期刊文献+
共找到1,565篇文章
< 1 2 79 >
每页显示 20 50 100
Massive Files Prefetching Model Based on LSTM Neural Network with Cache Transaction Strategy 被引量:3
1
作者 Dongjie Zhu Haiwen Du +6 位作者 Yundong Sun Xiaofang Li Rongning Qu Hao Hu Shuangshuang Dong Helen Min Zhou Ning Cao 《Computers, Materials & Continua》 SCIE EI 2020年第5期979-993,共15页
In distributed storage systems,file access efficiency has an important impact on the real-time nature of information forensics.As a popular approach to improve file accessing efficiency,prefetching model can fetches d... In distributed storage systems,file access efficiency has an important impact on the real-time nature of information forensics.As a popular approach to improve file accessing efficiency,prefetching model can fetches data before it is needed according to the file access pattern,which can reduce the I/O waiting time and increase the system concurrency.However,prefetching model needs to mine the degree of association between files to ensure the accuracy of prefetching.In the massive small file situation,the sheer volume of files poses a challenge to the efficiency and accuracy of relevance mining.In this paper,we propose a massive files prefetching model based on LSTM neural network with cache transaction strategy to improve file access efficiency.Firstly,we propose a file clustering algorithm based on temporal locality and spatial locality to reduce the computational complexity.Secondly,we propose a definition of cache transaction according to files occurrence in cache instead of time-offset distance based methods to extract file block feature accurately.Lastly,we innovatively propose a file access prediction algorithm based on LSTM neural network which predict the file that have high possibility to be accessed.Experiments show that compared with the traditional LRU and the plain grouping methods,the proposed model notably increase the cache hit rate and effectively reduces the I/O wait time. 展开更多
关键词 Massive files prefetching model cache transaction distributed storage systems lstm neural network
在线阅读 下载PDF
Sensitivity analysis of regional rainfall-induced landslide based on UAV photogrammetry and LSTM neural network 被引量:1
2
作者 ZHAO Lian-heng XU Xin +3 位作者 LYU Guo-shun HUANG Dong-liang LIU Min CHEN Qi-min 《Journal of Mountain Science》 SCIE CSCD 2023年第11期3312-3326,共15页
