期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Using LaModel to analyze coal bumps 被引量:2
1
作者 Keith A.Heasley Ihsan Berk Tulu 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2018年第5期729-737,共9页
Coal bumps have long been a safety hazard in coal mines, and even after decades of research, the exact mechanics that cause coal bumps are still not well understood. Therefore, coal bumps are still difficult to predic... Coal bumps have long been a safety hazard in coal mines, and even after decades of research, the exact mechanics that cause coal bumps are still not well understood. Therefore, coal bumps are still difficult to predict and control. The LaModel program has a long history of being used to effectively analyze displacements and stresses in coal mines, and with the recent addition of energy release and local mine stiffness calculations, the LaModel program now has greatly increased capabilities for evaluating coal bump potential. This paper presents three recent case histories where coal stress, pillar safety factor, energy release rate and local mine stiffness calculations in LaModel were used to evaluate the pillar plan and cut sequencing that were associated with a number of bumps. The first case history is a longwall mine where a simple stress analysis was used to help determine the limiting depth for safely mining in bump-prone ground. The second case history is a room-and-pillar retreat mine where the LaModel analysis is used to help optimize the pillar extraction sequencing in order to minimize the frequent pillar line bumps. The third case history is the Crandall Canyon mine where an initial bump and then a massive pillar collapse/bump which killed 6 miners is extensively back-analyzed. In these case histories, the calculation tools in LaModel are ultimately shown to be very effective for analyzing various aspects of the bump problem, and in the conclusions, a number of critical insights into the practical calculation of mine failure and stability developed as a result of this research are presented. 展开更多
关键词 COAL BUMP BURST Energy RELEASE rate Local MINE STIFFNESS lamodel
在线阅读 下载PDF
Analysis of ARMPS2010 database with LaModel and an updated abutment angle equation
2
作者 Deniz Tuncay Ihsan Berk Tulu Ted Klemetti 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第1期111-118,共8页
The Analysis of Retreat Mining Pillar Stability(ARMPS) program was developed by the National Institute for Occupational Safety and Health(NIOSH) to help the United States coal mining industry to design safe retreat ro... The Analysis of Retreat Mining Pillar Stability(ARMPS) program was developed by the National Institute for Occupational Safety and Health(NIOSH) to help the United States coal mining industry to design safe retreat room-and-pillar panels. ARMPS calculates the magnitude of the in-situ and mining-induced loads by using geometrical computations and empirical rules. In particular, the program uses the "abutment angle" concept in calculating the magnitude of the abutment load on pillars adjacent to a gob. In this paper, stress measurements from United States and Australian mines with different overburden geologies with varying hard rock percentages were back analyzed. The results of the analyses indicated that for depths less than 200 m, the ARMPS empirical derivation of a 21° abutment angle was supported by the case histories;however, at depths greater than 200 m, the abutment angle was found to be significantly less than 21°. In this paper, a new equation employing the panel width to overburden depth ratio is constructed for the calculation of accurate abutment angles for deeper mining cases. The new abutment angle equation was tested using both ARMPS2010 and La Model for the entire case history database of ARMPS2010. The new abutment angle equation to estimate the magnitude of the mining-induced loads used together with the La Model program was found to give good classification accuracies compared to ARMPS2010 for deep cover cases. 展开更多
关键词 ABUTMENT ANGLE ARMPS2010 lamodel ARMPS-LAM COAL mining PILLAR stability
在线阅读 下载PDF
Investigating different methods used for approximating pillar loads in longwall coal mines 被引量:4
3
作者 Deniz Tuncay a Ihsan Berk Tulu a Ted Klemetti 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第1期23-32,共10页
