期刊文献+
共找到1,534篇文章
< 1 2 77 >
每页显示 20 50 100
Prediction and Analysis of Elevator Traffic Flow under the LSTM Neural Network
1
作者 Mo Shi Entao Sun +1 位作者 Xiaoyan Xu Yeol Choi 《Intelligent Control and Automation》 2024年第2期63-82,共20页
Elevators are essential components of contemporary buildings, enabling efficient vertical mobility for occupants. However, the proliferation of tall buildings has exacerbated challenges such as traffic congestion with... Elevators are essential components of contemporary buildings, enabling efficient vertical mobility for occupants. However, the proliferation of tall buildings has exacerbated challenges such as traffic congestion within elevator systems. Many passengers experience dissatisfaction with prolonged wait times, leading to impatience and frustration among building occupants. The widespread adoption of neural networks and deep learning technologies across various fields and industries represents a significant paradigm shift, and unlocking new avenues for innovation and advancement. These cutting-edge technologies offer unprecedented opportunities to address complex challenges and optimize processes in diverse domains. In this study, LSTM (Long Short-Term Memory) network technology is leveraged to analyze elevator traffic flow within a typical office building. By harnessing the predictive capabilities of LSTM, the research aims to contribute to advancements in elevator group control design, ultimately enhancing the functionality and efficiency of vertical transportation systems in built environments. The findings of this research have the potential to reference the development of intelligent elevator management systems, capable of dynamically adapting to fluctuating passenger demand and optimizing elevator usage in real-time. By enhancing the efficiency and functionality of vertical transportation systems, the research contributes to creating more sustainable, accessible, and user-friendly living environments for individuals across diverse demographics. 展开更多
关键词 Elevator Traffic Flow neural network lstm Elevator Group Control
在线阅读 下载PDF
Massive Files Prefetching Model Based on LSTM Neural Network with Cache Transaction Strategy 被引量:3
2
作者 Dongjie Zhu Haiwen Du +6 位作者 Yundong Sun Xiaofang Li Rongning Qu Hao Hu Shuangshuang Dong Helen Min Zhou Ning Cao 《Computers, Materials & Continua》 SCIE EI 2020年第5期979-993,共15页