Rainfall stands out as a critical trigger for landslides,particularly given the intense summer rainfall experienced in Zheduotang,a transitional zone from the southwest edge of Sichuan Basin to Qinghai Tibet Plateau.T... Rainfall stands out as a critical trigger for landslides,particularly given the intense summer rainfall experienced in Zheduotang,a transitional zone from the southwest edge of Sichuan Basin to Qinghai Tibet Plateau.This area is characterized by adverse geological conditions such as rock piles,debris slopes and unstable slopes.Furthermore,due to the absence of historical rainfall records and landslide inventories,empirical methods are not applicable for the analysis of rainfall-induced landslides.Thus we employ a physically based landslide susceptibility analysis model by using highprecision unmanned aerial vehicle(UAV)photogrammetry,field boreholes and long short term memory(LSTM)neural network to obtain regional topography,soil properties,and rainfall parameters.We applied the Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability(TRIGRS)model to simulate the distribution of shallow landslides and variations in porewater pressure across the region under different rainfall intensities and three rainfall patterns(advanced,uniform,and delayed).The landslides caused by advanced rainfall pattern mostly occurred in the first 12 hours,but the landslides caused by delayed rainfall pattern mostly occurred in the last 12 hours.However,all the three rainfall patterns yielded landslide susceptibility zones categorized as high(1.16%),medium(8.06%),and low(90.78%).Furthermore,total precipitation with a rainfall intensity of 35 mm/h for 1 hour was less than that with a rainfall intensity of 1.775 mm/h for 24hours,but the areas with high and medium susceptibility increased by 3.1%.This study combines UAV photogrammetry and LSTM neural networks to obtain more accurate input data for the TRIGRS model,offering an effective approach for predicting rainfall-induced shallow landslides in regions lacking historical rainfall records and landslide inventories. 展开更多
关键词 Regional landslide TRIGRS UAV photography Rainfall landslide lstm neural network
原文传递
Prediction and Analysis of Elevator Traffic Flow under the LSTM Neural Network
3
作者 Mo Shi Entao Sun +1 位作者 Xiaoyan Xu Yeol Choi 《Intelligent Control and Automation》 2024年第2期63-82,共20页
Elevators are essential components of contemporary buildings, enabling efficient vertical mobility for occupants. However, the proliferation of tall buildings has exacerbated challenges such as traffic congestion with... Elevators are essential components of contemporary buildings, enabling efficient vertical mobility for occupants. However, the proliferation of tall buildings has exacerbated challenges such as traffic congestion within elevator systems. Many passengers experience dissatisfaction with prolonged wait times, leading to impatience and frustration among building occupants. The widespread adoption of