期刊文献+
共找到4,606篇文章
< 1 2 231 >
每页显示 20 50 100
基于改进LSTMs模型的区域中长期气温预测方法研究 被引量:1
1
作者 杨乐 马驰 +1 位作者 胡辉 黄冬 《惠州学院学报》 2021年第6期75-79,99,共6页
结合残差网络阶跃连接的优点,基于长短期记忆网络模型(LSTM)和双向长短期记忆网络模型(BiLSTM),提出了对区域中长期气温预测准确率较高的DeepLSTMs网络模型.利用主成分分析对哈尔滨2007-2018年逐时气象资料进行降维,得到温度预测的主要... 结合残差网络阶跃连接的优点,基于长短期记忆网络模型(LSTM)和双向长短期记忆网络模型(BiLSTM),提出了对区域中长期气温预测准确率较高的DeepLSTMs网络模型.利用主成分分析对哈尔滨2007-2018年逐时气象资料进行降维,得到温度预测的主要影响因素,对气象要素进行预处理和重构,并结合DeepLSTMs网络模型对哈尔滨市中长期气温进行了大量的预测实验.结果表明,利用DeepLSTMs网络模型对该地区中长期气温的预测精度高于比较所用方法. 展开更多
关键词 LSTM BiLSTM Deeplstms 区域中长期气温预测
在线阅读 下载PDF
基于CNN-LSTMs混合模型的人体行为识别方法 被引量:5
2
作者 陈飞 程合彬 王伟光 《信息技术与信息化》 2019年第4期32-34,共3页
提出一种CNN-LSTMs混合深度学习模型,通过可穿戴式设备获取人体行为感知数据进行人体行为识别。该方法通过CNN网络对原始数据进行特征提取,利用LSTMs网络获取特征在时间轴上的依赖关系,并实现特征融合,最后送入softmax层进行分类。实验... 提出一种CNN-LSTMs混合深度学习模型,通过可穿戴式设备获取人体行为感知数据进行人体行为识别。该方法通过CNN网络对原始数据进行特征提取,利用LSTMs网络获取特征在时间轴上的依赖关系,并实现特征融合,最后送入softmax层进行分类。实验表明,该方法可有效识别日常生活中的六种常见动作。 展开更多
关键词 人体行为识别 可穿戴式设备 卷积神经网络 循环神经网络 LSTM
在线阅读 下载PDF
基于混合模型的长江流域洞庭湖区陆域磷输入通量及其削减预测 被引量:2
3
作者 刘杰 陈前 +4 位作者 许妍 张美一 辛小康 唐文忠 张洪 《环境科学》 北大核心 2025年第1期172-183,共12页
陆域磷输入(磷输入)通量研究对于面源污染控制至关重要.利用SWAT模型模拟洞庭湖区磷输入通量,并针对农业控制、畜禽减排与水土保持措施的3种典型削减情景,利用混合模型(LSTM模型和SWAT模型)进行水系区间磷输入通量削减预测.结果表明,洞... 陆域磷输入(磷输入)通量研究对于面源污染控制至关重要.利用SWAT模型模拟洞庭湖区磷输入通量,并针对农业控制、畜禽减排与水土保持措施的3种典型削减情景,利用混合模型(LSTM模型和SWAT模型)进行水系区间磷输入通量削减预测.结果表明,洞庭湖区的TP入河总量为3.9×10^(4)t·a^(-1),TP负荷为14.4 kg·(hm^(2)·a)^(-1).磷通量季节变化显著,汛期高,非汛期低,与径流挟带、土壤侵蚀和耕作密度有显著相关性.三口区间是磷输入通量最大的区域,每年平均值为1.87×10^(4)t,需重点关注其磷污染风险.水系面积和农业用地面积是该区域磷输入通量主要的决定因素.多特征输入的LSTM模型在子流域尺度上对磷输入通量模拟效果良好,NSE>0.6.混合模型在水系区间尺度上表现出更好的结果,NSE>0.8,RPE<10%,且对数据特征要求降低.在削减预测中,以三口区间为例,入河泥沙量削减是相对有效的磷减排方式,泥沙作为磷的主要载体是面源污染控制的主要目标,同时还应关注畜禽养殖的污染.研究可为了解洞庭湖区磷输入通量的时空格局并制定磷减排策略提供科学依据和数据支撑. 展开更多
