric secretion of acid.展开更多
Desorption of zinc (Zn) from soil is an important factor governing Zn concentration in the soil solution and Zn availability to plants. Batch experiments were performed to study the kinetics of Zn desorption by diet...Desorption of zinc (Zn) from soil is an important factor governing Zn concentration in the soil solution and Zn availability to plants. Batch experiments were performed to study the kinetics of Zn desorption by diethylenetriaminepentaacetic acid (DTPA) from 15 calcareous soil samples taken from Golestan Province in northern Iran. Soils were equilibrated with 0.005 mol L-1 DTPA solutions for 0.25 to 192 h. The results showed that the extraction process consisted of rapid extraction in the first 2 h followed by much slower extraction for the remainder of the experiment. Desorption kinetic data was fitted to pseudo-first-order kinetic model. The experimental data were found to deviate from the straight line of the pseudo-first-order plots after 2 h. The model of two first-order reactions was fitted to the kinetic data and allowed to distinguish two pools for Zn: a labile fraction (Q1), quickly extracted with a rate constant kl, and a slowly labile fraction (Q2), more slowly extracted with a rate constant k2. The applicability of pseudo-second-order model in describing the kinetic data of Zn desorntion was also evaluated.展开更多
Soil organic matter (SOM) in forest ecosystems is not only important to global carbon (C) storage but also to sustainable management of forestland with vegetation types, being a critical factor in controlling the quan...Soil organic matter (SOM) in forest ecosystems is not only important to global carbon (C) storage but also to sustainable management of forestland with vegetation types, being a critical factor in controlling the quantity and dynamics of SOM. In this field experiment soil plots with three replicates were selected from three forest vegetation types: broadleaf, Masson pine (Pinus massoniana Lamb.), and Chinese fir (Cunninghamia lanceolata Hook.). Soil total organic C (TOC), two easily oxidizable C levels (EOC1 and EOC2, which were oxidized by 66.7 mmol L-1 K_2Cr_2O_7 at 130-140℃and 333 mmol L-1 KMnO4 at 25℃, respectively), microbial biomass C (MBC), and water-soluble organic C (WSOC) were analyzed for soil samples. Soil under the broadleaf forest stored significantly higher TOC (P (?) 0.05). Because of its significantly larger total soil C storage, the soil under the broadleaf forest usually had significantly higher levels (P (?) 0.05) of the different labile organic carbons, EOC1, EOC2, MBC, and WSOC; but when calculated as a percentage of TOC each labile C fraction of the broadleaf forest was significantly lower (P (?)0.05) than one of the other two forests. Under all the three vegetation types temperature as well as quality and season of litter input generally affected the dynamics of different organic C fractions in soils, with EOC1, EOC2, and MBC increasing closely following increase in temperature, whereas WSOC showed an opposite trend.展开更多
In the Sanjiang Plain,Northeast China,the natural wetland is undergoing a rapid conversion into agricultural land,which has resulted in drastic ecological changes in the region. To investigate the effects of different...In the Sanjiang Plain,Northeast China,the natural wetland is undergoing a rapid conversion into agricultural land,which has resulted in drastic ecological changes in the region. To investigate the effects of different land uses on soil labile organic carbon,soils of Calamagrostis angustifolia wetland,Carex lasiocarpa wetland,dry farmland,paddy field,forest land and abandoned cultivated land were collected for measuring the contents of soil microbial biomass carbon (MBC),dissolved organic carbon (DOC),readily oxidizable carbon (ROC) and carbohydrate carbon (CHC). The results show that soil organic carbon contents follow the order: Carex lasiocarpa wetland>Calamagrostis angustifolia wetland>forest land>paddy field>dry farmland. The contents of MBC and DOC in Calamagrostis angustifolia and Carex lasiocarpa wetlands are significantly higher than those in other land use types. The contents of CHC and ROC are the highest in Calamagrostis angustifolia wetland and the lowest in dry farmland. The contents of all the labile organic carbon increase along with the years of abandonment of cultivated land. The ratios of MBC,DOC and ROC to SOC also follow the order: Carex lasiocarpa wetland>Calamagrostis angustifolia wetland>forest land>paddy field>dry farmland,while the ratio of CHC to SOC is paddy field>forest field>Carex lasiocarpa wetland>Carex lasiocarpa wetland>dry farmland. When natural wetlands were cultivated,the activity of soil organic carbon tends to reduce in some extent due to the disappearance of heterotrophic environment and the reduction of vegetation residue. Thus,the abandonment of cultivated land is an effective way for restoring soil organic carbon.展开更多
Based on data from a field survey in 2001 along the Northeast China transect (NECT), a precipitation gradient,and a short-term simulation experiment under ambient CO2 of 350 μmol mol-1 and doubled CO2 of 700 μmol mo...Based on data from a field survey in 2001 along the Northeast China transect (NECT), a precipitation gradient,and a short-term simulation experiment under ambient CO2 of 350 μmol mol-1 and doubled CO2 of 700 μmol mol-1with different soil moisture contents of 30%-45%, 45%-60%, and 60%-80% soil water holding capacity, the distributionof soil organic carbon and labile carbon along the NECT, their relationships with precipitation and their responses toCO2 enrichment and soil moisture changes were analyzed. The results indicated that the soil labile carbon along thegradient was significantly related to soil organic carbon (r = 0.993, P < 0.001). The soil labile carbon decreased morerapidly with depth than organic carbon. The soil organic and labile carbon along the gradient decreased with decrease inlongitude in both the topsoils and subsoils, and the coefficient of variation for the labile carbon was greater than that forthe organic carbon. Both the soil organic carbon and labile carbon had significant linear relationships with precipitation,with the correlation coefficient of soil organic carbon being lower (0.677 at P < 0.001) than that of soil labile carbon(0.712 at P < 0.001). In the simulation experiment with doubled and ambient CO2 and different moisture contents, thecoefficient of variation for soil organic carbon was only 1.3%, while for soil labile carbon it was 29.7%. With doubled CO2concentration (700 μmol mol-1), soil labile carbon decreased significantly at 45% to 60% of soil moisture content. Theseindicated that soil labile carbon was relatively more sensitive to environmental changes than soil organic carbon.展开更多