neural networks and deep learning technologies across various fields and industries represents a significant paradigm shift, and unlocking new avenues for innovation and advancement. These cutting-edge technologies offer unprecedented opportunities to address complex challenges and optimize processes in diverse domains. In this study, LSTM (Long Short-Term Memory) network technology is leveraged to analyze elevator traffic flow within a typical office building. By harnessing the predictive capabilities of LSTM, the research aims to contribute to advancements in elevator group control design, ultimately enhancing the functionality and efficiency of vertical transportation systems in built environments. The findings of this research have the potential to reference the development of intelligent elevator management systems, capable of dynamically adapting to fluctuating passenger demand and optimizing elevator usage in real-time. By enhancing the efficiency and functionality of vertical transportation systems, the research contributes to creating more sustainable, accessible, and user-friendly living environments for individuals across diverse demographics. 展开更多
关键词 Elevator Traffic Flow neural network lstm Elevator Group Control
在线阅读 下载PDF
Load-measurement method for floating offshore wind turbines based on a long short-term memory (LSTM) neural network
4
作者 Yonggang LIN Xiangheng FENG +1 位作者 Hongwei LIU Yong SUN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第5期456-470,共15页
Complicated loads encountered by floating offshore wind turbines(FOWTs)in real sea conditions are crucial for future optimization of design,but obtaining data on them directly poses a challenge.To address this issue,w... Complicated loads encountered by floating offshore wind turbines(FOWTs)in real sea conditions are crucial for future optimization of design,but obtaining data on them directly poses a challenge.To address this issue,we applied machine learning techniques to obtain hydrodynamic and aerodynamic loads of FOWTs by measuring platform motion responses and wave-elevation sequences.First,a computational fluid dynamics(CFD)simulation model of the floating platform was established based on the dynamic fluid body interaction technique and overset grid technology.Then,a long short-term memory(LSTM)neural network model was constructed and trained to learn the nonlinear relationship between the waves,platform-motion inputs,and hydrodynamic-load outputs.The optimal model was determined after analyzing the sensitivity of parameters such as sample characteristics,network layers,and neuron numbers.Subsequently,the effectiveness of the hydrodynamic load