关键词 磷通量 磷削减 SWAT模型 LSTM模型 洞庭湖区
原文传递
基于神经网络模型的煤层气产能预测研究 被引量:1
4
作者 金毅 郑晨晖 +5 位作者 宋慧波 马家恒 杨运航 刘顺喜 张昆 倪小明 《河南理工大学学报(自然科学版)》 CAS 北大核心 2025年第1期46-56,共11页
目的煤层气产能主要受地质和工程因素影响,阐明这些因素对煤层气井产能的影响机制是实现储层精细改造和煤层气井提产的基础。方法本文以沁水盆地柿庄南区块为研究对象,综合考虑地质背景、储层物性和动态排采数据,利用神经网络算法开展... 目的煤层气产能主要受地质和工程因素影响,阐明这些因素对煤层气井产能的影响机制是实现储层精细改造和煤层气井提产的基础。方法本文以沁水盆地柿庄南区块为研究对象,综合考虑地质背景、储层物性和动态排采数据,利用神经网络算法开展煤层气产能预测。首先,利用灰色关联分析法遴选出10个地质参数作为煤层气产能预测的主控因素,在此基础上,运用模糊数学法实现研究区34口煤层气井富集区划分,最后,根据分类结果,结合实际排采数据,分别利用BP(back propagation)和LSTM(long short-term memory)神经网络算法实现煤层气井日产气量预测。结果结果表明:(1)渗透率、含气饱和度和储层压力梯度等10个参数是影响研究区煤层气产气性能的关键因素;(2)利用模糊数学评价方法评价煤层气的富集,可将研究区34口井产气效果划分为有利区、较有利区和不利区;(3)依托LSTM算法建立了煤储层日产气量预测模型,预测误差值为4.06%~14.79%,平均误差值为11.09%,预测精度明显高于BP神经网络模型,结论根据LSTM算法建立的煤储层日产气量预测模型稳定性好且预测精度高,可作为煤储层产能长程预测的一种有效手段,进而为煤层气开发工艺布施与排采方案制定提供科学依据。 展开更多
关键词 LSTM神经网络 BP神经网络 灰色关联分析 产能预测
在线阅读 下载PDF
融合数字孪生与长短期记忆神经网络方法的混凝土水化热温度预测 被引量:2
5
作者 殷新锋 李旭辉 +2 位作者 黄胄 陈勉 虞永杰 《西安建筑科技大学学报(自然科学版)》 北大核心 2025年第2期167-173,316,共8页
针对大体积混凝土水化过程的多变性和非线性,为预测混凝土水化热温度的趋势与峰值,提出基于数字孪生(Digital Twin,DT)和长短期记忆神经网络(Long Short-Term Memory,LSTM)的承台大体积混凝土水化热温度预测方法.该方法通过构建“物理... 针对大体积混凝土水化过程的多变性和非线性,为预测混凝土水化热温度的趋势与峰值,提出基于数字孪生(Digital Twin,DT)和长短期记忆神经网络(Long Short-Term Memory,LSTM)的承台大体积混凝土水化热温度预测方法.该方法通过构建“物理实体、虚拟实体、孪生数据、服务、链接”五个维度的承台大体积混凝土数字孪生模型,对混凝土水化过程中的关键参数进行实时监测和数据交互,确保有限元模型的准确性,并结合LSTM网络进行数据分析和预测.结果表明:数字孪生技术能通过数据交互更新出最优参数值,随着交互次数的增加,模型模拟值不断趋近实测结果;LSTM神经网络对混凝土温度变化情况预测较为准确,实测对比发现输出值与实测值最大差值为1.32℃,相差2.8%,训练结果的平均绝对误差均值为0.7624,决定系数最低达到0.9742. 展开更多