In distributed storage systems,file access efficiency has an important impact on the real-time nature of information forensics.As a popular approach to improve file accessing efficiency,prefetching model can fetches d... In distributed storage systems,file access efficiency has an important impact on the real-time nature of information forensics.As a popular approach to improve file accessing efficiency,prefetching model can fetches data before it is needed according to the file access pattern,which can reduce the I/O waiting time and increase the system concurrency.However,prefetching model needs to mine the degree of association between files to ensure the accuracy of prefetching.In the massive small file situation,the sheer volume of files poses a challenge to the efficiency and accuracy of relevance mining.In this paper,we propose a massive files prefetching model based on LSTM neural network with cache transaction strategy to improve file access efficiency.Firstly,we propose a file clustering algorithm based on temporal locality and spatial locality to reduce the computational complexity.Secondly,we propose a definition of cache transaction according to files occurrence in cache instead of time-offset distance based methods to extract file block feature accurately.Lastly,we innovatively propose a file access prediction algorithm based on LSTM neural network which predict the file that have high possibility to be accessed.Experiments show that compared with the traditional LRU and the plain grouping methods,the proposed model notably increase the cache hit rate and effectively reduces the I/O wait time. 展开更多
关键词 Massive files prefetching model cache transaction distributed storage systems lstm neural network
在线阅读 下载PDF
Sensitivity analysis of regional rainfall-induced landslide based on UAV photogrammetry and LSTM neural network 被引量:1
3
作者 ZHAO Lian-heng XU Xin +3 位作者 LYU Guo-shun HUANG Dong-liang LIU Min CHEN Qi-min 《Journal of Mountain Science》 SCIE CSCD 2023年第11期3312-3326,共15页
Rainfall stands out as a critical trigger for landslides,particularly given the intense summer rainfall experienced in Zheduotang,a transitional zone from the southwest edge of Sichuan Basin to Qinghai Tibet Plateau.T... Rainfall stands out as a critical trigger for landslides,particularly given the intense summer rainfall experienced in Zheduotang,a transitional zone from the southwest edge of Sichuan Basin to Qinghai Tibet Plateau.This area is characterized by adverse geological conditions such as rock