model was validated under different simulation conditions,and the aerodynamic load calculation was completed based on the D'Alembert principle.Finally,we built a hybrid-scale FOWT model,based on the software in the loop strategy,in which the wind turbine was replaced by an actuation system.Model tests were carried out in a wave basin and the results demonstrated that the root mean square errors of the hydrodynamic and aerodynamic load measurements were 4.20%and 10.68%,respectively. 展开更多
关键词 Floating offshore wind turbine(FOWT) Long short-term memory(lstm)neural network Machine learning technique Load measurement Hybrid-scale model test
原文传递
LSTM Based Neural Network Model for Anomaly Event Detection in Care-Independent Smart Homes
5
作者 Brij B.Gupta Akshat Gaurav +3 位作者 Razaz Waheeb Attar Varsha Arya Ahmed Alhomoud Kwok Tai Chui 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2689-2706,共18页
This study introduces a long-short-term memory(LSTM)-based neural network model developed for detecting anomaly events in care-independent smart homes,focusing on the critical application of elderly fall detection.It ... This study introduces a long-short-term memory(LSTM)-based neural network model developed for detecting anomaly events in care-independent smart homes,focusing on the critical application of elderly fall detection.It balances the dataset using the Synthetic Minority Over-sampling Technique(SMOTE),effectively neutralizing bias to address the challenge of unbalanced datasets prevalent in time-series classification tasks.The proposed LSTM model is trained on the enriched dataset,capturing the temporal dependencies essential for anomaly recognition.The model demonstrated a significant improvement in anomaly detection,with an accuracy of 84%.The results,detailed in the comprehensive classification and confusion matrices,showed the model’s proficiency in distinguishing between normal activities and falls.This study contributes to the advancement of smart home safety,presenting a robust framework for real-time anomaly monitoring. 展开更多
关键词 lstm neural networks anomaly detection smart home health-care elderly fall prevention
在线阅读 下载PDF
基于LSTM神经网络预测转炉炉壁温度周期性波动
6
作者 陈习堂 孙鼎然 +3 位作者 张鑫 高荣 王恩志 徐建新 《有色金属(冶炼部分)》 北大核心 2026年第1期9-19,共11页
针对铜冶炼转炉在生产过程中因熔体喷溅、摇炉操作等动态工况导致炉壁温度出现周期性剧烈波动,传统静态温度监测方法难以准确预测的问题,本文提出一种融合LSTM神经网络与图像匹配技术的智能监测方法。通过部署于炉腹、风眼区、端盖东、... 针对铜冶炼转炉在生产过程中因熔体喷溅、摇炉操作等动态工况导致炉壁温度出现周期性剧烈波动,传统静态温度监测方法难以准确预测的问题,本文提出一种融合LSTM神经网络与图像匹配技术的智能监测方法。通过部署于炉腹、风眼区、端盖东、端盖西四部位的红外热像仪采集时序温度数据,创新性地采用模板区域提取与灰度差异分析算法对摇炉遮挡等异常图像进行预处理,有效提升数据质量。在此基础上,构建LSTM预测模型,利用其门控机制捕捉温度序列的长期依赖关系,实现对未来温度趋势的精准预测。工业验证结果表明,该模型在炉腹和端盖西的预测平均绝对误差(MAE)为1.35~1.44℃,风眼区等复杂工况下MAE控制在3.66~4.20℃,显著优于传统方法。该方法能够可靠识别炉衬蚀损引起的温度上升趋势,为转炉预测性维护提供数据支撑,对保障安全生产、延长炉寿及推动冶炼智能化具有重要工程价值。 展开更多