关键词 大体积混凝土 水化反应 LSTM 数字孪生五维模型 数据交互 温度预测
在线阅读 下载PDF
基于时间卷积和长短期记忆网络的短期云资源预测模型 被引量:2
6
作者 陈基漓 李海军 谢晓兰 《科学技术与工程》 北大核心 2025年第7期2856-2864,共9页
随着容器云技术的不断深入发展,通过预测分析云资源请求的整体趋势及高峰期,对于容器云资源的高效利用和合理分配具有重要意义。利用深度学习技术进行负载预测已经成为解决容器云资源利用率不平衡的关键技术。针对目前负载预测的单一模... 随着容器云技术的不断深入发展,通过预测分析云资源请求的整体趋势及高峰期,对于容器云资源的高效利用和合理分配具有重要意义。利用深度学习技术进行负载预测已经成为解决容器云资源利用率不平衡的关键技术。针对目前负载预测的单一模型和组合模型所存在的预测精度低以及捕获序列特征不充分问题,提出基于时间卷积和长短期记忆网络(temporal convolutional network-long short-term memory, TCN-LSTM)的短期云资源组合预测模型,组合模型中的空洞卷积在不减少特征尺寸的情况下增加感受野获取更长久的时间序列特征,其中残差网络可以跨层传递信息以加快网络的收敛,所获取的时间序列特征可有效提高LSTM的预测精度。利用阿里巴巴公开数据集的进行预测,实验表明所提出的模型与单一的预测模型以及其他组合模型进行对比分析,误差指标-平均绝对误差(mean absolute error, MAE)降低8%~13.7%,均方根误差(root mean squared error, RMSE)降低9.8%~13.1%,证明所提模型的有效性。 展开更多
关键词 容器云 云资源预测 时间卷积网络(TCN) 长短期记忆网络(LSTM)
在线阅读 下载PDF
基于卷积双向长短期记忆网络的风电机组传动系统疲劳载荷预测 被引量:1
7
作者 王晓东 李清 +2 位作者 付德义 刘颖明 王若瑾 《中国电力》 北大核心 2025年第4期90-97,共8页
在役风电机组传动系统的疲劳载荷一般基于关键部位应力测量,通过雨流计数法计算进行量化,该过程耗时长、成本高。针对在役风电机组控制策略和参数优化中传统疲劳载荷量化模型偏差较大的问题,在风电机组状态数据的基础上提出了一种基于... 在役风电机组传动系统的疲劳载荷一般基于关键部位应力测量,通过雨流计数法计算进行量化,该过程耗时长、成本高。针对在役风电机组控制策略和参数优化中传统疲劳载荷量化模型偏差较大的问题,在风电机组状态数据的基础上提出了一种基于卷积双向长短期记忆神经网络(convolutional neural networkbidirectional long short-term memory,CNN-BiLSTM)的传动系统疲劳载荷预测模型。首先,以基于额定风速及以上工况OpenFAST的仿真数据构建疲劳载荷特征数据库,并进行训练和测试。然后,将模型的预测数据与实际数据进行对比,利用相关评价指标对模型的预测性能进行评估,验证了该模型的有效性。最后,通过与长短期记忆和深度神经网络两种模型的预测结果对比,证明了CNN-BiLSTM载荷预测模型能进一步提高风电机组传动系统载荷预测的准确度。 展开更多
关键词 疲劳载荷 风电机组 LSTM 载荷预测 CNN-BiLSTM
在线阅读 下载PDF
基于改进经验模态分解与BiLSTM神经网络的低矮房屋脉动风压时程预测 被引量:1
8
作者 邱冶 袁有明 伞冰冰 《湖南大学学报(自然科学版)》 北大核心 2025年第3期82-93,共12页