piles,debris slopes and unstable slopes.Furthermore,due to the absence of historical rainfall records and landslide inventories,empirical methods are not applicable for the analysis of rainfall-induced landslides.Thus we employ a physically based landslide susceptibility analysis model by using highprecision unmanned aerial vehicle(UAV)photogrammetry,field boreholes and long short term memory(LSTM)neural network to obtain regional topography,soil properties,and rainfall parameters.We applied the Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability(TRIGRS)model to simulate the distribution of shallow landslides and variations in porewater pressure across the region under different rainfall intensities and three rainfall patterns(advanced,uniform,and delayed).The landslides caused by advanced rainfall pattern mostly occurred in the first 12 hours,but the landslides caused by delayed rainfall pattern mostly occurred in the last 12 hours.However,all the three rainfall patterns yielded landslide susceptibility zones categorized as high(1.16%),medium(8.06%),and low(90.78%).Furthermore,total precipitation with a rainfall intensity of 35 mm/h for 1 hour was less than that with a rainfall intensity of 1.775 mm/h for 24hours,but the areas with high and medium susceptibility increased by 3.1%.This study combines UAV photogrammetry and LSTM neural networks to obtain more accurate input data for the TRIGRS model,offering an effective approach for predicting rainfall-induced shallow landslides in regions lacking historical rainfall records and landslide inventories. 展开更多
关键词 Regional landslide TRIGRS UAV photography Rainfall landslide lstm neural network
原文传递
Load-measurement method for floating offshore wind turbines based on a long short-term memory (LSTM) neural network
4
作者 Yonggang LIN Xiangheng FENG +1 位作者 Hongwei LIU Yong SUN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第5期456-470,共15页
Complicated loads encountered by floating offshore wind turbines(FOWTs)in real sea conditions are crucial for future optimization of design,but obtaining data on them directly poses a challenge.To address this issue,w... Complicated loads encountered by floating offshore wind turbines(FOWTs)in real sea conditions are crucial for future optimization of design,but obtaining data on them directly poses a challenge.To address this issue,we applied machine learning techniques to obtain hydrodynamic and aerodynamic loads of FOWTs by