关键词 PS转炉 lstm神经网络 温度预测 预测性维护 图像匹配
在线阅读 下载PDF
基于注意力机制LSTM神经网络的北方岩溶大泉水位预测研究
7
作者 黄林显 徐征和 +7 位作者 支传顺 李双 刘治政 邢立亭 朱恒华 王晓玮 毕雯雯 胡晓农 《地学前缘》 北大核心 2026年第1期419-431,共13页
岩溶地下水是北方岩溶区重要供水水源,准确预测其水位动态对地下水资源科学管理和保护具有重要意义。但岩溶含水系统具有强烈的非均质性和各向异性,导致其水位动态往往体现出非平稳及非线性波动状态,造成进行地下水位预测时易产生较大... 岩溶地下水是北方岩溶区重要供水水源,准确预测其水位动态对地下水资源科学管理和保护具有重要意义。但岩溶含水系统具有强烈的非均质性和各向异性,导致其水位动态往往体现出非平稳及非线性波动状态,造成进行地下水位预测时易产生较大误差。论文提出一种耦合注意力机制(Attention)和长短时记忆(LSTM,Long Short-Term Memory)神经网络的多变量趵突泉地下水位预测模型,利用泉域2013—2024年日降水(代表补给项)及水汽压、日气温和开采量(代表排泄项)进行模型训练和预测,结果表明:①采用BEAST(Bayesian Estimator of Abrupt Change,Seasonality,and Trend)算法对1958—2024年趵突泉水位时间序列进行分解,共识别出四个突变点并以此为依据将水位动态划分为四个阶段;②互相关分析揭示降雨和趵突泉水位动态变化之间存在2~3个月的时间滞后,表明两者之间动态变化较为一致;③所提出的预测模型以多种变量(降水量、水汽压、气温及开采量)作为模型输入,不同变量间的交互作用可相互验证,能有效提升预测精度;④采用正弦函数拟合日气温数据,可消除测量误差影响,能在一定程度上提高预测精度;⑤相较于单一LSTM神经网络和门控循环单元(GRU)神经网络,LSTM_Attention神经网络由于引入注意力机制,能聚焦更重要特征的影响,从而显著提高预测精度,其水位预测RMSE和R 2值分别为0.13 m和0.94。总体来说,本文所提出的LSTM_Attention神经网络岩溶地下水位预测模型具有较强的准确性和稳定性,可为岩溶地下水位精确预测提供借鉴。 展开更多
关键词 北方岩溶 水位预测 多变量模拟 lstm_Attention神经网络
在线阅读 下载PDF
Sensory Data Prediction Using Spatiotemporal Correlation and LSTM Recurrent Neural Network 被引量:4
8
作者 Tongxin SHU 《Instrumentation》 2019年第3期10-17,共8页
The Wireless Sensor Networks(WSNs)are widely utilized in various industrial and environmental monitoring applications.The process of data gathering within the WSN is significant in terms of reporting the environmental... The Wireless Sensor Networks(WSNs)are widely utilized in various industrial and environmental monitoring applications.The process of data gathering within the WSN is significant in terms of reporting the environmental data.However,it might occur that certain sensor node malfunctions due to the energy draining out or unexpected damage.Therefore,the collected data may become inaccurate or incomplete.Focusing on the spatiotemporal correlation among sensor nodes,this paper proposes a novel algorithm to predict the value of the missing or inaccurate data and predict the future data in replacement of certain nonfunctional sensor nodes.The Long-Short-Term-Memory Recurrent Neural Network(LSTM RNN)helps to more accurately derive the time-series data corresponding to the sets of past collected data,making the prediction results more reliable.It is observed from the simulation results that the proposed algorithm provides an outstanding data gathering efficiency while ensuring the data accuracy. 展开更多
关键词 Spatiotemporal correlation lstm Recurrent neural network time-series prediction
原文传递
Text Sentiment Analysis Based on Convolutional Neural Network and Bidirectional LSTM Model 被引量:1