Accurately estimating load distributions and ground responses around underground openings play a significant role in the safety of the operations in underground mines.Adequately designing pillars and other support mea... Accurately estimating load distributions and ground responses around underground openings play a significant role in the safety of the operations in underground mines.Adequately designing pillars and other support measures relies highly on the accurate assessment of the loads that will be carried by them,as well as the load-bearing capacities of the supports.There are various methods that can be used to approximate mining-induced loads in stratified rock masses to be used in pillar design.The empirical methods are based on equations derived from large databases of various case studies.They are implemented in government approved design tools and are widely used.There are also analytical and numerical techniques used for more detailed analysis of the induced loads.In this study,two different longwall mines with different panel width-to-depth ratios are analyzed using different methods.The empirical method used in the analysis is the square-decay stress function that uses the abutment angle concept,implemented in pillar design software developed by the National Institute for Occupational Safety and Health(NIOSH).The first numerical method used in the analysis is a displacement-discontinuity(DD)variation of the boundary element method,LaModel,which utilizes the laminated overburden model.The second numerical method used in the analysis is Fast Lagrangian Analysis of Continua(FLAC)with the numerical modeling approach recently developed at West Virginia University which is based on the approach developed by NIOSH.The model includes the 2D slice of a cross-section along the width of the panel with the chain pillar system that also includes the different stratigraphic layers of the overburden.All three methods gave similar results for the shallow mine,both in terms of load percentages and distribution where the variation was more obvious for the deep cover mine.The FLAC3D model was observed to better capture the stress changes observed during the field measurements for both the shallow and deep cover cases.This study allowed us to see the shortcomings of each of these different methods.It was concluded that a numerical model which incorporates the site-specific geology would provide the most precise estimate for complex loading conditions. 展开更多
关键词 Abutment loads Numerical modeling lamodel FLAC3D Longwall coal mines
在线阅读 下载PDF
Numerical analysis for the prediction of bump prone conditions:A southern Appalachian pillar coal bump case study 被引量:2
4
作者 Christopher Newman David Newman 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第1期75-81,共7页
Two miners were fatally injured when a pillar bump occurred during retreat mining in a southern West Virginia coal mine.The mine was operating in the Eagle seam with overmining in the No.2 Gas and Powellton seams.A co... Two miners were fatally injured when a pillar bump occurred during retreat mining in a southern West Virginia coal mine.The mine was operating in the Eagle seam with overmining in the No.2 Gas and Powellton seams.A coal bump is defined as a sudden and violent failure of coal caused by the release of stored strain energy in the pillar.While significant strides have been made by academia,industry,and regulatory agencies to better understand bump conditions and mitigation techniques,coal bumps represent a long standing,highly site-specific engineering problem in which the exact failure mechanism is not clearly understood.In this case history,a cut-by-cut analysis of retreat mining operations was conducted on the 4 East Main leading up to the pillar bump event.Numerical input parameters were derived from site-specific geologic information and mine geometry for the analysis of pillar stress conditions and energy release using LaModel.An overview of stress conditions in the panel was presented including a precursor event that occurred two crosscuts inby the bump site.The methodology presented in the paper for the evaluation of the fatal bump event can be used for the identification of bump prone conditions prior to development and retreat of a mining area. 展开更多
关键词 BUMP BURST Coal Energy release rate lamodel Numerical modeling
在线阅读 下载PDF
Elimination of boundary effect for laminated overburden model in pillar stability analysis 被引量:2
5
作者 张鹏 K. A. Heasley 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第6期1468-1473,共6页
The laminated overburden model(La Model)has been widely used for pillar design and stability analysis.As a boundary element program,the La Model program is sensitive to the boundary condition,which should be considere... The laminated overburden model(La Model)has been widely used for pillar design and stability analysis.As a boundary element program,the La Model program is sensitive to the boundary condition,which should be considered before creating the model.To eliminate the boundary effect in a La Model pillar stability analysis,a suitable boundary buffer zone is needed around the model edge.The radius of influence(R)and the abutment load extent(D)are two major factors that affect the stresses and displacements calculated in LaM odel.To determine the optimum buffer zone extent,a database of case histories was analyzed using the La Model program.Values for R and D were varied until a buffer zone having negligible influence on the pillar stability factor(SF)of the active mining zone(AMZ)was determined. 展开更多
关键词 pillar stability boundary effect lamodel numerical simulation room-and-pillar
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部