measuring platform motion responses and wave-elevation sequences.First,a computational fluid dynamics(CFD)simulation model of the floating platform was established based on the dynamic fluid body interaction technique and overset grid technology.Then,a long short-term memory(LSTM)neural network model was constructed and trained to learn the nonlinear relationship between the waves,platform-motion inputs,and hydrodynamic-load outputs.The optimal model was determined after analyzing the sensitivity of parameters such as sample characteristics,network layers,and neuron numbers.Subsequently,the effectiveness of the hydrodynamic load model was validated under different simulation conditions,and the aerodynamic load calculation was completed based on the D'Alembert principle.Finally,we built a hybrid-scale FOWT model,based on the software in the loop strategy,in which the wind turbine was replaced by an actuation system.Model tests were carried out in a wave basin and the results demonstrated that the root mean square errors of the hydrodynamic and aerodynamic load measurements were 4.20%and 10.68%,respectively. 展开更多
关键词 Floating offshore wind turbine(FOWT) Long short-term memory(lstm)neural network Machine learning technique Load measurement Hybrid-scale model test
原文传递
LSTM Based Neural Network Model for Anomaly Event Detection in Care-Independent Smart Homes
5
作者 Brij B.Gupta Akshat Gaurav +3 位作者 Razaz Waheeb Attar Varsha Arya Ahmed Alhomoud Kwok Tai Chui 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2689-2706,共18页
This study introduces a long-short-term memory(LSTM)-based neural network model developed for detecting anomaly events in care-independent smart homes,focusing on the critical application of elderly fall detection.It ... This study introduces a long-short-term memory(LSTM)-based neural network model developed for detecting anomaly events in care-independent smart homes,focusing on the critical application of elderly fall detection.It balances the dataset using the Synthetic Minority Over-sampling Technique(SMOTE),effectively neutralizing bias to address the challenge of unbalanced datasets prevalent in time-series classification tasks.The proposed LSTM model is trained on the enriched dataset,capturing the temporal dependencies essential for anomaly recognition.The model demonstrated a significant improvement in anomaly detection,with an accuracy of 84%.The results,detailed in the comprehensive classification and confusion matrices,showed the model’s proficiency in distinguishing between normal activities and falls.This study contributes to the advancement of smart home safety,presenting a robust framework for real-time anomaly monitoring. 展开更多