为解决风压测量中传感器数据间歇性缺失问题,提出基于改进经验模态分解算法(IEMD)和双向长短期记忆网络(BiLSTM)的结构表面风压时程预测方法.首先,采用基于软筛分停止准则的改进经验模态分解方法,将风压时程自适应地分解为多个固有模态... 为解决风压测量中传感器数据间歇性缺失问题,提出基于改进经验模态分解算法(IEMD)和双向长短期记忆网络(BiLSTM)的结构表面风压时程预测方法.首先,采用基于软筛分停止准则的改进经验模态分解方法,将风压时程自适应地分解为多个固有模态函数,并通过样本熵对其进行重构获得子序列;其次,针对各子序列完成双向长短期记忆网络的构建、训练及预测,并利用贝叶斯优化(BO)算法对神经网络超参数进行优化;最后,基于低矮房屋风洞测压试验数据进行了风荷载预测,验证了学习模型的有效性.研究表明,与传统预测模型(多层感知器、BiLSTM)相比,基于改进经验模态分解与BiLSTM神经网络的预测模型具有较高的预测精度和计算效率,适用于高斯与非高斯风压信号预测. 展开更多
关键词 低矮房屋 风荷载 深度学习 双向LSTM 改进经验模态分解 贝叶斯优化 时程预测
在线阅读 下载PDF
基于CNN-LSTM-Attention 组合模型的黄金周旅游客流预测——以大理州为例 被引量:1
9
作者 戢晓峰 郭雅诗 +2 位作者 陈方 黄志文 李武 《干旱区资源与环境》 北大核心 2025年第3期200-208,共9页
黄金周旅游客流预测一直是区域旅游管理的重大现实需求,能够为黄金周旅游组织提供更为精准的数据支持。文中基于百度迁徙数据和百度搜索指数数据,以卷积神经网络(CNN)、长短期记忆网络(LSTM)以及注意力机制(Attention)为基准,构建了CNN-... 黄金周旅游客流预测一直是区域旅游管理的重大现实需求,能够为黄金周旅游组织提供更为精准的数据支持。文中基于百度迁徙数据和百度搜索指数数据,以卷积神经网络(CNN)、长短期记忆网络(LSTM)以及注意力机制(Attention)为基准,构建了CNN-LSTM-Attention组合模型,对大理州黄金周日度旅游客流人数进行了预测,并基于SHAP算法进行了影响因素分析。结果显示:1)CNN-LSTM-Attention组合模型的预测精度优于RF模型、SVM模型、CNN模型、LSTM模型和CNN-LSTM模型。2)引入百度搜索指数特征后,模型的均方根误差(RMSE)、平均绝对百分比误差(MAPE)、决定系数(R^(2))表现最优,表明百度搜索指数的加入在一定程度上提升了模型的预测精度。文中所构模型为黄金周旅游客流预测提供了新思路。 展开更多
关键词 客流预测 黄金周 卷积神经网络(CNN) 长短期记忆网络(LSTM) 注意力机制
原文传递
基于Vague软集的海上风电功率区间预测 被引量:2
10
作者 田书欣 朱峰 +2 位作者 杨喜军 符杨 苏向敬 《中国电机工程学报》 北大核心 2025年第4期1465-1476,I0019,共13页
海上风电输出功率的精准预测是保障海上风电并网系统调度运行的基础。针对海上风电海洋环境高度复杂、随机时空强烈耦合的特征,提出一种基于Vague软集的海上风电输出功率的新型区间预测方法。首先,引入Vague软集概念,提出融合Vague集真... 海上风电输出功率的精准预测是保障海上风电并网系统调度运行的基础。针对海上风电海洋环境高度复杂、随机时空强烈耦合的特征,提出一种基于Vague软集的海上风电输出功率的新型区间预测方法。首先,引入Vague软集概念,提出融合Vague集真隶属度和伪隶属度函数的交错式海上风电功率区间划分方法,实现风电功率数据Vague软区间化。其次,建立基于Vague-卷积神经网络(convolutional neural network,CNN)-长短期记忆神经网络(long short-term memory neural network,LSTM)的海上风电功率组合预测模型。通过类Vague软区间转换方法将双隶属度区间概率向量转化为海上风电功率复杂不确定信息下的区间预测结果。然后,从预测准确性、清晰性和兼顾性角度建立预测区间覆盖精度、预测区间宽度和预测综合水平等Vague软区间预测评估指标。最后,以我国东部某海上风电机组实际数据为算例进行验证。结果表明,所提预测模型预测结果可以兼顾预测区间的覆盖精度和清晰度,能够为海上风电不同工况下运行需求提供支撑。 展开更多