The diurnal fluctuation in soil temperature may influence soil organic carbon (SOC) mineralization, but there is no consensus on SOC mineralization response to the cyclical fluctuation in soil temperature. A 56-d in...The diurnal fluctuation in soil temperature may influence soil organic carbon (SOC) mineralization, but there is no consensus on SOC mineralization response to the cyclical fluctuation in soil temperature. A 56-d incubation experiment was conducted to investigate the effects of constant and variable temperatures on SOC mineralization. Three soils were collected from the karst region in western Guizhou Province, southwestern China, including a limestone soil under forest, a limestone soil under crops and a yellow soil under crops. According to the World Reference Base (WRB) classification, the two limestone soils were classified as Haplic Luvisols and the yellow soil as a Dystric Luvisol. These soils were incubated at three constant temperatures (15, 20 and 25 ℃) and cyclically fluctuating temperatures (diurnal cycle between 15 and 25 ℃). The results showed that the 56-d cumulative SOC mineralized (C56) at the fluctuating temperatures was between those at constant 15 and 25 ℃, suggesting that the cumulative SOC mineralization was restricted by temperature range. The SOC mineralization responses to the fluctuating temperatures were different among the three soils, especially in contrast to those at constant 20 ~C. Compared with constant 20 ℃, significant (P 〈 0.05) decreases and increases in C56 value were found in the limestone soil under forest and yellow soil under crops at the fluctuating temperatures, respectively. At the fluctuating temperatures, the forest soil with lower temperature coefficient Q10 (the relative change in SOC mineralization rate as a result of increasing the temperature by 10 ℃) had a significantly (P 〈 0.05) lower SOC mineralization intensity than the two cropland soils. These indicated that differences in temperature pattern (constant or fluctuating) could significantly influence SOC mineralization, and SOC mineralization responses to the fluctuating temperatures might be affected by soil characteristics. Moreover, the warmer temperatures might improve the ability of soil microbes to decompose the recalcitrant SOC fraction, and cyclical fluctuations in temperature could influence SOC mineralization through changing the labile SOC pool size and the mineralization rate of the recalcitrant SOC in soils.展开更多
Land use change (LUC) is widely recognized as one of the most important driving forces of global carbon cycles. The soil organic carbon (SOC) and labile organic carbon (LOC) stores were investigated at arable la...Land use change (LUC) is widely recognized as one of the most important driving forces of global carbon cycles. The soil organic carbon (SOC) and labile organic carbon (LOC) stores were investigated at arable land (AL), artificial grassland (AG), artificial woodland (AW), abandoned arable land (AAL) and desert steppe (DS) in the Longzhong region of the Loess Plateau in Northwest China. The results showed that conversions from DS to AL, AL to AG and AL to AAL led to an increase in SOC content, while the conversion from DS to AW led to a decline. The differences in SOC content were significant between DS and AW at the 20-40 cm depth and between AL and AG at the 0-10 cm depth. The SOC stock in DS at the 0-100 cm depth was 39.4 t/hm2, increased by 28.48% after cultivation and decreased by 19.12% after conversion to AW. The SOC stocks increased by 2.11% from AL to AG and 5.10% from AL to AAL. The LOC stocks changed by a larger magnitude than the SOC stocks, which suggests that it is a more sensitive index of carbon dynamics under a short-term LUC. The LOC stocks increased at 0-20 cm and 0-100 cm depths from DS to AW, which is opposite to that observed for SOC. The proportion of LOC to SOC ranged from 0.14 to 0.20 at the 0-20 cm depth for all the five land use types, indicating low SOC dynamics. The allocation proportion of LOC increased for four types of LUC conversion, and the change in magnitude was largest for DS to AW (40.91%). The afforestation, abandonment and forage planting on arable land led to sequestration of SOC; the carbon was lost initially after afforestation. However, the carbon sink effect after abandonment may not be sustainable in the study area.展开更多
In nutrient-limited alpine meadows,nitrogen(N) mineralization is prior to soil microbial immobilization;therefore,increased mineral N supply would be most likely immobilized by soil microbes due to nutrient shortage i...In nutrient-limited alpine meadows,nitrogen(N) mineralization is prior to soil microbial immobilization;therefore,increased mineral N supply would be most likely immobilized by soil microbes due to nutrient shortage in alpine soils.In addition,low temperature in alpine meadows might be one of the primary factors limiting soil organic matter decomposition and thus N mineralization.A laboratory incubation experiment was performed using an alpine meadow soil from the Tibetan Plateau.Two levels of NH4NO3(N) or glucose(C) were added,with a blank without addition of C or N as the control,before incubation at 5,15,or 25 ℃ for 28 d.CO2 efflux was measured during the 28-d incubation,and the mineral N was measured at the beginning and end of the incubation,in order to test two hypotheses:1) net N mineralization is negatively correlated with CO2 efflux for the control and 2) the external labile N or C supply will shift the negative correlation to positive.The results showed a negative correlation between CO2 efflux and net N immobilization in the control.External inorganic N supply did not change the negative correlation.The external labile C supply shifted the linear correlation from negative to positive under the low C addition level.However,under the high C level,no correlation was found.These suggested that the correlation of CO2 efflux to net N mineralization strongly depend on soil labile C and C:N ratio regardless of temperatures.Further research should focus on the effects of the types and the amount of litter components on interactions of C and N during soil organic matter decomposition.展开更多
