Acupuncture,a form of traditional Chinese medicine with a history of 2,000 years in China,has gained wider acceptance worldwide as a complementary therapy.Studies have examined its effectiveness in various health cond...Acupuncture,a form of traditional Chinese medicine with a history of 2,000 years in China,has gained wider acceptance worldwide as a complementary therapy.Studies have examined its effectiveness in various health conditions and it is commonly used alongside conventional medical treatments.With the development of artificial intelligence(AI)technology,new possibilities for improving the efficacy and precision of acupuncture have emerged.This study explored the combination of traditional acupuncture and AI technology from three perspectives:acupuncture diagnosis,prescription,and treatment evaluation.The study aimed to provide cutting-edge direction and theoretical assistance for the development of an acupuncture robot.展开更多
Azadirachtin,a complex tetratriterpenoid limonin with potent insecticidal properties,is the most widely used biological pesticide worldwide.Its versatile pharmacological applications include the inhibition of tumor gr...Azadirachtin,a complex tetratriterpenoid limonin with potent insecticidal properties,is the most widely used biological pesticide worldwide.Its versatile pharmacological applications include the inhibition of tumor growth and anti-malarial,anti-bacterial,and anti-inflammatory properties.Azadirachtin plays a pivotal role in pest control and novel drug development.The primary source of azadirachtin is the neem tree(Azadirachta indica A.Juss),with an azadirachtin content ranging from 0.3%to 0.5%.Despite the market demand for botanical pesticides reaching approximately 100,000 tons per year,the annual neem production in China is only 1.14 tons.Although azadirachtin can be obtained through plant extraction or chemical synthesis,the quantity obtained does not meet the market demand in China.The sluggish pace of azadirachtin biosynthesis results from the limited availability of genetic information and the complexity of the synthetic pathway.Recent advancements in azadirachtin biosynthesis hold promise as an efficient collection method.In this study,we explored the physicochemical properties,biological activities,mechanisms of action,and acquisition methods of azadirachtin.We also delved into recent progress in azadirachtin biosynthesis and assessed potential future usage challenges.This study aims to establish a theoretical foundation for the scientific application and efficient synthesis of azadirachtin,offering valuable reference information to the industry.展开更多
With a new projective equation, a series of solutions of the (2-J-1)-dimensional dispersive long-water wave system (LWW) is derived. Based on the derived solitary wave solution, we obtain some special fractal loca...With a new projective equation, a series of solutions of the (2-J-1)-dimensional dispersive long-water wave system (LWW) is derived. Based on the derived solitary wave solution, we obtain some special fractal localized structures and chaotic patterns.展开更多
基金supported by the National Natural Science Foundation of China (No.82305376)2021 Special Research Project of TCM Science and Technology Development Plan of Jiangsu Province (ZT202120)+1 种基金Luo Linxiu Teacher Development Funding Project (LLX202308)National Key Research and Development Plan Intelligent Robot (2022YFB4703100).
文摘Acupuncture,a form of traditional Chinese medicine with a history of 2,000 years in China,has gained wider acceptance worldwide as a complementary therapy.Studies have examined its effectiveness in various health conditions and it is commonly used alongside conventional medical treatments.With the development of artificial intelligence(AI)technology,new possibilities for improving the efficacy and precision of acupuncture have emerged.This study explored the combination of traditional acupuncture and AI technology from three perspectives:acupuncture diagnosis,prescription,and treatment evaluation.The study aimed to provide cutting-edge direction and theoretical assistance for the development of an acupuncture robot.
基金supported by the Scientific and Technological Innovation Project of the Chinese Academy of Chinese Medical Sciences (C12021A04111 and C12021A04116)the Fundamental Research Funds for the Central Public Welfare Research Institutes (ZZ14-YQ-031 and ZZ13-YQ-040)+1 种基金the National Key Research and Development Project (2019YFC19066)the National Natural Science Foundation of China (32200308).
文摘Azadirachtin,a complex tetratriterpenoid limonin with potent insecticidal properties,is the most widely used biological pesticide worldwide.Its versatile pharmacological applications include the inhibition of tumor growth and anti-malarial,anti-bacterial,and anti-inflammatory properties.Azadirachtin plays a pivotal role in pest control and novel drug development.The primary source of azadirachtin is the neem tree(Azadirachta indica A.Juss),with an azadirachtin content ranging from 0.3%to 0.5%.Despite the market demand for botanical pesticides reaching approximately 100,000 tons per year,the annual neem production in China is only 1.14 tons.Although azadirachtin can be obtained through plant extraction or chemical synthesis,the quantity obtained does not meet the market demand in China.The sluggish pace of azadirachtin biosynthesis results from the limited availability of genetic information and the complexity of the synthetic pathway.Recent advancements in azadirachtin biosynthesis hold promise as an efficient collection method.In this study,we explored the physicochemical properties,biological activities,mechanisms of action,and acquisition methods of azadirachtin.We also delved into recent progress in azadirachtin biosynthesis and assessed potential future usage challenges.This study aims to establish a theoretical foundation for the scientific application and efficient synthesis of azadirachtin,offering valuable reference information to the industry.
基金Supported by the Natural Science Foundation of Zhejiang Province under Grant Nos.Y604106, Y606128the Scientific Research Fund of Zhejiang Provincial Education Department of China under Grant No.20070568the Natural Science Foundation of Zhejiang Lishui University under Grant No.KY08003
文摘With a new projective equation, a series of solutions of the (2-J-1)-dimensional dispersive long-water wave system (LWW) is derived. Based on the derived solitary wave solution, we obtain some special fractal localized structures and chaotic patterns.