期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
LSTR算法的改进及在车道线检测中的应用 被引量:1
1
作者 张莹 张露露 +2 位作者 孙月 张东波 段万林 《小型微型计算机系统》 CSCD 北大核心 2024年第8期1863-1868,共6页
基于Transformer的车道预测LSTR(Lane Shape Prediction with Transformers)算法在检测车道线时存在缺少捕捉局部特征的能力和多头注意力机制中头数多余的问题.本文提出了改进LSTR算法的车道线检测方法,首先在最后一个编码器中前馈网络... 基于Transformer的车道预测LSTR(Lane Shape Prediction with Transformers)算法在检测车道线时存在缺少捕捉局部特征的能力和多头注意力机制中头数多余的问题.本文提出了改进LSTR算法的车道线检测方法,首先在最后一个编码器中前馈网络的后面引入CBAM(Convolutional Block Attention Module)注意力机制模块,充分利用通道和空间上的信息,捕捉特征图中更多的细节;然后对解码器中的掩码多头注意力机制进行剪枝,使用掩码单头注意力机制来进行替换,以便更多关注前一时刻的车道线信息.改进后的LSTR算法在TuSimple数据集上准确度为96.31%,明显高于PolyLaneNet(Lane Estimation via Deep Polynomial Regression)等算法,在CULane数据集上比原始算法的F1评分上升了2.11%. 展开更多
关键词 车道线检测 深度学习 lstr算法 TRANSFORMER 注意力机制
在线阅读 下载PDF
基于LSTR和Vit-CoMer骨干的车道线检测方法
2
作者 郑剑 郭亦畅 《电子测量技术》 北大核心 2024年第19期164-171,共8页
针对LSTR算法在实际应用中存在的提取特征尺度单一及缺乏对车道局部特征有效捕捉的问题。本文首次将Vit-CoMer骨干网络用于车道线检测任务中,提出LSCoMer车道线检测模型。首先,在特征提取网络后使用MRFP丰富多尺度特征,提高检测精度;其... 针对LSTR算法在实际应用中存在的提取特征尺度单一及缺乏对车道局部特征有效捕捉的问题。本文首次将Vit-CoMer骨干网络用于车道线检测任务中,提出LSCoMer车道线检测模型。首先,在特征提取网络后使用MRFP丰富多尺度特征,提高检测精度;其次,在Transformer结构的开始和结束位置集成CTI模块,以促进CNN的局部特征与Transformer的全局特征之间有效融合,强化后者在局部细节上的敏感性。实验结果表明,本文方法在TuSimple数据集上准确率为96.68%,较原LSTR方法提升0.5%且显著优于PolyLaneNet等同类方法,在CULane数据集中,本文方法F 1分数比LSTR方法提升3.02%。 展开更多
关键词 车道线检测 lstr算法 TRANSFORMER 多尺度特征
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部