期刊文献+
共找到1,708篇文章
< 1 2 86 >
每页显示 20 50 100
基于CoAtNet-LSTM模型的多传感器信息融合刀具磨损预测
1
作者 李亚 尚轩丞 +1 位作者 王海瑞 朱贵富 《计量学报》 北大核心 2025年第10期1433-1445,共13页
基于长短时记忆网络(LSTM)与CoAtNet网络,提出了一种刀具磨损预测CoAtNet-LSTM模型。在时域、频域、时频域中提取传感器信号特征,并通过孤立森林算法进行信号特征异常值处理,再将其输入预测模型中获得刀具磨损预测值并通过Hyperband算... 基于长短时记忆网络(LSTM)与CoAtNet网络,提出了一种刀具磨损预测CoAtNet-LSTM模型。在时域、频域、时频域中提取传感器信号特征,并通过孤立森林算法进行信号特征异常值处理,再将其输入预测模型中获得刀具磨损预测值并通过Hyperband算法优化模型超参数。应用PHM2010数控铣床刀具数据集验证训练模型的预测精度。实验结果表明,该模型的决定系数相较于原CoAtNet和LSTM网络模型平均提升了12.73%、16.44%。 展开更多
关键词 几何量计量 刀具磨损 CoAtNet-lstm模型 长短期时间记忆网络 Hyperband算法 孤立森林算法
在线阅读 下载PDF
基于ARIMA-LSTM的矿区地表沉降预测方法 被引量:5
2
作者 王磊 马驰骋 +1 位作者 齐俊艳 袁瑞甫 《计算机工程》 北大核心 2025年第1期98-105,共8页
煤矿开采安全问题尤其是采空区地表沉降现象会对人员安全及工程安全造成威胁,研究合适的矿区地表沉降预测方法具有很大意义。矿区地表沉降影响因素复杂,单一的深度学习模型对矿区地表沉降数据拟合效果差且现有的地表沉降预测研究多是单... 煤矿开采安全问题尤其是采空区地表沉降现象会对人员安全及工程安全造成威胁,研究合适的矿区地表沉降预测方法具有很大意义。矿区地表沉降影响因素复杂,单一的深度学习模型对矿区地表沉降数据拟合效果差且现有的地表沉降预测研究多是单独进行概率预测或考虑时序特性进行点预测,难以在考虑数据的时序特征的同时对其随机性进行定量描述。针对此问题,在对数据本身性质进行观察分析后选择差分整合移动平均自回归(ARIMA)模型进行时序特征的概率预测,结合长短时记忆(LSTM)网络模型来学习复杂的且具有长期依赖性的非线性时序特征。提出基于ARIMA-LSTM的地表沉降预测模型,利用ARIMA模型对数据的时序线性部分进行预测,并将ARIMA模型预测的残差数据辅助LSTM模型训练,在考虑时序特征的同时对数据的随机性进行描述。研究结果表明,相较于单独采用ARIMA或LSTM模型,该方法具有更高的预测精度(MSE为0.262 87,MAE为0.408 15,RMSE为0.512 71)。进一步的对比结果显示,预测结果与雷达卫星影像数据(经SBAS-INSAR处理后)趋势一致,证实了该方法的有效性。 展开更多
关键词 煤矿采空区 地表沉降预测 时序概率预测 差分整合移动平均自回归 长短时记忆网络
在线阅读 下载PDF
堆叠式LSTM组合模型的充电站用电量预测方法 被引量:1
3
作者 王彩玲 丁当 《计算机时代》 2025年第1期1-4,共4页
随着电动汽车的普及,充电站对电力需求预测的精确性日益提高。本文设计了堆叠式LSTM模型,使用预处理过的某电动汽车充电站用电量数据,对比分析传统模型和LSTM模型在不同评估指标上的表现,验证所提出模型的优越性;还对多层堆叠式LSTM模... 随着电动汽车的普及,充电站对电力需求预测的精确性日益提高。本文设计了堆叠式LSTM模型,使用预处理过的某电动汽车充电站用电量数据,对比分析传统模型和LSTM模型在不同评估指标上的表现,验证所提出模型的优越性;还对多层堆叠式LSTM模型进行训练和测试,分析不同层数LSTM模型的性能,实验结果表明,三层堆叠式LSTM模型优于其他模型,能够显著提高用电量预测的准确度。 展开更多