9
作者 Mengjiao Song Xingyu Zhao +1 位作者 Yong Liu Zhihong Zhao 《国际计算机前沿大会会议论文集》 2018年第2期6-6,共1页
关键词 SENTIMENT analysis LONG SHORT-TERM memoryConvolutional neural network BIDIRECTIONAL lstm
在线阅读 下载PDF
基于LSTM-时序卷积神经网络模型的电梯起重设备故障预测
10
作者 刘会敏 《计算机应用文摘》 2026年第2期39-41,共3页
现有电梯故障预测方法仅简单融合传统深度学习模型,未能充分挖掘运行数据中的多尺度时序特征。对此,文章提出一种基于LSTM-时序卷积神经网络的电梯起重设备故障预测方法。首先对运行数据进行多尺度处理,提取反映短周期波动与长周期趋势... 现有电梯故障预测方法仅简单融合传统深度学习模型,未能充分挖掘运行数据中的多尺度时序特征。对此,文章提出一种基于LSTM-时序卷积神经网络的电梯起重设备故障预测方法。首先对运行数据进行多尺度处理,提取反映短周期波动与长周期趋势的局部时序特征;随后通过LSTM层捕捉特征间的长期依赖关系,形成高阶特征向量;最后利用全连接层结合Softmax函数计算各故障状态的概率,完成故障预测。实验结果表明,在测试集随机选取的40个样本中,该方法仅误判2例,预测错误数显著低于其他3种对比方法,展现出更优的预测准确性。 展开更多
关键词 lstm 时序卷积神经网络 电梯起重设备 故障预测 局部时序特征
在线阅读 下载PDF
基于TCN-LSTM模型的深基坑变形预测研究
11
作者 叶剑锋 《广州建筑》 2026年第1期72-77,共6页
由于深基坑变形发展趋势受复杂地质条件及动态施工环境影响,为保障基坑安全而对深基坑变形开展精准预测,是亟待突破的工程难题。为实现高精度与强鲁棒性的变形预测,该研究提出一种融合时序卷积网络(TCN)与长短期记忆网络(LSTM)的混合深... 由于深基坑变形发展趋势受复杂地质条件及动态施工环境影响,为保障基坑安全而对深基坑变形开展精准预测,是亟待突破的工程难题。为实现高精度与强鲁棒性的变形预测,该研究提出一种融合时序卷积网络(TCN)与长短期记忆网络(LSTM)的混合深度学习模型(TCN-LSTM)。该模型通过TCN中的扩张因果卷积操作提取多尺度时序特征,并利用LSTM的门控机制建模长期依赖与非线性的动态演化过程。TCN与LSTM的跨模态集成有效增强了模型的特征表达与泛化能力。基于广州某医院深基坑工程的实测数据开展对比实验,结果表明:所提出的TCN-LSTM模型在拟合优度(R^(2))、均方误差(MSE)与平均绝对误差(MAE)三项指标上均显著优于传统RNN、LSTM及CNNLSTM模型,其R^(2)分别提升97.43%、80.59%及11.38%,MSE分别降低33.01%、23.66%与10.13%,MAE分别降低57.81%、49.00%与35.46%,同时表现出优异的噪声鲁棒性。该研究为深基坑变形预测提供了一种可靠的解决方案,对工程风险的智能感知与主动防控具有重要理论价值与工程应用前景。 展开更多
关键词 深基坑 变形预测 时间卷积网络(TCN) 长短期记忆神经网络(lstm) 混合深度学习模型(TCN-lstm) 鲁棒性
在线阅读 下载PDF
Forecasting method of monthly wind power generation based on climate model and long short-term memory neural network 被引量:6
12
作者 Rui Yin Dengxuan Li +1 位作者 Yifeng Wang Weidong Chen 《Global Energy Interconnection》 CAS 2020年第6期571-576,共6页
Predicting wind power gen eration over the medium and long term is helpful for dispatchi ng departme nts,as it aids in constructing generation plans and electricity market transactions.This study presents a monthly wi... Predicting wind power gen eration over the medium and long term is helpful for dispatchi ng departme nts,as it aids in constructing generation plans and electricity market transactions.This study presents a monthly wind power gen eration forecast!ng method based on a climate model and long short-term memory(LSTM)n eural n etwork.A non linear mappi ng model is established between the meteorological elements and wind power monthly utilization hours.After considering the meteorological data(as predicted for the future)and new installed capacity planning,the monthly wind power gen eration forecast results are output.A case study shows the effectiveness of the prediction method. 展开更多
关键词 Wind power Monthly generation forecast Climate model lstm neural network