关键词 lstm neural networks anomaly detection smart home health-care elderly fall prevention
在线阅读 下载PDF
融合海鸥算法及LSTM的燃料电池城市客车车速预测研究
6
作者 何锋 陈鹏 +2 位作者 刘勇 边东生 龚成平 《重庆理工大学学报(自然科学)》 北大核心 2025年第5期29-35,共7页
针对燃料电池城市客车车速预测精度低的问题,提出改进海鸥优化算法(ISOA)和长短期记忆神经网络(LSTM)相结合的车速预测模型。以标准工况驾驶循环数据库为训练集,以中国典型城市公交循环工况为测试集,使用引入莱维飞行、柯西变异等策略... 针对燃料电池城市客车车速预测精度低的问题,提出改进海鸥优化算法(ISOA)和长短期记忆神经网络(LSTM)相结合的车速预测模型。以标准工况驾驶循环数据库为训练集,以中国典型城市公交循环工况为测试集,使用引入莱维飞行、柯西变异等策略改进后的海鸥优化算法,确定LSTM最优参数,建立基于城市道路的ISOA-LSTM燃料电池城市客车车速预测模型,与LSTM模型、SOA-LSTM模型和GWO-LSTM模型进行对比。结果表明:基于ISOA-LSTM的车速预测模型的均方根误差为1.965,平均绝对误差为1.570,决定系数为0.983,预测精度更高。 展开更多
关键词 燃料电池城市客车 车速预测 改进海鸥优化算法 lstm神经网络
在线阅读 下载PDF
堆叠式LSTM组合模型的充电站用电量预测方法 被引量:1
7
作者 王彩玲 丁当 《计算机时代》 2025年第1期1-4,共4页
随着电动汽车的普及,充电站对电力需求预测的精确性日益提高。本文设计了堆叠式LSTM模型,使用预处理过的某电动汽车充电站用电量数据,对比分析传统模型和LSTM模型在不同评估指标上的表现,验证所提出模型的优越性;还对多层堆叠式LSTM模... 随着电动汽车的普及,充电站对电力需求预测的精确性日益提高。本文设计了堆叠式LSTM模型,使用预处理过的某电动汽车充电站用电量数据,对比分析传统模型和LSTM模型在不同评估指标上的表现,验证所提出模型的优越性;还对多层堆叠式LSTM模型进行训练和测试,分析不同层数LSTM模型的性能,实验结果表明,三层堆叠式LSTM模型优于其他模型,能够显著提高用电量预测的准确度。 展开更多
关键词 用电量预测 长短期记忆网络 卷积神经网络-长短期记忆网络 堆叠式lstm模型
在线阅读 下载PDF
基于贝叶斯优化LSTM神经网络的飞机货舱火源定位
8
作者 张伟 常本强 +1 位作者 杨旭 熊枭 《北京航空航天大学学报》 北大核心 2025年第9期2979-2986,共8页
民航飞机货舱火灾多发于高空低温低压的环境,对飞机安全飞行造成了巨大的威胁。为快速定位货舱火灾源点和采取针对性区域灭火措施,提出一种基于贝叶斯优化(BO)的长短期记忆(LSTM)神经网络火源定位模型(BO-LSTM)。该模型使用LSTM神经网... 民航飞机货舱火灾多发于高空低温低压的环境,对飞机安全飞行造成了巨大的威胁。为快速定位货舱火灾源点和采取针对性区域灭火措施,提出一种基于贝叶斯优化(BO)的长短期记忆(LSTM)神经网络火源定位模型(BO-LSTM)。该模型使用LSTM神经网络充分挖掘多种火灾特征时序数据(烟雾、温度、CO浓度)与火灾源点的时空关联特性,同时采用贝叶斯算法搜寻LSTM神经网络的最优超参数组合以提高模型的鲁棒性和准确性。通过仿真研究验证BO-LSTM模型,使用Pyrosim火灾模拟软件以1∶1比例建立了8个常用民航飞机货舱模型,并在每个模型中随机选取10个火源点进行低温低压环境的火灾仿真。实验结果表明:所建模型预测火源中心点距离实际火源中心点的直线距离误差皆小于0.1m,预测火源二维坐标皆处于真实火源的范围内。贝叶斯优化过的LSTM神经网络极大提高了传统LSTM神经网络的性能,适用于低温低压状态下的飞机货舱火源定位。 展开更多
关键词 飞机货舱 低温低压 火源定位 贝叶斯优化 lstm神经网络 Pyrosim软件
原文传递
基于小波变换和PSO-LSTM的智慧教学机器人抓取识别方法
9
作者 徐文 李婷 《自动化与仪器仪表》 2025年第3期149-153,共5页
针对传统教学机器人抓取识别精度低,识别效率不高的问题,提出一种基于小波变换与粒子群算法(Particle Swarm Optimization algorithm,PSO)优化长短时记忆神经网络(Long Short-term Memory Networks,LSTM)的智慧教学机器人抓取识别方法... 针对传统教学机器人抓取识别精度低,识别效率不高的问题,提出一种基于小波变换与粒子群算法(Particle Swarm Optimization algorithm,PSO)优化长短时记忆神经网络(Long Short-term Memory Networks,LSTM)的智慧教学机器人抓取识别方法。首先,采用小波变换方法对物体移动信号进行特征提取;然后以LSTM神经网络作为基础识别网络,并采用PSO对LSTM神经网络进行优化,搭建一个基于PSO-LSTM的智慧教学机器人抓取识别模型;最后将提取特征输入至该模型中进行抓取识别。实验结果表明,本方法的抓取识别mAP分别取值为96.84%,相较于传统的SURF抓取识别方法和YOLOv5抓取识别方法,mAP分别高出了17.46%、19.04%,且本方法的抓取识别所用时间仅为8.46 s,对比于另外两种方法分别降低了13.59 s和21.17 s。由此说明,本方法能够提高抓取识别精度和效率,可为智慧教学提供参考借鉴。 展开更多