关键词 海上风电 Vague-卷积神经网络(CNN)-长短期记忆神经网络(LSTM)模型 Vague软集 软区间转换 区间预测
原文传递
基于改进LSTM的网络入侵检测方法 被引量:3
11
作者 黄亮 陶达 +2 位作者 王秀木 刘静闻 刘也凡 《计算机测量与控制》 2025年第2期63-70,共8页
随着网络数据的增加,以及黑客技术的不断发展,网络入侵检测技术的精度以及效率需要进一步提升;针对此问题,提出一种基于逃避网络数据和改进长短时记忆网络的网络入侵检测模型;该模型将黑客入侵过程中产生的异常数据作为训练集和测试集;... 随着网络数据的增加,以及黑客技术的不断发展,网络入侵检测技术的精度以及效率需要进一步提升;针对此问题,提出一种基于逃避网络数据和改进长短时记忆网络的网络入侵检测模型;该模型将黑客入侵过程中产生的异常数据作为训练集和测试集;之后利用麻雀优化算法改进长短时记忆网络模型,并将其与卷积神经网络结合,通过强化学习进一步提升模型的检测精度;实验结果表明,基于改进长短时记忆网络的入侵检测模型的检测准确率达到了98.51%,且响应时间仅为0.84 s,漏报率和误报率分别为1.23%和0.36%;该网络入侵检测模型能够实现高效的网络入侵检测,实时保障网络安全,实现网络入侵防御,为网络安全提供可靠的技术支持;该方法在网络攻防领域具有积极意义,为相关领域研究提供了新的思路。 展开更多
关键词 逃避行为 网络入侵 检测 LSTM SSA算法 CNN 强化学习
在线阅读 下载PDF
基于AWOA-BI-LSTM的光伏发电功率预测 被引量:1
12
作者 吴仕宏 张璧臣 +1 位作者 吴佳文 武兴宇 《沈阳农业大学学报》 北大核心 2025年第2期131-143,共13页
[目的]光伏发电功率的准确预测对可再生能源整合到电网、市场和建筑能源管理系统中至关重要。为提高预测精度,本研究提出一种基于改进鲸鱼优化算法(AWOA)和双向长短期记忆网络(Bi-LSTM)的混合模型(AWOA-Bi-LSTM)。针对传统鲸鱼优化算法(... [目的]光伏发电功率的准确预测对可再生能源整合到电网、市场和建筑能源管理系统中至关重要。为提高预测精度,本研究提出一种基于改进鲸鱼优化算法(AWOA)和双向长短期记忆网络(Bi-LSTM)的混合模型(AWOA-Bi-LSTM)。针对传统鲸鱼优化算法(WOA)寻优精度低、收敛速度慢的问题,提出动态权重因子和自适应参数调整两种改进策略,以增强模型的全局搜索能力和收敛效率。[方法]利用实际光伏发电数据和实测气象数据将AWOA-Bi-LSTM和WOA-Bi-LSTM以及GRNN进行对比实验。[结果]其中AWOA-Bi-LSTM在测试集和训练集上的R^(2)值分别为0.99701和0.99843;测试集和训练集的RMSE分别为1.585和0.90063。测试集RPD为20.1604,训练集RPD为25.9357。[结论]AWOA-Bi-LSTM在拟合度、预测精度和稳定性方面均优于传统方法,能够更有效地捕捉时间序列数据中的复杂模式和趋势,显著提升预测性能。 展开更多
关键词 光伏发电 功率预测 LSTM BI-LSTM WOA算法
在线阅读 下载PDF