A research trial with four land management practices, i.e., traditional tillage-fallow (TTF), traditional tillage-wheat (TTW), conservation tillage-fallow (CTF) and conservation tillage-wheat (CTW), was sampled in the...A research trial with four land management practices, i.e., traditional tillage-fallow (TTF), traditional tillage-wheat (TTW), conservation tillage-fallow (CTF) and conservation tillage-wheat (CTW), was sampled in the 15th year after its establishment to assess the effects of different management practices on labile organic carbon fractions (LOCFs), such as easily oxidizable organic carbon (EOC), dissolved organic carbon (DOC), particulate organic carbon (POC) and microbial biomass carbon (MBC) in a typical paddy soil, Chongqing, Southwest China. The results indicated that LOCFs were significantly influenced by the combination of no-tillage, ridge culture and crop rotation. And, different combination patterns showed different effectiveness on soil LOCFs. The effects of no-tillage, ridge culture and wheat cultivation on EOC, DOC, POC and MBC mainly happened at 0-10cm. At this depth, soil under CTW had higher EOC, DOC, POC and MBC contents, compared to TTF, TTW and CTF, respectively. Moreover, the contents of LOCFs for different practices generally decreased when the soil depth increased. Our findings suggest that the paddy soil in Southwest China could be managed to concentrate greater quantities of EOC, DOC, POC and MBC.展开更多
Labile organic carbon (LC) and recalcitrant organic carbon (RC) are two major fractions of soil organic carbon (SOC) and play a critical role in organic carbon turnover and sequestration. The aims of this study ...Labile organic carbon (LC) and recalcitrant organic carbon (RC) are two major fractions of soil organic carbon (SOC) and play a critical role in organic carbon turnover and sequestration. The aims of this study were to evaluate the variations of LC and RC in a semi-arid soil (Inner Mongolia, China) under plastic mulch and drip irrigation after the application of organic materials (OMs), and to explore the effects of OMs from various sources on LC and RC by probing the decomposition characteristics of OMs using in-situ nylon mesh bags burying method. The field experiment included seven treatments, i.e., chicken manure (CM), sheep manure (SM), mushroom residue (MR), maize straw (MS), fodder grass (FG), tree leaves (TL) and no OMs as a control (CK). Soil LC and RC were separated by Huygens D's method (particle size-density), and the average soil mass recovery rate and carbon recovery rate were above 95%, which indicated this method was suitable for carbon pools size analysis. The LC and RC contents significantly (P〈0.01) increased after the application of OMs. Moreover, LC and RC contents were 3.2%-8.6% and 5.0%-9.4% higher in 2016 than in 2015. The applications of CM and SM significantly increased (P〈0,01) LC content and LC/SOC ratio, whereas they were the lowest after the application of TL. However, SOC and RC contents were significantly higher (P〈0.01) after the applications of TL and MS. The correlation analysis indicated the decomposition rate of OMs was positively related with LC content and LC/SOC ratio. In addition, lignin, polyphenol, WOM (total water-soluble organic matter), WHA (water-soluble humic acid), HSL (humicdike substance) and HAL (humic acid-like) contents in initial OMs played important roles in SOC and RC. In-situ nylon mesh bags burying experiment indicated the decomposition rates of CM, SM and MS were significantly higher than those of MR, FG, and TL. Furthermore, MS could result in more lignin derivatives, WHA, and HAL polymers in shorter time during the decomposition process. In conclusion, the application of MS in the semi-arid soil under a long-term plastic mulch and drip irrigation condition could not only improve soil fertility, but also enhance soil carbon sequestration.展开更多
基金supported by the National Natural Science Foundation of China(Nos.41601533 and U1401234)the Guangdong Natural Science Foundation(No.2017A030313241)
文摘Pot experiments were conducted to evaluate the effect of water management,namely continuous flooding(CF),intermittent flooding(IF)and non-flooding(NF),on Cd phytoavailaility in three paddy soils that differed in p H and in Cd concentrations.Diffusive gradients in thin films(DGT)technique was employed to monitor soil labile Cd and Fe concentrations simultaneously at three growth stages(tillering,heading and mature stage)of rice.The Cd phytoavailability were generally in the order of NF>IF>CF,and higher rice Cd(over permitted level,0.2 mg/kg)were only found in neutral and acidic soils under NF conditions.DGT measured soil labile Cd rather than total Cd was the most reliable predictor for Cd accumulation in rice.CF enhanced the formation of root plaques,which related to oxidation of large quantities of available Fe on root surfaces due to the O2 secretion of rice root.The Cd concentration in root plaques shared the same trend with DGT-Cd.Generally,root plaques would inhibit Cd uptake by rice under CF conditions,while under IF and NF conditions,root plaques act as a temporarily store of Cd,and soil labile Cd is the key factor that controls the transfer of Cd from soil to rice.The results of principle component analysis revealed that water management had the greatest effect on soil Cd lability and rice Cd in acidic soil.Thus,it is important to consider the availability of Cd and soil p H when assessing current agricultural practices of contaminated soil in China.