关键词 智慧教学 小波变换 粒子群优化算法 lstm神经网络 抓取识别
原文传递
基于NGO-LSTM的共享单车需求预测 被引量:1
10
作者 苏莹莹 吕博 《沈阳大学学报(自然科学版)》 2025年第3期265-272,F0003,共9页
建立了北方苍鹰算法优化长短期记忆神经网络(northern goshawk optimization-long short term memory,NGO-LSTM)的预测模型。以深圳市共享单车为例,首先对共享单车数据进行预处理,以Geohash算法为基础将骑行的时变数据作为特征输入;然... 建立了北方苍鹰算法优化长短期记忆神经网络(northern goshawk optimization-long short term memory,NGO-LSTM)的预测模型。以深圳市共享单车为例,首先对共享单车数据进行预处理,以Geohash算法为基础将骑行的时变数据作为特征输入;然后采用Canopy算法结合K-means聚类算法将深圳市地铁站进行聚类分析,以此发掘不同类型站点骑行规律;最后在此基础上建立了NGO-LSTM预测模型对站点的需求量进行预测分析,并与其他模型进行对比。实验结果表明,NGO-LSTM模型的决定系数达到0.90。 展开更多
关键词 共享单车 数据聚类:长短期记忆神经网络 北方苍鹰算法 需求预测
在线阅读 下载PDF
基于MC2DCNN-LSTM模型的齿轮箱全故障分类识别模型
11
作者 陈蓉 王磊 《机电工程》 北大核心 2025年第2期287-297,共11页
针对轧机齿轮箱结构复杂、故障信号识别困难、故障部位分类不清等难题,提出了一种基于多通道二维卷积神经网络(MC2DCNN)与长短期记忆神经网络(LSTM)特征融合的故障诊断方法。首先,设计了一种三通道混合编码的二维样本结构,以达到故障识... 针对轧机齿轮箱结构复杂、故障信号识别困难、故障部位分类不清等难题,提出了一种基于多通道二维卷积神经网络(MC2DCNN)与长短期记忆神经网络(LSTM)特征融合的故障诊断方法。首先,设计了一种三通道混合编码的二维样本结构,以达到故障识别与分类目的,对齿轮箱典型故障进行了自适应分类;其次,该模型将齿轮箱的垂直、水平和轴向三个方向的振动信号融合构造输入样本,结合了二维卷积神经网络与长短时记忆神经网络的优势,设计了与之对应的二维卷积神经网络结构,其相较于传统的单通道信号包含了更多的状态信息;最后,分析了轧制过程数据和已有实验数据,对齿轮故障和齿轮箱全故障进行了特征识别和分类,验证了该模型的准确率。研究结果表明:模型对齿轮箱齿面磨损、齿根裂纹、断齿以及齿面点蚀等典型故障识别的平均准确率达到95.9%,最高准确率为98.6%;相较于单通道信号,多通道信号混合编码方式构造的分类样本极大地提升了神经网络分类的准确性,解调出了更丰富的故障信息。根据轧制过程中的运行数据和实验台数据,验证了该智能诊断方法较传统方法在分类和识别准确率上更具优势,为该方法的工程应用提供了理论基础。 展开更多
关键词 高精度轧机齿轮箱 智能故障诊断 多通道二维卷积神经网络 长短期记忆神经网络 数据分类
在线阅读 下载PDF
污水处理生化池精准曝气LSTM算法应用研究
12
作者 李艳 余少海 +2 位作者 崔鑫 姜诗慧 代文臣 《环境保护与循环经济》 2025年第4期29-32,共4页
污水处理生化曝气池曝气影响因素众多且具有很强的耦合性和非线性,传统曝气预测方法主要适用于处理线性问题,其预测精度不高,深度学习算法因其预测精度高、适应性强和可处理非线性问题成为人们关注的热点。采用深度学习中的LSTM算法,以... 污水处理生化曝气池曝气影响因素众多且具有很强的耦合性和非线性,传统曝气预测方法主要适用于处理线性问题,其预测精度不高,深度学习算法因其预测精度高、适应性强和可处理非线性问题成为人们关注的热点。采用深度学习中的LSTM算法,以AAO污水处理生化曝气池为研究对象,采集生化池溶解氧(DO)、污泥浓度、水温、pH等实际运行数据;结合生化池曝气量因素相关文献和相关性分析,确定强影响因子,作为模型输入特征;构建精准曝气预测模型,预测生化池所需曝气量。实验结果显示,LSTM的R2为0.912,RMSE为90.102,MAE为73.024,曝气预测准确率为91.2%。 展开更多
关键词 lstm神经网络 生化池 曝气量预测 污水处理
在线阅读 下载PDF
基于VMD-GWO-LSTM深度学习模型的区域物流需求预测
13
作者 董萍 邵舒羽 《北京服装学院学报(自然科学版)》 2025年第3期80-87,共8页
为了提高区域物流需求的预测准确率,解决传统方法存在的复杂度高、精度低、错误率高等问题,本文提出一种新的方法。该方法利用变分模态分解(VMD)算法将原始时间序列的区域物流分解为有限个子序列,并组合灰狼算法优化长短时记忆神经网络(... 为了提高区域物流需求的预测准确率,解决传统方法存在的复杂度高、精度低、错误率高等问题,本文提出一种新的方法。该方法利用变分模态分解(VMD)算法将原始时间序列的区域物流分解为有限个子序列,并组合灰狼算法优化长短时记忆神经网络(GWO-LSTM),构建子序列的训练和预测模型。为验证该方法的有效性,以北京市1981—2024年的物流货运量作为研究对象进行了实证分析。结果表明:该模型在测试集上的均方根误差(RMSE)为500.5374,平均绝对误差(MAE)为373.6501,平均绝对百分比误差(MAPE)为1.36%,同时在2011—2024年的平均预测准确率达到了94.60%。该模型具有数据分解精度高、鲁棒性强、准确率高等优点,可以有效降低物流需求的局部突变带来的预测误差。 展开更多