城市内涝监测点积水深度LSTM预测模型 被引量:1
13
作者 薛丰昌 杨猛 +2 位作者 陈剑飞 吕鑫 杨鋆霞 《测绘科学》 北大核心 2025年第3期159-167,共9页
针对如何利用积涝监测站观测的时序积涝监测数据和降雨数据,准确预测积涝点积水发展趋势的问题,以河南开封市城区为研究对象,收集了2020—2021年间12个积水监测站的小时积水深度数据和6个气象站的小时降水数据。通过对原始数据进行清洗... 针对如何利用积涝监测站观测的时序积涝监测数据和降雨数据,准确预测积涝点积水发展趋势的问题,以河南开封市城区为研究对象,收集了2020—2021年间12个积水监测站的小时积水深度数据和6个气象站的小时降水数据。通过对原始数据进行清洗和归一化处理,将气象站的小时降水数据与对应时间的积水深度数据作为样本,构建了基于双向长短期记忆网络(LSTM)的积水深度预测模型,该模型实现利用6h和3h的降水及积水监测数据,预测未来1h的积水深度。将2021年7月20—21日48h数据作为测试集,验证模型在极端强降雨条件下的预测能力,模型的均方根误差(RMSE)分别为2.10cm和3.94cm。研究结果表明,所建立的LSTM模型能够克服传统时序预测模型在处理非线性关系时的局限性,在积水深度预测方面具有较高的准确性和可靠性。 展开更多
关键词 城市内涝 积涝监测 LSTM 预测模型
原文传递
基于LSTM的山区流域洪水预报模型研究 被引量:1
14
作者 金保明 曾泓源 +2 位作者 卢旺铭 陈朝清 康顺 《西南大学学报(自然科学版)》 北大核心 2025年第5期177-187,共11页
山区流域洪水具有突发性强、预见期短的特点,快速准确进行洪水预报始终是防汛工作的关键问题。以长短时记忆深度学习神经网络技术为基础,选取崇阳溪流域1997年到2022年共30场暴雨洪水过程作为研究数据,将其中21场洪水作为训练集,以上游... 山区流域洪水具有突发性强、预见期短的特点,快速准确进行洪水预报始终是防汛工作的关键问题。以长短时记忆深度学习神经网络技术为基础,选取崇阳溪流域1997年到2022年共30场暴雨洪水过程作为研究数据,将其中21场洪水作为训练集,以上游吴边等6个雨量站的逐时雨量、武夷山站控制断面前期流量为模型输入,武夷山站控制断面相应洪水流量为模型输出,采用均方根误差最小准则分析确定LSTM隐含层单元数和网络迭代轮数,同时在LSTM层之后设置一个全连接层,并对全连接层进行dropout处理,建立具有时间序列记忆功能的山区流域LSTM神经网络模型。运用该模型对余下的9场洪水进行测试,并与LMBP模型进行对比。结果表明:LSTM模型预测精度较高,在洪水过程、洪峰流量和洪峰出现时间预测方面精度高于LMBP模型,适用于山区流域洪水预报。 展开更多
关键词 洪水预报 LSTM网络 LMBP网络 崇阳溪流域
原文传递
基于深度学习的矿井瓦斯浓度预测算法研究与实现 被引量:1
15
作者 王宝会 高瞻 +1 位作者 徐林 谭英洁 《计算机科学》 北大核心 2025年第S1期614-620,共7页
目前国内外构建瓦斯浓度传统预测算法主要是ARIMA模型和SVM模型。随着深度学习技术的快速发展以及神经网络的兴起,最新的瓦斯浓度预测通过循环神经网络模型进行预测。循环神经网络因为具有非线性特点,并且考虑到了数据间的联系,所以预... 目前国内外构建瓦斯浓度传统预测算法主要是ARIMA模型和SVM模型。随着深度学习技术的快速发展以及神经网络的兴起,最新的瓦斯浓度预测通过循环神经网络模型进行预测。循环神经网络因为具有非线性特点,并且考虑到了数据间的联系,所以预测效果相比传统预测算法有了进一步提升。而当样本序列长度加长时,由于其模型固有缺陷,预测能力会降低。文中针对此问题提出了一种新型的瓦斯浓度预测模型。卷积神经网络结合循环神经网络的方式,并且加入注意力机制增加数据间的表达能力。通过使用山西汾西矿业集团中兴煤业1209工作面的实际数据进行测试,传统的循环神经网络模型预测的平均相对误差为0.042 1,所提模型预测的平均相对误差为0.029 3。实验表明提出的算法相比瓦斯浓度传统预测算法获得了更好的预测性能。 展开更多