文摘This study examines nine dynamical and three emotional aspects of behavior in depression and anxiety, singly and comorbidly. The study employs the Structure of Temperament Questionnaire Compact (STQ 77), whose 12 scales assess the energetic, lability and sensitivity aspects of behavior in the physical, social, mental and emotional domains. The STQ 77 was administered to 86 patients with Major Depression, 85 patients with an anxiety disorder, 43 patients with comorbid depression and anxiety, and 71 subjects without depression or anxiety disorder all presenting to a private outpatient clinical practice. Results: 1) Depression was associated with self-reports of increased impulsivity and rigidity of behavior;2) Depressed patients reported significantly lower physical energy, tempo of physical activity and plasticity of behavior. The presence of comorbid anxiety further worsened these effects;3) The ability to sustain attention on a mental task and to learn new information was lower in depressed patients than in other groups. Conclusions: comorbid depression and anxiety might be associates, decreasing adaptivity and the self-regulatory balance of behavior, leading to the de- velopment of extremes in behavioral reactivity (impulsivity and rigidity).
文摘Ⅰ. PROBLEM AND ASSUMPTIONS In 1978 J. Henry first discussed the globe controllability problem on a semilinear parabolic system with a distributed control. The author obtained the approximate control lability theory on a semilinear abstract control system unifying finited-dimen-
基金the support of the National Natural Science Foundation of China(No.42107247)the National Key Research and Development Project(No.2022YFD1901605)+1 种基金the Natural Science Foundation of Sichuan Province(Nos.2025YFHZ0142 and 2024NSFSC0800)the Tobacco Science Foundation of Sichuan Province(No.SCYC202407)。
文摘Soil microorganisms and labile soil organic carbon(SOC)fractions are essential factors affecting greenhouse gas(GHG)emissions in paddy fields.However,the effects of labile SOC fractions and microorganisms on GHG emissions from flooding to drying after organic fertilizer replacing for chemical fertilizer remain unclear.Here,a long-term experiment was conducted with four treatments:chemical fertilization only(control),organic fertilizer substituting 25%of chemical N fertilizer(NM1),50%of chemical N fertilizer(NM2),and NM2combined with crop straw(NMS).GHG emissions were monitored,and soil samples were collected to determine labile SOC fractions and microorganisms.Results revealed the GHG emissions in the NM2 significantly increased by 196.88%from flooding to drying,mainly due to the higher CO_(2) emissions.The GHG emissions per kg of C input in NMS was the lowest with the value of 9.17.From flooding to drying,organic fertilizer application significantly increased the readily oxidizable organic carbon(ROC)contents and C lability;the NM2 and NMS dramatically increased the SOC and non-readily oxidizable organic carbon(NROC).The bacterial communities showed significant differences among different treatments in the flooding,while the significant difference was only found between the NMS and other treatments in the drying.From flooding to drying,changing soil moisture conditions causes C fractions and microbial communities to jointly affect carbon emissions,and the NMS promoted carbon sequestration and mitigated GHG emissions.Our findings highlight the importance of the labile SOC fractions and microorganisms linked to GHG emissions in paddy fields.
基金Supported by the Natural Science Foundation of Fujian Province(No.2024J011318No.2024J011321)Fuzhou Science and Technology Program(No.2023-S-005).
文摘Dear Editor,Descemet’s membrane detachment(DMD)is considered as a potential sight-threatening complication following various intraocular surgeries,particularly cataract surgery[1].The labile adhesion between the Descemet’s membrane(DM)and the posterior corneal stromal layer can be easily separated with minimal mechanical force.Several risk factors have been associated with the development of DMD including old age,improper intraoperative operation,corneal ectatic disorders,and endothelial disorders and so on[1-4].
基金received support from the National Key Research and Development Program of China(No.2023YFC3207404)the National Natural Science Foundation of China(No.52270034)+1 种基金funding was provided by the National Engineering Research Center for Safe Sludge Disposal and Resource Recovery(No.2021A004)the National Engineering Research Center for Bioenergy(No.2021B007).
文摘Strict regulations on heavy metal(HM)limits impede the sludge land utilization for carbon emission reduction.This study aimed to evaluate the impact of bioavailable HMs(Cd,Cu,and Zn)on soil nitrification and determine toxicity thresholds via two cycles of sludge land application tests over 185 days.HMs inhibited gene abundance in their labile fractions,with the most affected being nitrite-oxidizing bacteria(NOB)-nxrB,followed by ammonia-oxidizing bacteria(AOB)-amoA,NOB-nxrA,and ammonia oxidizing archaea(AOA)-amoA.Toxicity thresholds for incremental labile fractions of HMs(in mg/kg)were determined as 0.35 for Cd,21.73 for Cu,and 84.04 for Zn.Additionally,AOB,as the core nitrifiers,significantly correlated(P<0.05)with ammonia nitrogen,soil organic matter,total phosphorus,and total potassium,playing a pivotal role in maintaining intricate interactions within HMs-spiked sludge-treated soil systems.The acute toxicity effects of HMs on potential ammonia oxidation(PAO),measured by inhibition rates,were 77.04%,73.63%,and 67.06%for Cd,Cu,and Zn,with labile fractions contributing 33.79%,40.19%,and 28.37%,respectively.Long-term sludge land application revealed chronic toxicity of HMs to PAO through the reshaping of ammonia-oxidizing microorganisms,particularly Cu and Zn.These findings provide insights into HM toxicity thresholds and their impact on nitrification,supporting sustainable sludge land management.