关键词 区域物流 深度学习 变分模态分解 灰狼优化算法 长短时记忆神经网络(lstm)
原文传递
基于CEEMD-WOA-LSTM的光伏发电功率预测 被引量:4
14
作者 李恺丽 王剑斌 +1 位作者 沈怡俊 陈博 《热能动力工程》 北大核心 2025年第2期136-147,共12页
针对实际电力系统中光伏发电的波动性和不确定性,建立了基于CEEMD-WOA-LSTM的光伏发电功率预测模型。首先,采用皮尔逊相关系数法确定辐照度、湿度、温度和风速为光伏功率的关键影响因素,基于高斯混合模型聚类将数据集分为晴天、多云、雨... 针对实际电力系统中光伏发电的波动性和不确定性,建立了基于CEEMD-WOA-LSTM的光伏发电功率预测模型。首先,采用皮尔逊相关系数法确定辐照度、湿度、温度和风速为光伏功率的关键影响因素,基于高斯混合模型聚类将数据集分为晴天、多云、雨天3种天气类型,以降低训练集与测试集之间的差异并提高预测模型的泛化能力,从而完成数据预处理。其次,采用互补集合经验模态分解对预处理后的数据进行分解并重构,降低其强随机性和复杂性,通过长短期记忆神经网络对分解所得的各本征模态函数分量进行功率预测,并利用鲸鱼优化算法优化网络参数以提升预测精度,从而叠加各分量的预测结果以确定最终预测值。最后,通过实验验证所提方法的有效性。结果表明:与现有方法相比,在不同天气条件下CEEMD-WOA-LSTM的预测精度均有所提高,且在复杂天气条件时展现出更好的稳定性和鲁棒性。 展开更多
关键词 光伏功率预测 CEEMD lstm神经网络 鲸鱼优化算法
原文传递
基于SAE和LSTM神经网络的深部未钻地层可钻性预测方法 被引量:2
15
作者 朱亮 李晓明 +1 位作者 纪慧 楼一珊 《西安石油大学学报(自然科学版)》 北大核心 2025年第1期39-46,64,共9页
在制定深部地层钻进提速方案时,对地层可钻性进行钻前预测是十分必要的,现有的岩石可钻性预测方法精度低,难以满足钻井设计的要求。为此,提出一种基于SAE和LSTM神经网络相结合的组合模型对深部未钻地层的可钻性进行预测。并将SAE-LSTM... 在制定深部地层钻进提速方案时,对地层可钻性进行钻前预测是十分必要的,现有的岩石可钻性预测方法精度低,难以满足钻井设计的要求。为此,提出一种基于SAE和LSTM神经网络相结合的组合模型对深部未钻地层的可钻性进行预测。并将SAE-LSTM组合模型的训练时间和预测结果与BP神经网络、支持向量机、随机森林和单一的LSTM模型进行了对比分析。结果表明:所构建的SAE-LSTM组合模型预测地层可钻性训练用时最短,预测值与实际测量值误差最小,拟合结果的均方根误差RMSE仅为0.081,平均绝对百分比误差MAPE为1.189,决定系数R^(2)为0.966,其RMSE和MAPE最小,R 2最大,较其他模型预测精度更高。该方法为地层参数预测提供了新的途径,能改善以往预测方法在处理复杂地层问题时预测效率低、预测精度不高等问题。 展开更多
关键词 深部地层钻探 岩石可钻性 预测模型 栈式自动编码器 lstm神经网络 深度学习
在线阅读 下载PDF
基于CNN-LSTM-Attention 组合模型的黄金周旅游客流预测——以大理州为例 被引量:1
16
作者 戢晓峰 郭雅诗 +2 位作者 陈方 黄志文 李武 《干旱区资源与环境》 北大核心 2025年第3期200-208,共9页
黄金周旅游客流预测一直是区域旅游管理的重大现实需求,能够为黄金周旅游组织提供更为精准的数据支持。文中基于百度迁徙数据和百度搜索指数数据,以卷积神经网络(CNN)、长短期记忆网络(LSTM)以及注意力机制(Attention)为基准,构建了CNN-... 黄金周旅游客流预测一直是区域旅游管理的重大现实需求,能够为黄金周旅游组织提供更为精准的数据支持。文中基于百度迁徙数据和百度搜索指数数据,以卷积神经网络(CNN)、长短期记忆网络(LSTM)以及注意力机制(Attention)为基准,构建了CNN-LSTM-Attention组合模型,对大理州黄金周日度旅游客流人数进行了预测,并基于SHAP算法进行了影响因素分析。结果显示:1)CNN-LSTM-Attention组合模型的预测精度优于RF模型、SVM模型、CNN模型、LSTM模型和CNN-LSTM模型。2)引入百度搜索指数特征后,模型的均方根误差(RMSE)、平均绝对百分比误差(MAPE)、决定系数(R^(2))表现最优,表明百度搜索指数的加入在一定程度上提升了模型的预测精度。文中所构模型为黄金周旅游客流预测提供了新思路。 展开更多
关键词 客流预测 黄金周 卷积神经网络(CNN) 长短期记忆网络(lstm) 注意力机制
原文传递
CNN-LSTM在桥梁预警机制的研究与应用 被引量:1
17
作者 潘浩 李富年 +2 位作者 余兴盛 秦寰宇 陈志丹 《计算机应用与软件》 北大核心 2025年第3期29-33,40,共6页
为了更好地满足桥梁健康监测系统的需求,提高桥梁健康监测系统的性能,将深度学习与时序数据库InfluxDB结合起来构建新型桥梁健康监测系统的预警机制,提高现代桥梁健康监测系统的危险感知能力。以赣江特大桥为背景,将卷积神经网络CNN与... 为了更好地满足桥梁健康监测系统的需求,提高桥梁健康监测系统的性能,将深度学习与时序数据库InfluxDB结合起来构建新型桥梁健康监测系统的预警机制,提高现代桥梁健康监测系统的危险感知能力。以赣江特大桥为背景,将卷积神经网络CNN与长短时记忆网络LSTM结合起来构建CNN-LSTM模型,对桥梁的挠度数据进行预测。通过对实验结果分析发现CNN-LSTM模型能够有效预测出桥梁的挠度数据,在置信区间为±0.1 mm的情况下,准确率达到92.8%,在预测未来十分钟的挠度数据中,均方根误差RMSE为0.1097。实践表明时序数据库InfluxDB与CNN-LSTM模型的融合增强桥梁健康监测系统对潜在威胁的感知能力,有效提高桥梁健康监测系统的预警报警机制。 展开更多