关键词 瓦斯浓度预测 深度学习 卷积神经网络 循环神经网络 Attention机制 LSTM
在线阅读 下载PDF
基于LSTM与自适应注意力机制的医疗设备故障预测模型研究 被引量:1
16
作者 张文媛 万宇 +3 位作者 张秋婷 吴晓雪 张轩溥 倪程锦 《计量与测试技术》 2025年第5期114-118,123,共6页
目的:建立一种有效的医疗设备故障预测模型,从而提高设备维护效率,减少非计划停机时间。方法:使用传感器采集和SDK程序获取医用磁共振成像设备的8个关键特征点的数据,采用K近邻(KNN)算法处理缺失值,并进行Z-score标准化处理。同时,构建... 目的:建立一种有效的医疗设备故障预测模型,从而提高设备维护效率,减少非计划停机时间。方法:使用传感器采集和SDK程序获取医用磁共振成像设备的8个关键特征点的数据,采用K近邻(KNN)算法处理缺失值,并进行Z-score标准化处理。同时,构建多种网络架构,并通过训练集(80%)和验证集(20%)进行对比分析。结果:LSTM-LSTM-Attention模型不仅能有效捕捉序列数据中的长期依赖关系,而且能根据输入数据,动态调整注意力权重,优化故障预测效果。 展开更多
关键词 医疗设备 LSTM 故障预测 自适应注意力机制 医用磁共振成像设备
暂未订购
基于LSTM模型的宁波沿海风暴增水预报研究
17
作者 陈永平 王瑾琪 +3 位作者 徐晓武 丁骏 谭亚 宗志锋 《河海大学学报(自然科学版)》 北大核心 2025年第5期162-169,共8页
为提高宁波沿海风暴潮位预报的时效性与精度,基于LSTM模型开展了风暴潮引起的增水智能预报研究。基于历史台风和虚拟台风信息,利用ADCIRC水动力模型计算了台风期间宁波沿海潮位站的风暴增水,构建了风暴增水样本数据库;应用LSTM模型对宁... 为提高宁波沿海风暴潮位预报的时效性与精度,基于LSTM模型开展了风暴潮引起的增水智能预报研究。基于历史台风和虚拟台风信息,利用ADCIRC水动力模型计算了台风期间宁波沿海潮位站的风暴增水,构建了风暴增水样本数据库;应用LSTM模型对宁波沿海风暴增水样本数据进行训练,通过样本优化与参数调优,建立了稳健高效的宁波沿海风暴增水智能预报模型。202212台风“梅花”检验结果表明,当训练样本超过400场时,所构建的预报模型可以较好地实现宁波沿海风暴增水1~12 h的短期预报,当预见期超过12 h后,预报结果与实测数据将可能出现较大偏差。 展开更多
关键词 风暴增水 虚拟台风 智能预报 LSTM模型 宁波沿海
在线阅读 下载PDF
融合极化特性和LSTM模型的电池温度估计
18
作者 刘良 许光光 +1 位作者 盘朝奉 王丽梅 《重庆理工大学学报(自然科学)》 北大核心 2025年第4期50-58,共9页