基金supported by the United States Department of Agriculture-Natural Resources Conservation Service(No.NR217217XXXXG004)the United States Department of Agriculture National Institute of Food and Agriculture Hatch Project(No.7003969)supported,in part,by a scholarship from China Scholarship Council(No.201206300183)。
文摘Understanding long-term effects of agricultural management on soil organic carbon(C)(SOC)dynamics and aggregate stability is essential for crop production sustainability.In this study,effects of crop rotation,cover crop,and nitrogen(N)fertilization on SOC physical and molecular fractions and water-stable aggregate stability were evaluated by characterizing soils of the world's oldest,century-long(>120 years)continuous cotton experiment located in the southern USA.Field treatments included continuous cotton with no winter legume and no mineral N fertilizer(control,CK),continuous cotton with winter legume(CWL),cotton-corn rotation with winter legume(CCWL),cotton-corn rotation with winter legume and mineral N fertilizer(CCWLN),and continuous cotton with mineral N fertilizer(CN).Total organic C(TOC),total nitrogen(TN),acid-hydrolysis C(AHC),and water-extractable organic C(WEOC)in both bulk soils and different aggregate fractions were determined.Soil organic matter(SOM)composition was characterized using pyrolysis-gas chromatography/mass spectrometry(Py-GC/MS).Results showed that CCWL and CCWLN increased bulk soil TOC,AHC,and TN by 150%–165%,300%–315%,and 198%–223%,respectively,as well as aggregate-associated C by 180%–246%over CK.The CWL and CN treatments also increased TOC,AHC,and TN compared to CK but to a lesser degree.The CCWL treatment increased macroaggregates(250–2000μm)by 92%followed by CCWLN by 46%,whereas CWL and CN had limited effects in increasing macroaggregates(by 1%–7%)compared to CK.Moreover,SOM showed more diversified polysaccharide-derived compounds,aliphatic compounds,aromatic compounds,lignin,and phenols in CCWL and CCWLN followed by CWL,CN,and CK.Across different field treatments,aggregate stability indices,mean weight diameter(MWD)and geometric mean diameter(GMD),were positively related to TOC and TN(R2=0.57–0.65),and N-containing compounds and phenols(R^(2)=0.71–0.89),as well as polysaccharide-derived and aliphatic compounds(R^(2)=0.53–0.71).It was concluded that the diversified inputs of SOM composition brought by synergistic interactions between corn rotation and winter legume inclusion were mainly responsible for the observed TOC accumulation and aggregate formation and stability in these subtropical cotton production systems.
基金The Major Science and Technology Plan of Hainan Province under contract No.ZDKJ2021008the Hainan Provincial Natural Science Foundation of China under contract No.623RC456+1 种基金the Hainan Province Science and Technology Special Fund under contract Nos ZDYF2021SHFZ064 and ZDYF2022SHFZ056the Collaborative Innovation Center of Marine Science and Technology in Hainan University under contract No.XTCX2022HYC19.
文摘The exchange of inorganic nutrients at the coastal sediment-water interface(SWI)plays a crucial role in regulating the nutrient budget in overlying water.The related studies mainly focus on the mid-to high-latitude regions,leaving a significant gap in the quantitative assessment of nutrient exchange and environmental controls at the SWI in lowlatitude coastal regions.We quantitatively assess the exchange of inorganic nutrients at the SWI in three tropical bays(Dongzhai Harbor,Xiaohai Lagoon,Qinglan Harbor).Sediments act as a source of ammonium,phosphate,and silicate,but for nitrate,sediments can be both a source and sink,although with substantial spatial and temporal variations in their fluxes.Labile organic matter is a critical regulator for the fluxes of inorganic nutrients at the SWI.The sedimentary nutrients input with high N/P molar ratio will alter the nutrient stoichiometry to mitigate the nitrogen limitation in coastal waters.However,the internal sediment release in these tropical bays plays a relative weak role in contributing to the nutrient addition in comparison with the other external nutrient sources including riverine input,submarine groundwater discharge,and atmospheric deposition.According to the global compilation on SWI nutrient fluxes,we propose that water column primary production and external inputs to interpret the variation in exchange and fluxes of nutrients at the SWI in different ecosystems.Such a conceptual understanding of these chain biogeochemical processes involving external nutrient input,primary production,particulate organic matter settling,and the accumulation and release of inorganic nutrients in sediments will be helpful for the scientific-based pollution prevent and control in coastal waters.
基金financially supported by the National Natural Science Foundation of China (41271294)the Program for New Century Excellent Talents in University (NCET-09-330)the Natural Science Foundation of Hunan Province of China (11JJ3041)
文摘Labile organic carbon (LOC) and carbon management index (CMI), which are sensitive factors to the changes of environment, can improve evaluating the effect of land management practices changes on soil quality. The objective of this study was to investigate the effects of land use types and landscape positions on soil quality as a function of L0C and CMI. A field study in a small watershed in the red soil hilly region of southern China was conducted, and soil samples were collected from four typical lands (pine forest (PF) on slope land, barren hill (BH) on slope land, citrus orchard (C0) on terrace land and Cinnarnornum Camphora (CC) on terrace land) at a sampling depth of 20 cm. Soil nutrients, soil organic carbon (SOC), L0C and CMI were measured. Results showed that the L0C and CMI correlated to not only soil carbon but also soil nutrients, and the values of LOC and CMI in different land use types followed the order CC 〉 PF 〉 CO 〉 BH at the upper- slope, while CO 〉 CC 〉 BH 〉 PF at mid-slope and down-slope. With respect to slope positions, the values of LOC and CMI in all the lands were followed the order: upper-slope 〉 down-slope 〉 mid- slope. As whole, the mean values of LOC and CMI in different lands followed the order CC 〉 CO 〉 PF 〉 BH. High CMI and LOC content were found in the terrace lands with broadleaf vegetations. These results indicated that the terracing and appropriate vegetations can increase the carbon input and lability and decrease soil erosion. However, the carbon pools and CMI in these lands were significantly lower than that in reference site. This suggested that it may require a long time for the soil to return to a high~ quality. Consequently, it is an efficient way to adopt the measures of terracing and appropriate vegetations planting in improving the content of LOC and CMI and controlling water and soil loss in fragile ecosystems.
