Electrochromic(EC)smart windows utilizing a reversible metal electrodeposition device(RMED)offer a compelling alternative for dynamically regulating transmissions of optical and thermal energy.An EC device(ECD)is cons...Electrochromic(EC)smart windows utilizing a reversible metal electrodeposition device(RMED)offer a compelling alternative for dynamically regulating transmissions of optical and thermal energy.An EC device(ECD)is constructed by reversible metal electrodeposition(RME)of Bi/Cu on WO_(3)·xH_(2)O film electrodeposited onto fluorine-doped tin oxide(FTO)transparent conductive glass.The electrolyte consists of CuCl_(2),BiCl_(3),KCl and HCl aqueous solution,supplying necessary components for both electrochemical and electrodeposition processes.The ECD shows ability to rapidly transition between colorless and black states,which achieves a large optical modulation of 77.0%at 570 nm.In the black state,the ECD exhibits a near-zero transmittance in the wavelength range of 400-1100 nm while maintaining 96.6%of its initial optical modulation after coloration/bleaching cycling of 60000 s,exhibiting good cyclic stability.This RMED has relatively high stability under open-circuit voltage and also possesses excellent heat insulation performance.The results offer a solution to overcome the poor cyclic stability of RMEDs and improve the optical modulation of ECDs.展开更多
The integration of selective oxidation of renewable biomass and its derivatives with hydrogen(H_(2))pro-duction holds significant potential for simultaneously yielding value-added chemicals and“green H_(2)”,contribu...The integration of selective oxidation of renewable biomass and its derivatives with hydrogen(H_(2))pro-duction holds significant potential for simultaneously yielding value-added chemicals and“green H_(2)”,contributing to addressing sustainability challenges.The S-scheme charge transfer mechanism enhances charge separation by maintaining strong redox potentials at both ends,facilitating both oxidation and reduction reactions.Herein,we synthesize a visible-light-responsive oxygen vacancy-rich In_(2)O_(3-x)/tubular carbon nitride(IO_(OV)/TCN)S-scheme heterojunction photocatalyst via electrostatic adherence for selec-tive 5-hydroxymethylfurfural(HMF)oxidation to 2,5-diformylfuran(DFF)and 2,5-furandicarboxylic acid(FDCA),alongside H_(2)production.Under anaerobic conditions and visible-light irradiation,the optimal IOOV/TCN-10 catalyst achieves an HMF conversion of 94.8%with a selectivity of 53.6%for DFF and FDCA,and a H_(2)yield of 754.05μmol g^(−1)in 3 h.The significantly improved photocatalytic activity results from enhanced visible-light absorption,reduced carrier recombination,and abundant catalytic active sites due to the synergistic effect of surface oxygen vacancies,the hollow nanotube-based architecture,and the S-scheme charge transfer mechanism.This work highlights the great potentials of S-scheme heterojunctions in biomass conversion for sustainable energy use and chemical production.展开更多
The alloying process of Mg-La in NaCl-KCl-MgCl_(2)-LaCl_(3)(NKML)melts during electroreduction was elucidated using electrochemical techniques and deep potential molecular dynamics(DPMD)simulations.In the NKML system,...The alloying process of Mg-La in NaCl-KCl-MgCl_(2)-LaCl_(3)(NKML)melts during electroreduction was elucidated using electrochemical techniques and deep potential molecular dynamics(DPMD)simulations.In the NKML system,the Mg^(2+)/La^(3+)electrodeposition on the tungsten(W)electrode at 973 K was found to be a one-step process.The nucleation of metal ions on the electrode surface followed an instantaneous nucleation mode and was not influenced by the alloying process.The redox potential and underpotential deposition behavior of the metal ions in the NKML system were accurately predicted by the DPMD simulations,confirming the alloying process of the Mg-La.Additionally,scanning electron microscopy with energy dispersive spectroscopy(SEM-EDS)analysis results confirmed that the cathodic deposits consisted of a bright phase and a dark phase,corresponding to the Mg-La alloys and Mg,respectively.The distribution of electrolytic products suggests that the cathodic deposit initially favors the Mg phase,with the Mg-La alloy forming more easily when the Mg source in the melt is depleted.展开更多
采用光电子能谱分析方法对掺杂 L a2 O3的 Mo粉的性能进行了研究。结果表明 :掺杂 L a(NO3) 3的 Mo O2 粉经过还原处理后 ,Mo粉表面的纳米 L a2 O3微粒可以减小 Mo基体的特征能量损失峰 ,增加 Mo3d光电子谱峰强度 ;由于纳米 L a2 O3粒...采用光电子能谱分析方法对掺杂 L a2 O3的 Mo粉的性能进行了研究。结果表明 :掺杂 L a(NO3) 3的 Mo O2 粉经过还原处理后 ,Mo粉表面的纳米 L a2 O3微粒可以减小 Mo基体的特征能量损失峰 ,增加 Mo3d光电子谱峰强度 ;由于纳米 L a2 O3粒子在金属 Mo的表面及周围对 Mo起到包埋效应 ,减小了 Mo与大气的接触面积 ,从而使展开更多