关键词 桥梁工程 长短时记忆网络 卷积神经网络 CNN-lstm模型 InfluxDB
在线阅读 下载PDF
基于K-means聚类的LSTM-SVR-DE光伏功率组合预测 被引量:2
18
作者 张元曦 杨国华 +4 位作者 杨娜 李祯 马鑫 刘浩睿 南少帅 《综合智慧能源》 2025年第2期71-78,共8页
为进一步提高光伏发电功率预测的准确性,提出一种基于长短期记忆神经网络(LSTM)和支持向量回归(SVR)的组合预测模型。分别利用LSTM和SVR模型对光伏功率进行预测,在此基础上采用Stacking堆叠集成的策略对2种单一模型预测结果进行线性组合... 为进一步提高光伏发电功率预测的准确性,提出一种基于长短期记忆神经网络(LSTM)和支持向量回归(SVR)的组合预测模型。分别利用LSTM和SVR模型对光伏功率进行预测,在此基础上采用Stacking堆叠集成的策略对2种单一模型预测结果进行线性组合,并使用差分进化算法(DE)寻找最佳组合权重。最后,对宁夏某光伏电站的真实数据进行仿真和对比研究,结果表明该方法对比LSTM和SVR模型预测误差减小约70%。 展开更多
关键词 K-MEANS聚类 lstm神经网络 支持向量回归 差分进化法 光伏功率预测
在线阅读 下载PDF
基于改进遗传算法优化LSTM的营养液温度预测模型 被引量:1
19
作者 刘艺梦 王会强 +3 位作者 丁小明 李飞 孙玉林 孙广军 《中国农机化学报》 北大核心 2025年第6期91-97,共7页
准确预测营养液温度是营养液膜栽培技术(NFT)调控根区温度的关键,对作物生长具有重要意义,但因营养液温度具有时序性、非线性及多耦合性等特征,难以实现连续、精准化预测,基于此,提出一种改进遗传算法(IGA)优化多变量长短时记忆神经网络... 准确预测营养液温度是营养液膜栽培技术(NFT)调控根区温度的关键,对作物生长具有重要意义,但因营养液温度具有时序性、非线性及多耦合性等特征,难以实现连续、精准化预测,基于此,提出一种改进遗传算法(IGA)优化多变量长短时记忆神经网络(LSTM)模型参数的营养液温度预测方法,通过引入正弦函数,对遗传算法中的固定交叉和变异概率进行优化。使用皮尔逊相关分析法获取相关性较强的特征。同时构造特征与时间步长的矩阵,将其输入到网络中进行温度预测。预测结果表明,在预测时间为20~60 min时,模型决定系数为0.954~0.985,均方根误差为0.183℃~0.365℃,平均绝对误差为0.165℃~0.311℃。并在不同清晰度指数K_(T)下进行验证。结果表明,在0.5>K_(T)≥0.2(多云)时,模型营养液温度预测效果最好,且在其他K_(T)下模型可以达到生产所需预测精度要求,为根区精准高效控温提供重要依据。 展开更多
关键词 营养液膜技术 改进遗传算法 lstm神经网络 皮尔逊相关分析 营养液温度预测
在线阅读 下载PDF
基于SBAS-InSAR技术及LSTM神经网络的席芨滩巨型滑坡形变监测及预测 被引量:1
20
作者 李帅飞 刘昌义 +6 位作者 胡夏嵩 唐彬元 吴志杰 邓太国 邢光延 赵吉美 雷浩川 《干旱区研究》 北大核心 2025年第6期1126-1137,共12页
为研究黄河上游龙羊峡至积石峡流域两岸巨型滑坡地表形变特征及形变量预测,本研究以位于黄河上游贵德地区境内的席芨滩巨型滑坡作为研究区,利用小基线干涉测量(Small Baseline Subset Interferometric Synthetic Aperture Rader,SBAS-In... 为研究黄河上游龙羊峡至积石峡流域两岸巨型滑坡地表形变特征及形变量预测,本研究以位于黄河上游贵德地区境内的席芨滩巨型滑坡作为研究区,利用小基线干涉测量(Small Baseline Subset Interferometric Synthetic Aperture Rader,SBAS-InSAR)技术对席芨滩巨型滑坡开展地表形变监测,探讨了2019—2022年滑坡地表形变速率及其变化特征。结果表明:(1)区内滑坡体最大地表形变速率为-96 mm·a^(-1),最大累计形变量为464.71 mm,滑坡体前缘与后缘存在明显形变区域,其地表形变速率为-96~16 mm·a^(-1)。(2)基于SBAS-InSAR技术得到区内滑坡体地表布设的特征点的累计形变量,其最大累计形变量为-140.50 mm。(3)采用长短期记忆(Long Short-Term Memory,LSTM)神经网络模型进行特征点累计形变量预测,并与支持向量机(Support Vector Machine,SVM)、BP(Back Propagation)神经网络模型进行对比,LSTM神经网络模型计算得到预测结果反映出相对较高的预测精度,其绝对误差为5 mm以内,拟合优度(R^(2))高于0.8,反映出采用LSTM神经网络模型应用于滑坡体地表累计形变量预测有效性。研究结果可为进一步开展黄河上游巨型滑坡地表形变监测、潜在滑坡早期识别提供数据支撑和实际指导。 展开更多
关键词 黄河上游 龙羊峡至积石峡流域 席芨滩巨型滑坡 lstm神经网络 SBAS-InSAR 地表形变量监测 地表累计形变量预测
在线阅读 下载PDF
上一页 1 2 77 下一页 到第
使用帮助 返回顶部