关键词 用电量预测 长短期记忆网络 卷积神经网络-长短期记忆网络 堆叠式lstm模型
在线阅读 下载PDF
基于时空关联规则与LSTM的机场进港延误等级预测 被引量:1
4
作者 李善梅 王端阳 +3 位作者 唐锐 李艳伟 李锦辉 纪亚宏 《中国安全科学学报》 北大核心 2025年第4期59-66,共8页
为提升空中交通运行安全,提出一种基于时空关联规则挖掘和深度学习相结合的延误等级预测方法。首先,选取平均航班延误时间和延误率作为机场进港延误度量指标,并分析其时空关联特性;其次,基于模糊C均值(FCM)聚类算法划分机场进港延误等级... 为提升空中交通运行安全,提出一种基于时空关联规则挖掘和深度学习相结合的延误等级预测方法。首先,选取平均航班延误时间和延误率作为机场进港延误度量指标,并分析其时空关联特性;其次,基于模糊C均值(FCM)聚类算法划分机场进港延误等级,并在此基础上,基于频繁模式增长(FP-Growth)算法挖掘机场进港延误的时空关联规则;然后,基于规则数据以及延误指标数据构建样本数据,作为长短时记忆(LSTM)模型的输入,输出为未来时段机场进港延误等级,同时引入注意力机制,学习不同规则对预测结果的影响程度;最后,采用美国航班数据进行算例分析。结果表明:总体预测的平均准确率达到0.91,不同时段的预测准确率均在80%以上,注意力层网络的连接权重可解释预测结果。 展开更多
关键词 时空关联规则 长短时记忆(lstm) 机场进港 延误等级 延误预测 空中交通管理
原文传递
基于LSTM的舰载靶机适发窗口预报方法研究
5
作者 戴勇 马智勇 +6 位作者 刘海瑞 刘浩 章雨驰 俞梦冉 李鹏 钱征华 李彤韡 《南京航空航天大学学报(自然科学版)》 北大核心 2025年第5期976-983,共8页
为提高舰载靶机发射过程中船舶运动姿态的预测精度,使用基于长短期记忆(Long short-term memory,LSTM)网络的船舶姿态预测方法。针对长时预测导致的误差累计问题,提出了改进窗口滑动法,通过对每次预测结果进行变分模态分解(Variational ... 为提高舰载靶机发射过程中船舶运动姿态的预测精度,使用基于长短期记忆(Long short-term memory,LSTM)网络的船舶姿态预测方法。针对长时预测导致的误差累计问题,提出了改进窗口滑动法,通过对每次预测结果进行变分模态分解(Variational mode decomposition,VMD)滤波,消除累积误差引起的预测结果振荡。通过有限元仿真及自主设计的船模实验平台开展波浪水池试验,采集横摇、纵摇、垂荡等关键姿态参数的时序数据。实验设置涵盖1级至5级典型海况条件。实验结果表明,该模型在升沉位移、横摇角及纵摇角预测中,均方误差(Mean squared error,MSE)最大降幅可达99.4%,MAPE降低至2.11%,验证了其工程应用的有效性。研究成果可为舰载靶机发射引导系统提供高精度的船舶运动态势预判,对提升着舰安全性具有重要工程价值。 展开更多
关键词 船舶 长短期记忆网络 姿态预测 靶机发射
在线阅读 下载PDF
基于CNN-LSTM-Attention 组合模型的黄金周旅游客流预测——以大理州为例 被引量:1
6
作者 戢晓峰 郭雅诗 +2 位作者 陈方 黄志文 李武 《干旱区资源与环境》 北大核心 2025年第3期200-208,共9页