A new stearic acid method(SAM) has been used to prepare ultrafine K2La2Ti3O10 nanocrystalline. Each state of synthesis process was followed by the use of FT IR analysis. The resulting materials have been characterized...A new stearic acid method(SAM) has been used to prepare ultrafine K2La2Ti3O10 nanocrystalline. Each state of synthesis process was followed by the use of FT IR analysis. The resulting materials have been characterized by means of XRD, TEM, BET surface area analysis. The acid exchanging property of the obtained product was also studied. The experimental results showed that comparing with the product of traditional solid state reaction, the particle size of the K2La2Ti3O10 synthesized by SAM is greatly reduced, BET surface area is high(more than 11.83m2· g- 1) and has different acid exchanging properties. It can be easily exfoliated in 2mol· L- 1 HNO3 solution.展开更多
文摘Electrochromic(EC)smart windows utilizing a reversible metal electrodeposition device(RMED)offer a compelling alternative for dynamically regulating transmissions of optical and thermal energy.An EC device(ECD)is constructed by reversible metal electrodeposition(RME)of Bi/Cu on WO_(3)·xH_(2)O film electrodeposited onto fluorine-doped tin oxide(FTO)transparent conductive glass.The electrolyte consists of CuCl_(2),BiCl_(3),KCl and HCl aqueous solution,supplying necessary components for both electrochemical and electrodeposition processes.The ECD shows ability to rapidly transition between colorless and black states,which achieves a large optical modulation of 77.0%at 570 nm.In the black state,the ECD exhibits a near-zero transmittance in the wavelength range of 400-1100 nm while maintaining 96.6%of its initial optical modulation after coloration/bleaching cycling of 60000 s,exhibiting good cyclic stability.This RMED has relatively high stability under open-circuit voltage and also possesses excellent heat insulation performance.The results offer a solution to overcome the poor cyclic stability of RMEDs and improve the optical modulation of ECDs.
基金financially supported by the Natural Science Foundation of China(Nos.21972058,22102064,and 22302080)Anhui Key Laboratory of Nanomaterials and Nanotechnology,the Major Science and Technology Projects in Anhui Province(No.202305a12020006).
文摘The integration of selective oxidation of renewable biomass and its derivatives with hydrogen(H_(2))pro-duction holds significant potential for simultaneously yielding value-added chemicals and“green H_(2)”,contributing to addressing sustainability challenges.The S-scheme charge transfer mechanism enhances charge separation by maintaining strong redox potentials at both ends,facilitating both oxidation and reduction reactions.Herein,we synthesize a visible-light-responsive oxygen vacancy-rich In_(2)O_(3-x)/tubular carbon nitride(IO_(OV)/TCN)S-scheme heterojunction photocatalyst via electrostatic adherence for selec-tive 5-hydroxymethylfurfural(HMF)oxidation to 2,5-diformylfuran(DFF)and 2,5-furandicarboxylic acid(FDCA),alongside H_(2)production.Under anaerobic conditions and visible-light irradiation,the optimal IOOV/TCN-10 catalyst achieves an HMF conversion of 94.8%with a selectivity of 53.6%for DFF and FDCA,and a H_(2)yield of 754.05μmol g^(−1)in 3 h.The significantly improved photocatalytic activity results from enhanced visible-light absorption,reduced carrier recombination,and abundant catalytic active sites due to the synergistic effect of surface oxygen vacancies,the hollow nanotube-based architecture,and the S-scheme charge transfer mechanism.This work highlights the great potentials of S-scheme heterojunctions in biomass conversion for sustainable energy use and chemical production.
基金support from the National Natural Science Foundation of China(No.U20A20147).
文摘The alloying process of Mg-La in NaCl-KCl-MgCl_(2)-LaCl_(3)(NKML)melts during electroreduction was elucidated using electrochemical techniques and deep potential molecular dynamics(DPMD)simulations.In the NKML system,the Mg^(2+)/La^(3+)electrodeposition on the tungsten(W)electrode at 973 K was found to be a one-step process.The nucleation of metal ions on the electrode surface followed an instantaneous nucleation mode and was not influenced by the alloying process.The redox potential and underpotential deposition behavior of the metal ions in the NKML system were accurately predicted by the DPMD simulations,confirming the alloying process of the Mg-La.Additionally,scanning electron microscopy with energy dispersive spectroscopy(SEM-EDS)analysis results confirmed that the cathodic deposits consisted of a bright phase and a dark phase,corresponding to the Mg-La alloys and Mg,respectively.The distribution of electrolytic products suggests that the cathodic deposit initially favors the Mg phase,with the Mg-La alloy forming more easily when the Mg source in the melt is depleted.
文摘A new stearic acid method(SAM) has been used to prepare ultrafine K2La2Ti3O10 nanocrystalline. Each state of synthesis process was followed by the use of FT IR analysis. The resulting materials have been characterized by means of XRD, TEM, BET surface area analysis. The acid exchanging property of the obtained product was also studied. The experimental results showed that comparing with the product of traditional solid state reaction, the particle size of the K2La2Ti3O10 synthesized by SAM is greatly reduced, BET surface area is high(more than 11.83m2· g- 1) and has different acid exchanging properties. It can be easily exfoliated in 2mol· L- 1 HNO3 solution.