基金Supported by the National Natural Science Foundation of China (21006127), the National Basic Research Program of China (2012CB720500) and the Science Foundation of China University of Petroleum, Beijing (YJRC-2011-11).
文摘Considering the flexibility and controllability of heat exchanger networks (HENs), bypasses are widely used for effective control of process stream target temperatures. However, the optimal location for the bypass is generally difficult to design with the trade-off between controllability and capital investments. In this paper, based on the steady-state model of heat exchanger networks the optimal bypass location was firstly selected by iteratively calculating the non-square Relative Gain Array (ns-RGA). To simplify the calculation process, rules of bypass selection were also proposed. In order to evaluate this method, then, the structural controllability of heat exchanger networks was analyzed. With both the consideration of the controllability and capital investments, the bypasses locations were finally selected. A case study on the HEN in Crude Distillation Unit was presented in which the ns-RGA and structural controllability were used to select bypasses and also to evaluate the results.
文摘It is known that patients infected with H pylori can spontaneously become free from infection, and that the reverse change can occur. The time-scale of these conversions is expressed as percentages per year. Since they have been investigated in terms of serology, the changes are called sero-reversion and sero-conversion respectively. Using serological evidence to investigate these phenomena is open to the criticisms that positive serology can be present in the absence of all other evidence of infection, and that a time-lag of 6-12 mo or longer can occur between eradication of the infection and sero-reversion. Investigations using direct evidence of current infection are sparse. The few that exist suggest that some individuals can seroconvert or sero- revert within six to twelve weeks. If these findings are confirmed, it means that some patients have an ability that is variable in time to resist, or spontaneously recover from, H pylori infection. Evidence suggests that the deciding factor of susceptibility is the level of gastric secretion of acid.
基金Supported by the Gorgan University of Agricultural Sciences and Natural Resources,Iran
文摘Desorption of zinc (Zn) from soil is an important factor governing Zn concentration in the soil solution and Zn availability to plants. Batch experiments were performed to study the kinetics of Zn desorption by diethylenetriaminepentaacetic acid (DTPA) from 15 calcareous soil samples taken from Golestan Province in northern Iran. Soils were equilibrated with 0.005 mol L-1 DTPA solutions for 0.25 to 192 h. The results showed that the extraction process consisted of rapid extraction in the first 2 h followed by much slower extraction for the remainder of the experiment. Desorption kinetic data was fitted to pseudo-first-order kinetic model. The experimental data were found to deviate from the straight line of the pseudo-first-order plots after 2 h. The model of two first-order reactions was fitted to the kinetic data and allowed to distinguish two pools for Zn: a labile fraction (Q1), quickly extracted with a rate constant kl, and a slowly labile fraction (Q2), more slowly extracted with a rate constant k2. The applicability of pseudo-second-order model in describing the kinetic data of Zn desorntion was also evaluated.
基金Project supported by the National Natural Science Foundation of China (No. 30271072).
文摘Soil organic matter (SOM) in forest ecosystems is not only important to global carbon (C) storage but also to sustainable management of forestland with vegetation types, being a critical factor in controlling the quantity and dynamics of SOM. In this field experiment soil plots with three replicates were selected from three forest vegetation types: broadleaf, Masson pine (Pinus massoniana Lamb.), and Chinese fir (Cunninghamia lanceolata Hook.). Soil total organic C (TOC), two easily oxidizable C levels (EOC1 and EOC2, which were oxidized by 66.7 mmol L-1 K_2Cr_2O_7 at 130-140℃and 333 mmol L-1 KMnO4 at 25℃, respectively), microbial biomass C (MBC), and water-soluble organic C (WSOC) were analyzed for soil samples. Soil under the broadleaf forest stored significantly higher TOC (P (?) 0.05). Because of its significantly larger total soil C storage, the soil under the broadleaf forest usually had significantly higher levels (P (?) 0.05) of the different labile organic carbons, EOC1, EOC2, MBC, and WSOC; but when calculated as a percentage of TOC each labile C fraction of the broadleaf forest was significantly lower (P (?)0.05) than one of the other two forests. Under all the three vegetation types temperature as well as quality and season of litter input generally affected the dynamics of different organic C fractions in soils, with EOC1, EOC2, and MBC increasing closely following increase in temperature, whereas WSOC showed an opposite trend.
基金Under the auspices of National Natural Science Foundation of China (No. 30470340)
文摘In the Sanjiang Plain,Northeast China,the natural wetland is undergoing a rapid conversion into agricultural land,which has resulted in drastic ecological changes in the region. To investigate the effects of different land uses on soil labile organic carbon,soils of Calamagrostis angustifolia wetland,Carex lasiocarpa wetland,dry farmland,paddy field,forest land and abandoned cultivated land were collected for measuring the contents of soil microbial biomass carbon (MBC),dissolved organic carbon (DOC),readily oxidizable carbon (ROC) and carbohydrate carbon (CHC). The results show that soil organic carbon contents follow the order: Carex lasiocarpa wetland>Calamagrostis angustifolia wetland>forest land>paddy field>dry farmland. The contents of MBC and DOC in Calamagrostis angustifolia and Carex lasiocarpa wetlands are significantly higher than those in other land use types. The contents of CHC and ROC are the highest in Calamagrostis angustifolia wetland and the lowest in dry farmland. The contents of all the labile organic carbon increase along with the years of abandonment of cultivated land. The ratios of MBC,DOC and ROC to SOC also follow the order: Carex lasiocarpa wetland>Calamagrostis angustifolia wetland>forest land>paddy field>dry farmland,while the ratio of CHC to SOC is paddy field>forest field>Carex lasiocarpa wetland>Carex lasiocarpa wetland>dry farmland. When natural wetlands were cultivated,the activity of soil organic carbon tends to reduce in some extent due to the disappearance of heterotrophic environment and the reduction of vegetation residue. Thus,the abandonment of cultivated land is an effective way for restoring soil organic carbon.