黄金周旅游客流预测一直是区域旅游管理的重大现实需求,能够为黄金周旅游组织提供更为精准的数据支持。文中基于百度迁徙数据和百度搜索指数数据,以卷积神经网络(CNN)、长短期记忆网络(LSTM)以及注意力机制(Attention)为基准,构建了CNN-... 黄金周旅游客流预测一直是区域旅游管理的重大现实需求,能够为黄金周旅游组织提供更为精准的数据支持。文中基于百度迁徙数据和百度搜索指数数据,以卷积神经网络(CNN)、长短期记忆网络(LSTM)以及注意力机制(Attention)为基准,构建了CNN-LSTM-Attention组合模型,对大理州黄金周日度旅游客流人数进行了预测,并基于SHAP算法进行了影响因素分析。结果显示:1)CNN-LSTM-Attention组合模型的预测精度优于RF模型、SVM模型、CNN模型、LSTM模型和CNN-LSTM模型。2)引入百度搜索指数特征后,模型的均方根误差(RMSE)、平均绝对百分比误差(MAPE)、决定系数(R^(2))表现最优,表明百度搜索指数的加入在一定程度上提升了模型的预测精度。文中所构模型为黄金周旅游客流预测提供了新思路。 展开更多
关键词 客流预测 黄金周 卷积神经网络(CNN) 长短期记忆网络(lstm) 注意力机制
原文传递
基于脉动阵列架构的分布式计算LSTM加速器
7
作者 张红升 成卓立 《重庆邮电大学学报(自然科学版)》 北大核心 2025年第5期741-747,共7页
针对在资源有限的边缘计算端部署长短时记忆(long short-term memory,LSTM)神经网络遇到的计算效率低、功耗高的问题,提出一种基于脉动阵列架构的分布式计算LSTM加速器设计方案。通过将输入数据分布式存储,从而以减少数据的流动性并降... 针对在资源有限的边缘计算端部署长短时记忆(long short-term memory,LSTM)神经网络遇到的计算效率低、功耗高的问题,提出一种基于脉动阵列架构的分布式计算LSTM加速器设计方案。通过将输入数据分布式存储,从而以减少数据的流动性并降低功耗;通过脉动的方式传递数据,从而减少计算单元的空置率并提高计算效率。在VU13P系列现场可编程门阵列(field programmable gate array,FPGA)的验证结果表明,所设计的LSTM加速器在200 MHz的工作频率下有效算力179.2 GOPS,动态功耗0.343 W,能效比522.4 GOPS/W,相较于当前典型设计,能效比提升34%以上。 展开更多
关键词 长短时记忆(lstm) 现场可编程门阵列(FPGA) 硬件加速器 脉动阵列
在线阅读 下载PDF
基于LSTM网络的外测级间段数据预测方法
8
作者 李振兴 李冬 +1 位作者 刘建男 刘学 《制导与引信》 2025年第2期6-11,共6页
针对飞行器飞行试验中外测级间段数据缺失和精度不高的问题,提出了基于长短期记忆(long-short term memory,LSTM)网络的外测级间段数据预测方法。利用遥测视速度数据和外测融合数据建立LSTM网络回归模型,将外测级间段数据作为缺失数据... 针对飞行器飞行试验中外测级间段数据缺失和精度不高的问题,提出了基于长短期记忆(long-short term memory,LSTM)网络的外测级间段数据预测方法。利用遥测视速度数据和外测融合数据建立LSTM网络回归模型,将外测级间段数据作为缺失数据进行预测插值,可将制导工具系统误差以及飞行器初始误差,包括遥外测时间对不准误差,一并利用回归网络表示,从而将遥测视速度数据作为网络输入,得到外测级间段的预测数据。试验数据处理结果证明,基于LSTM网络获得的外测级间段预测数据满足精度要求,所提方法具有实际应用价值。 展开更多
关键词 飞行器飞行试验 遥测 外测 长短期记忆网络 制导工具系统误差
在线阅读 下载PDF