在线阅读 下载PDF
Prediction of surface subsidence in Changchun City based on LSTM network 被引量:1
13
作者 WANG He WU Qiong 《Global Geology》 2022年第2期109-115,共7页
Monitoring and predicting of urban surface subsidence are important for urban disaster prevention and mitigation.In this paper,the Long Short-Term Memory(LSTM)network was used to predict the surface subsidence process... Monitoring and predicting of urban surface subsidence are important for urban disaster prevention and mitigation.In this paper,the Long Short-Term Memory(LSTM)network was used to predict the surface subsidence process of Changchun City from 2018 to 2020 based on PS-InSAR monitoring data.The results show that the prediction error of 57.89% of PS points in the LSTM network was less than 1mm with the average error of 1.8 mm and the standard deviation of 2.8 mm.The accuracy and reliability of the prediction were better than regression analysis,time series analysis and grey model. 展开更多
关键词 lstm neural network surface subsidence PS-INSAR
在线阅读 下载PDF
基于多变量CNN-LSTM神经网络的白家包滑坡位移预测 被引量:1
14
作者 秦世伟 何浩 +3 位作者 谢攀 罗柏程 张彤 戴自立 《应用基础与工程科学学报》 北大核心 2025年第5期1239-1247,共9页
滑坡是一种常见的地质灾害,严重威胁着人民生命财产安全.为减少滑坡带来的损失,对滑坡体位移的精准预测显得尤为关键.结合CNN神经网络和LSTM神经网络,采用PCA数据降维和贝叶斯优化超参数,建立了基于CNN-LSTM组合的多变量神经网络模型用... 滑坡是一种常见的地质灾害,严重威胁着人民生命财产安全.为减少滑坡带来的损失,对滑坡体位移的精准预测显得尤为关键.结合CNN神经网络和LSTM神经网络,采用PCA数据降维和贝叶斯优化超参数,建立了基于CNN-LSTM组合的多变量神经网络模型用于预测滑坡位移.以白家包滑坡为例,基于2017~2019年的12组监测数据,构建了单变量CNN-LSTM、多变量LSTM、多变量CNN以及多变量CNN-LSTM的滑坡位移预测模型.对比各模型预测精度,结果显示:在衡量模型性能的关键指标MAE、RMSE、MAPE和R^(2)以及测试集模型预测值和真实值的拟合度方面,多变量CNN-LSTM模型的滑坡位移预测结果均展现出显著优势.因此,该模型可为滑坡体位移的准确预测,以及滑坡灾害的预警预报和防灾减灾工作提供科学依据. 展开更多
关键词 CNN-lstm神经网络 PCA数据降维 贝叶斯优化超参数 白家包滑坡 位移预测 多变量模型
原文传递
融合海鸥算法及LSTM的燃料电池城市客车车速预测研究
15
作者 何锋 陈鹏 +2 位作者 刘勇 边东生 龚成平 《重庆理工大学学报(自然科学)》 北大核心 2025年第5期29-35,共7页
针对燃料电池城市客车车速预测精度低的问题,提出改进海鸥优化算法(ISOA)和长短期记忆神经网络(LSTM)相结合的车速预测模型。以标准工况驾驶循环数据库为训练集,以中国典型城市公交循环工况为测试集,使用引入莱维飞行、柯西变异等策略... 针对燃料电池城市客车车速预测精度低的问题,提出改进海鸥优化算法(ISOA)和长短期记忆神经网络(LSTM)相结合的车速预测模型。以标准工况驾驶循环数据库为训练集,以中国典型城市公交循环工况为测试集,使用引入莱维飞行、柯西变异等策略改进后的海鸥优化算法,确定LSTM最优参数,建立基于城市道路的ISOA-LSTM燃料电池城市客车车速预测模型,与LSTM模型、SOA-LSTM模型和GWO-LSTM模型进行对比。结果表明:基于ISOA-LSTM的车速预测模型的均方根误差为1.965,平均绝对误差为1.570,决定系数为0.983,预测精度更高。 展开更多
关键词 燃料电池城市客车 车速预测 改进海鸥优化算法 lstm神经网络
在线阅读 下载PDF
堆叠式LSTM组合模型的充电站用电量预测方法 被引量:1
16
作者 王彩玲 丁当 《计算机时代》 2025年第1期1-4,共4页
随着电动汽车的普及,充电站对电力需求预测的精确性日益提高。本文设计了堆叠式LSTM模型,使用预处理过的某电动汽车充电站用电量数据,对比分析传统模型和LSTM模型在不同评估指标上的表现,验证所提出模型的优越性;还对多层堆叠式LSTM模... 随着电动汽车的普及,充电站对电力需求预测的精确性日益提高。本文设计了堆叠式LSTM模型,使用预处理过的某电动汽车充电站用电量数据,对比分析传统模型和LSTM模型在不同评估指标上的表现,验证所提出模型的优越性;还对多层堆叠式LSTM模型进行训练和测试,分析不同层数LSTM模型的性能,实验结果表明,三层堆叠式LSTM模型优于其他模型,能够显著提高用电量预测的准确度。 展开更多
关键词 用电量预测 长短期记忆网络 卷积神经网络-长短期记忆网络 堆叠式lstm模型
在线阅读 下载PDF
基于贝叶斯优化LSTM神经网络的飞机货舱火源定位
17