以长短期记忆神经网络(long short-term memory,LSTM)为代表的数据驱动型方法,缺乏对模型训练策略的理论指导,限制了神经网络模型的精度和效率。为了提高神经网络模型的精度和效率,首先搭载电池测试台架,进行电池性能测试实验;接着,在... 以长短期记忆神经网络(long short-term memory,LSTM)为代表的数据驱动型方法,缺乏对模型训练策略的理论指导,限制了神经网络模型的精度和效率。为了提高神经网络模型的精度和效率,首先搭载电池测试台架,进行电池性能测试实验;接着,在不同倍率和环境温度下分析电池的温度特性;在不同倍率及温度下分析电池的极化特性和产热特性;对温度估计模型按照低、中、高倍率进行划分,提出宽温域下考虑极化特性的长短期记忆神经网络电池温度估计策略。在不同环境温度及放电倍率下测试模型的精度和泛化能力,发现考虑极化特性的长短期记忆神经网络温度估计模型的最大误差(maximum error,ME)和平均绝对误差(mean absolute error,MAE)分别为0.98℃和0.11℃;与传统长短期记忆神经网络模型的对比结果发现,最大误差和平均绝对误差分别降低1.85℃和0.76℃,训练时间减少41.81%,表明考虑极化特性的LSTM温度估计模型具有较高的精度和训练效率。 展开更多
关键词 锂离子电池 温度估计 极化特性 LSTM
在线阅读 下载PDF
机器学习模型与物理机制模型在长诏水库流域实时洪水预报中的比较研究
19
作者 瞿思敏 余裕 +5 位作者 方正 罗小亮 石朋 虞鸿 张锏 李倩 《水资源保护》 北大核心 2025年第5期73-78,88,共7页
以曹娥江长诏水库流域为研究区域,选择影响洪水过程的降雨、径流作为主要影响因子构建流域长短期记忆网络(LSTM)模型,分析流域水文气象特征和产汇流机理,并与新安江模型模拟结果进行对比分析。结果表明:LSTM模型和新安江模型在长诏水库... 以曹娥江长诏水库流域为研究区域,选择影响洪水过程的降雨、径流作为主要影响因子构建流域长短期记忆网络(LSTM)模型,分析流域水文气象特征和产汇流机理,并与新安江模型模拟结果进行对比分析。结果表明:LSTM模型和新安江模型在长诏水库流域洪水模拟中应用效果较好,LSTM模型合格率更高,且LSTM模型平均径流深和洪峰模拟结果的相对误差更小,精度更高,而新安江模型确定性系数比较稳定且峰现时差更小;LSTM模型降低了对人为经验的依赖,可用于对精度要求较高的实时洪水预报;新安江模型对于一些突发事件能够结合参数表达的物理过程解释误差来源,更适用于极端洪水等复杂情景分析和物理过程解释的研究。 展开更多
关键词 长诏水库流域 洪水预报 新安江模型 LSTM模型 编码-解码结构
在线阅读 下载PDF
基于显著性特征的多视角动作图像识别研究
20
作者 惠向晖 孙艳红 沈小乐 《现代电子技术》 北大核心 2025年第13期62-65,共4页
文中基于显著性特征的多视角动作图像识别方法,自动学习并提取出运动员动作的关键特征,有助于教练为运动员制定更科学、更个性化的训练计划。将人体骨架序列对齐到统一的时空坐标系中,计算距离图和角度图以捕捉骨架的空间特征,生成人体... 文中基于显著性特征的多视角动作图像识别方法,自动学习并提取出运动员动作的关键特征,有助于教练为运动员制定更科学、更个性化的训练计划。将人体骨架序列对齐到统一的时空坐标系中,计算距离图和角度图以捕捉骨架的空间特征,生成人体运动特征图;构建CNN+CA模型,将处理后的多视角动作视频帧生成感兴趣区域(ROI)拼接图,再将其输入到CNN中,提取多视角融合特征,并在CA模块中突出那些对于动作图像识别最为关键的区域;通过序列匹配算法将多视角动作识别问题转化为预测标签序列的匹配问题,为待识别动作图像分配动作类别标签,实现准确的多视角动作图像识别。实验结果表明:该方法不仅能够有效处理来自不同视角的动作图像,还能够准确识别出篮球运动员的多种动作。 展开更多
关键词 显著性特征 多视角动作图像 运动特征图 ROI拼接图 CNN CA模块 LSTM 序列匹配算法
在线阅读 下载PDF
上一页 1 2 231 下一页 到第
使用帮助 返回顶部