基金the National Key Basic Research Support Foundation of China (No. G1999043407), the KnowledgeInnovation Project of the Chinese Academy of Sciences (Nos. KZCX1-SW-01-12 and KSCX2-1-07) and the NationalNatural Science Foundation of China (No. 40231018).
文摘Based on data from a field survey in 2001 along the Northeast China transect (NECT), a precipitation gradient,and a short-term simulation experiment under ambient CO2 of 350 μmol mol-1 and doubled CO2 of 700 μmol mol-1with different soil moisture contents of 30%-45%, 45%-60%, and 60%-80% soil water holding capacity, the distributionof soil organic carbon and labile carbon along the NECT, their relationships with precipitation and their responses toCO2 enrichment and soil moisture changes were analyzed. The results indicated that the soil labile carbon along thegradient was significantly related to soil organic carbon (r = 0.993, P < 0.001). The soil labile carbon decreased morerapidly with depth than organic carbon. The soil organic and labile carbon along the gradient decreased with decrease inlongitude in both the topsoils and subsoils, and the coefficient of variation for the labile carbon was greater than that forthe organic carbon. Both the soil organic carbon and labile carbon had significant linear relationships with precipitation,with the correlation coefficient of soil organic carbon being lower (0.677 at P < 0.001) than that of soil labile carbon(0.712 at P < 0.001). In the simulation experiment with doubled and ambient CO2 and different moisture contents, thecoefficient of variation for soil organic carbon was only 1.3%, while for soil labile carbon it was 29.7%. With doubled CO2concentration (700 μmol mol-1), soil labile carbon decreased significantly at 45% to 60% of soil moisture content. Theseindicated that soil labile carbon was relatively more sensitive to environmental changes than soil organic carbon.
基金supported by the National Natural Science Foundation of China (No. 41301245)the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDA05050506)+1 种基金the Special Program for National Science & Technology Basic Work of China (No. 2014FY110200A13)the Fundamental Research Funds for the Central Universities of China (No. XDJK2013B043)
文摘The diurnal fluctuation in soil temperature may influence soil organic carbon (SOC) mineralization, but there is no consensus on SOC mineralization response to the cyclical fluctuation in soil temperature. A 56-d incubation experiment was conducted to investigate the effects of constant and variable temperatures on SOC mineralization. Three soils were collected from the karst region in western Guizhou Province, southwestern China, including a limestone soil under forest, a limestone soil under crops and a yellow soil under crops. According to the World Reference Base (WRB) classification, the two limestone soils were classified as Haplic Luvisols and the yellow soil as a Dystric Luvisol. These soils were incubated at three constant temperatures (15, 20 and 25 ℃) and cyclically fluctuating temperatures (diurnal cycle between 15 and 25 ℃). The results showed that the 56-d cumulative SOC mineralized (C56) at the fluctuating temperatures was between those at constant 15 and 25 ℃, suggesting that the cumulative SOC mineralization was restricted by temperature range. The SOC mineralization responses to the fluctuating temperatures were different among the three soils, especially in contrast to those at constant 20 ~C. Compared with constant 20 ℃, significant (P 〈 0.05) decreases and increases in C56 value were found in the limestone soil under forest and yellow soil under crops at the fluctuating temperatures, respectively. At the fluctuating temperatures, the forest soil with lower temperature coefficient Q10 (the relative change in SOC mineralization rate as a result of increasing the temperature by 10 ℃) had a significantly (P 〈 0.05) lower SOC mineralization intensity than the two cropland soils. These indicated that differences in temperature pattern (constant or fluctuating) could significantly influence SOC mineralization, and SOC mineralization responses to the fluctuating temperatures might be affected by soil characteristics. Moreover, the warmer temperatures might improve the ability of soil microbes to decompose the recalcitrant SOC fraction, and cyclical fluctuations in temperature could influence SOC mineralization through changing the labile SOC pool size and the mineralization rate of the recalcitrant SOC in soils.
基金supported by the Foundation for Excellent Youth Scholars of Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences(Y084941)the National Natural Science Foundation of China (41171027)
文摘Land use change (LUC) is widely recognized as one of the most important driving forces of global carbon cycles. The soil organic carbon (SOC) and labile organic carbon (LOC) stores were investigated at arable land (AL), artificial grassland (AG), artificial woodland (AW), abandoned arable land (AAL) and desert steppe (DS) in the Longzhong region of the Loess Plateau in Northwest China. The results showed that conversions from DS to AL, AL to AG and AL to AAL led to an increase in SOC content, while the conversion from DS to AW led to a decline. The differences in SOC content were significant between DS and AW at the 20-40 cm depth and between AL and AG at the 0-10 cm depth. The SOC stock in DS at the 0-100 cm depth was 39.4 t/hm2, increased by 28.48% after cultivation and decreased by 19.12% after conversion to AW. The SOC stocks increased by 2.11% from AL to AG and 5.10% from AL to AAL. The LOC stocks changed by a larger magnitude than the SOC stocks, which suggests that it is a more sensitive index of carbon dynamics under a short-term LUC. The LOC stocks increased at 0-20 cm and 0-100 cm depths from DS to AW, which is opposite to that observed for SOC. The proportion of LOC to SOC ranged from 0.14 to 0.20 at the 0-20 cm depth for all the five land use types, indicating low SOC dynamics. The allocation proportion of LOC increased for four types of LUC conversion, and the change in magnitude was largest for DS to AW (40.91%). The afforestation, abandonment and forage planting on arable land led to sequestration of SOC; the carbon was lost initially after afforestation. However, the carbon sink effect after abandonment may not be sustainable in the study area.