作者 张伟 常本强 +1 位作者 杨旭 熊枭 《北京航空航天大学学报》 北大核心 2025年第9期2979-2986,共8页
民航飞机货舱火灾多发于高空低温低压的环境,对飞机安全飞行造成了巨大的威胁。为快速定位货舱火灾源点和采取针对性区域灭火措施,提出一种基于贝叶斯优化(BO)的长短期记忆(LSTM)神经网络火源定位模型(BO-LSTM)。该模型使用LSTM神经网... 民航飞机货舱火灾多发于高空低温低压的环境,对飞机安全飞行造成了巨大的威胁。为快速定位货舱火灾源点和采取针对性区域灭火措施,提出一种基于贝叶斯优化(BO)的长短期记忆(LSTM)神经网络火源定位模型(BO-LSTM)。该模型使用LSTM神经网络充分挖掘多种火灾特征时序数据(烟雾、温度、CO浓度)与火灾源点的时空关联特性,同时采用贝叶斯算法搜寻LSTM神经网络的最优超参数组合以提高模型的鲁棒性和准确性。通过仿真研究验证BO-LSTM模型,使用Pyrosim火灾模拟软件以1∶1比例建立了8个常用民航飞机货舱模型,并在每个模型中随机选取10个火源点进行低温低压环境的火灾仿真。实验结果表明:所建模型预测火源中心点距离实际火源中心点的直线距离误差皆小于0.1m,预测火源二维坐标皆处于真实火源的范围内。贝叶斯优化过的LSTM神经网络极大提高了传统LSTM神经网络的性能,适用于低温低压状态下的飞机货舱火源定位。 展开更多
关键词 飞机货舱 低温低压 火源定位 贝叶斯优化 lstm神经网络 Pyrosim软件
原文传递
基于小波变换和PSO-LSTM的智慧教学机器人抓取识别方法
18
作者 徐文 李婷 《自动化与仪器仪表》 2025年第3期149-153,共5页
针对传统教学机器人抓取识别精度低,识别效率不高的问题,提出一种基于小波变换与粒子群算法(Particle Swarm Optimization algorithm,PSO)优化长短时记忆神经网络(Long Short-term Memory Networks,LSTM)的智慧教学机器人抓取识别方法... 针对传统教学机器人抓取识别精度低,识别效率不高的问题,提出一种基于小波变换与粒子群算法(Particle Swarm Optimization algorithm,PSO)优化长短时记忆神经网络(Long Short-term Memory Networks,LSTM)的智慧教学机器人抓取识别方法。首先,采用小波变换方法对物体移动信号进行特征提取;然后以LSTM神经网络作为基础识别网络,并采用PSO对LSTM神经网络进行优化,搭建一个基于PSO-LSTM的智慧教学机器人抓取识别模型;最后将提取特征输入至该模型中进行抓取识别。实验结果表明,本方法的抓取识别mAP分别取值为96.84%,相较于传统的SURF抓取识别方法和YOLOv5抓取识别方法,mAP分别高出了17.46%、19.04%,且本方法的抓取识别所用时间仅为8.46 s,对比于另外两种方法分别降低了13.59 s和21.17 s。由此说明,本方法能够提高抓取识别精度和效率,可为智慧教学提供参考借鉴。 展开更多
关键词 智慧教学 小波变换 粒子群优化算法 lstm神经网络 抓取识别
原文传递
基于NGO-LSTM的共享单车需求预测 被引量:1
19
作者 苏莹莹 吕博 《沈阳大学学报(自然科学版)》 2025年第3期265-272,F0003,共9页
建立了北方苍鹰算法优化长短期记忆神经网络(northern goshawk optimization-long short term memory,NGO-LSTM)的预测模型。以深圳市共享单车为例,首先对共享单车数据进行预处理,以Geohash算法为基础将骑行的时变数据作为特征输入;然... 建立了北方苍鹰算法优化长短期记忆神经网络(northern goshawk optimization-long short term memory,NGO-LSTM)的预测模型。以深圳市共享单车为例,首先对共享单车数据进行预处理,以Geohash算法为基础将骑行的时变数据作为特征输入;然后采用Canopy算法结合K-means聚类算法将深圳市地铁站进行聚类分析,以此发掘不同类型站点骑行规律;最后在此基础上建立了NGO-LSTM预测模型对站点的需求量进行预测分析,并与其他模型进行对比。实验结果表明,NGO-LSTM模型的决定系数达到0.90。 展开更多
关键词 共享单车 数据聚类:长短期记忆神经网络 北方苍鹰算法 需求预测
在线阅读 下载PDF
基于MC2DCNN-LSTM模型的齿轮箱全故障分类识别模型
20
作者 陈蓉 王磊 《机电工程》 北大核心 2025年第2期287-297,共11页
针对轧机齿轮箱结构复杂、故障信号识别困难、故障部位分类不清等难题,提出了一种基于多通道二维卷积神经网络(MC2DCNN)与长短期记忆神经网络(LSTM)特征融合的故障诊断方法。首先,设计了一种三通道混合编码的二维样本结构,以达到故障识... 针对轧机齿轮箱结构复杂、故障信号识别困难、故障部位分类不清等难题,提出了一种基于多通道二维卷积神经网络(MC2DCNN)与长短期记忆神经网络(LSTM)特征融合的故障诊断方法。首先,设计了一种三通道混合编码的二维样本结构,以达到故障识别与分类目的,对齿轮箱典型故障进行了自适应分类;其次,该模型将齿轮箱的垂直、水平和轴向三个方向的振动信号融合构造输入样本,结合了二维卷积神经网络与长短时记忆神经网络的优势,设计了与之对应的二维卷积神经网络结构,其相较于传统的单通道信号包含了更多的状态信息;最后,分析了轧制过程数据和已有实验数据,对齿轮故障和齿轮箱全故障进行了特征识别和分类,验证了该模型的准确率。研究结果表明:模型对齿轮箱齿面磨损、齿根裂纹、断齿以及齿面点蚀等典型故障识别的平均准确率达到95.9%,最高准确率为98.6%;相较于单通道信号,多通道信号混合编码方式构造的分类样本极大地提升了神经网络分类的准确性,解调出了更丰富的故障信息。根据轧制过程中的运行数据和实验台数据,验证了该智能诊断方法较传统方法在分类和识别准确率上更具优势,为该方法的工程应用提供了理论基础。 展开更多
关键词 高精度轧机齿轮箱 智能故障诊断 多通道二维卷积神经网络 长短期记忆神经网络 数据分类
在线阅读 下载PDF
上一页 1 2 79 下一页 到第
使用帮助 返回顶部