基于IWOA-CNN-LSTM模型的光伏发电功率预测
9
作者 王琦 徐晓光 《曲阜师范大学学报(自然科学版)》 2025年第4期97-102,共6页
该文提出了一种结合改进鲸鱼优化算法(IWOA)、卷积神经网络(CNN)和长短期记忆网络(LSTM)的超短期光伏发电组合预测模型.使用皮尔逊相关系数选取对光伏发电功率影响较大的因素作为输入,建立CNN-LSTM模型,使用IWOA算法优化模型超参数,实... 该文提出了一种结合改进鲸鱼优化算法(IWOA)、卷积神经网络(CNN)和长短期记忆网络(LSTM)的超短期光伏发电组合预测模型.使用皮尔逊相关系数选取对光伏发电功率影响较大的因素作为输入,建立CNN-LSTM模型,使用IWOA算法优化模型超参数,实现对输入数据高维特征的提取和拟合来进行预测,提高了模型预测精度.基于澳大利亚某光伏电站数据的实验结果表明,与其他模型相比,所提出的预测模型具有更高的精度. 展开更多
关键词 光伏功率预测 卷积神经网络 长短期记忆网络 鲸鱼优化算法
在线阅读 下载PDF
基于LSTM-DDPG的再入制导方法
10
作者 闫循良 王宽 +1 位作者 张子剑 王培臣 《系统工程与电子技术》 北大核心 2025年第1期268-279,共12页
针对现有基于深度确定性策略梯度(deep deterministic policy gradient,DDPG)算法的再入制导方法计算精度较差,对强扰动条件适应性不足等问题,在DDPG算法训练框架的基础上,提出一种基于长短期记忆-DDPG(long short term memory-DDPG,LST... 针对现有基于深度确定性策略梯度(deep deterministic policy gradient,DDPG)算法的再入制导方法计算精度较差,对强扰动条件适应性不足等问题,在DDPG算法训练框架的基础上,提出一种基于长短期记忆-DDPG(long short term memory-DDPG,LSTM-DDPG)的再入制导方法。该方法采用纵、侧向制导解耦设计思想,在纵向制导方面,首先针对再入制导问题构建强化学习所需的状态、动作空间;其次,确定决策点和制导周期内的指令计算策略,并设计考虑综合性能的奖励函数;然后,引入LSTM网络构建强化学习训练网络,进而通过在线更新策略提升算法的多任务适用性;侧向制导则采用基于横程误差的动态倾侧反转方法,获得倾侧角符号。以美国超音速通用飞行器(common aero vehicle-hypersonic,CAV-H)再入滑翔为例进行仿真,结果表明:与传统数值预测-校正方法相比,所提制导方法具有相当的终端精度和更高的计算效率优势;与现有基于DDPG算法的再入制导方法相比,所提制导方法具有相当的计算效率以及更高的终端精度和鲁棒性。 展开更多
关键词 再入滑翔制导 强化学习 深度确定性策略梯度 长短期记忆网络
在线阅读 下载PDF
基于S-LSTM的空间环境模拟器真空度异常检测
11
作者 李龙 刘仁龙 +1 位作者 金钢 田应仲 《计量与测试技术》 2025年第6期1-5,共5页
为解决空间环境模拟器试验中真空度异常检测的问题,采用基于堆叠长短期记忆网络(S-LSTM)的时间序列预测方法,提出一种用于自动划分真空环境建立过程中的各个阶段数据的时间序列分割算法,并在数据预处理过程中,结合时间序列聚类算法和动... 为解决空间环境模拟器试验中真空度异常检测的问题,采用基于堆叠长短期记忆网络(S-LSTM)的时间序列预测方法,提出一种用于自动划分真空环境建立过程中的各个阶段数据的时间序列分割算法,并在数据预处理过程中,结合时间序列聚类算法和动态时间规整(DTW)进行训练数据的清洗与增强。结果表明:该方法能有效实时检测真空度的异常,且相较于传统方法,误报率为0%。 展开更多