基金Supported by the National Basic Research Program (973 Program) of China (Nos.2010CB951704 and 2010CB833502)the National Natural Science Foundation for Young Scientists of China (No.30600070)the West Light Joint Scholarship of the Chinese Academy of Sciences
文摘In nutrient-limited alpine meadows,nitrogen(N) mineralization is prior to soil microbial immobilization;therefore,increased mineral N supply would be most likely immobilized by soil microbes due to nutrient shortage in alpine soils.In addition,low temperature in alpine meadows might be one of the primary factors limiting soil organic matter decomposition and thus N mineralization.A laboratory incubation experiment was performed using an alpine meadow soil from the Tibetan Plateau.Two levels of NH4NO3(N) or glucose(C) were added,with a blank without addition of C or N as the control,before incubation at 5,15,or 25 ℃ for 28 d.CO2 efflux was measured during the 28-d incubation,and the mineral N was measured at the beginning and end of the incubation,in order to test two hypotheses:1) net N mineralization is negatively correlated with CO2 efflux for the control and 2) the external labile N or C supply will shift the negative correlation to positive.The results showed a negative correlation between CO2 efflux and net N immobilization in the control.External inorganic N supply did not change the negative correlation.The external labile C supply shifted the linear correlation from negative to positive under the low C addition level.However,under the high C level,no correlation was found.These suggested that the correlation of CO2 efflux to net N mineralization strongly depend on soil labile C and C:N ratio regardless of temperatures.Further research should focus on the effects of the types and the amount of litter components on interactions of C and N during soil organic matter decomposition.
基金Under the auspices of Key Project of National Natural Science Foundation of China (No. 40231016)
文摘A research trial with four land management practices, i.e., traditional tillage-fallow (TTF), traditional tillage-wheat (TTW), conservation tillage-fallow (CTF) and conservation tillage-wheat (CTW), was sampled in the 15th year after its establishment to assess the effects of different management practices on labile organic carbon fractions (LOCFs), such as easily oxidizable organic carbon (EOC), dissolved organic carbon (DOC), particulate organic carbon (POC) and microbial biomass carbon (MBC) in a typical paddy soil, Chongqing, Southwest China. The results indicated that LOCFs were significantly influenced by the combination of no-tillage, ridge culture and crop rotation. And, different combination patterns showed different effectiveness on soil LOCFs. The effects of no-tillage, ridge culture and wheat cultivation on EOC, DOC, POC and MBC mainly happened at 0-10cm. At this depth, soil under CTW had higher EOC, DOC, POC and MBC contents, compared to TTF, TTW and CTF, respectively. Moreover, the contents of LOCFs for different practices generally decreased when the soil depth increased. Our findings suggest that the paddy soil in Southwest China could be managed to concentrate greater quantities of EOC, DOC, POC and MBC.
基金supported by the National Key R&D Program of China (2017YFD0201801)the Research Foundation of the Science & Technology Agency of Jilin Province, China (20150203004NY)
文摘Labile organic carbon (LC) and recalcitrant organic carbon (RC) are two major fractions of soil organic carbon (SOC) and play a critical role in organic carbon turnover and sequestration. The aims of this study were to evaluate the variations of LC and RC in a semi-arid soil (Inner Mongolia, China) under plastic mulch and drip irrigation after the application of organic materials (OMs), and to explore the effects of OMs from various sources on LC and RC by probing the decomposition characteristics of OMs using in-situ nylon mesh bags burying method. The field experiment included seven treatments, i.e., chicken manure (CM), sheep manure (SM), mushroom residue (MR), maize straw (MS), fodder grass (FG), tree leaves (TL) and no OMs as a control (CK). Soil LC and RC were separated by Huygens D's method (particle size-density), and the average soil mass recovery rate and carbon recovery rate were above 95%, which indicated this method was suitable for carbon pools size analysis. The LC and RC contents significantly (P〈0.01) increased after the application of OMs. Moreover, LC and RC contents were 3.2%-8.6% and 5.0%-9.4% higher in 2016 than in 2015. The applications of CM and SM significantly increased (P〈0,01) LC content and LC/SOC ratio, whereas they were the lowest after the application of TL. However, SOC and RC contents were significantly higher (P〈0.01) after the applications of TL and MS. The correlation analysis indicated the decomposition rate of OMs was positively related with LC content and LC/SOC ratio. In addition, lignin, polyphenol, WOM (total water-soluble organic matter), WHA (water-soluble humic acid), HSL (humicdike substance) and HAL (humic acid-like) contents in initial OMs played important roles in SOC and RC. In-situ nylon mesh bags burying experiment indicated the decomposition rates of CM, SM and MS were significantly higher than those of MR, FG, and TL. Furthermore, MS could result in more lignin derivatives, WHA, and HAL polymers in shorter time during the decomposition process. In conclusion, the application of MS in the semi-arid soil under a long-term plastic mulch and drip irrigation condition could not only improve soil fertility, but also enhance soil carbon sequestration.