关键词 长短期记忆网络(lstm) 真空度 空间环境模拟器 动态时间规整(DTW)
在线阅读 下载PDF
基于注意力机制的Bi-LSTM钢结构腐蚀预测模型
12
作者 廖伟辉 张翠华 +6 位作者 吴健 吕兴城 龚骏 屠博 王俊 段嘉旭 聂云柯 《环境技术》 2025年第9期98-106,共9页
钢结构腐蚀的准确预测对于保障结构安全与实现预防性维护至关重要。然而,传统监测手段难以有效捕捉腐蚀动态演变趋势,制约了早期预警与维护决策。针对该问题,本文提出一种基于注意力机制的双向长短期记忆网络(Attention-based Bi-LSTM)... 钢结构腐蚀的准确预测对于保障结构安全与实现预防性维护至关重要。然而,传统监测手段难以有效捕捉腐蚀动态演变趋势,制约了早期预警与维护决策。针对该问题,本文提出一种基于注意力机制的双向长短期记忆网络(Attention-based Bi-LSTM)模型,用于钢结构腐蚀量的时序预测。该方法利用双向长短期记忆网络(Bi-LSTM)充分提取腐蚀传感器数据中的前后向时序特征,并引入注意力机制对关键时间步的特征进行加权聚合,从而突出对预测贡献更大的代表性信息。在实际监测数据上的实验结果表明,所提方法在预测精度上显著优于多种主流机器学习模型,有效提升了复杂环境下钢结构腐蚀趋势预测的准确性。本研究为钢结构的智能健康监测与预防性维护提供了可行的技术路径。 展开更多
关键词 双向长短期记忆网络 注意力机制 机器学习 腐蚀预测
在线阅读 下载PDF
基于SLSTM网络的两级修正机动目标跟踪方法 被引量:1
13
作者 汪晋 苏洪涛 +1 位作者 汪圣利 陆超 《西安电子科技大学学报》 北大核心 2025年第1期37-49,共13页
传统机动目标跟踪方法在机动模型建模方面,通过模型集自适应交互的方式,实现模型与目标真实运动的匹配。在跟踪非合作目标时,由于机动状态随时变化,且机动形式多样,当模型集内的有限个模型均无法精准表征其真实运动时,跟踪性能下降。将... 传统机动目标跟踪方法在机动模型建模方面,通过模型集自适应交互的方式,实现模型与目标真实运动的匹配。在跟踪非合作目标时,由于机动状态随时变化,且机动形式多样,当模型集内的有限个模型均无法精准表征其真实运动时,跟踪性能下降。将模型修正和状态修正两级神经网络融入到滤波递推过程中,提出一种基于堆叠长短时记忆(Stacked Long Short-Term Memory,SLSTM)网络的两级修正机动目标跟踪方法(Two Level Modified Maneuvering Target Tracking,TLM-MTT),第一级模型修正网络实时感知目标的机动,调整模型参数,实现机动模型的精准建模,第二级状态修正网络对状态估计进行实时补偿,提升滤波输出的精度。通过离线方式进行网络训练,训练后的网络用于在线实时跟踪,相较于传统方法和其他智能化滤波方法,文中所提方法对高机动目标跟踪具有更好的跟踪性能。 展开更多
关键词 目标跟踪 长短时记忆网络 卡尔曼滤波
在线阅读 下载PDF
基于Bi‑LSTM和时序注意力的异常心音检测 被引量:1
14
作者 卢官明 蔡亚宁 +3 位作者 卢峻禾 戚继荣 王洋 赵宇航 《南京邮电大学学报(自然科学版)》 北大核心 2025年第1期12-20,共9页
异常心音检测是对心脏病进行初步诊断的一种有效而方便的方法。为提升异常心音的检测性能,提出了一种基于双向长短时记忆网络(Bi⁃directional Long Short⁃Term Memory,Bi⁃LSTM)和时序注意力的异常心音检测算法。首先对心音片段进行分帧... 异常心音检测是对心脏病进行初步诊断的一种有效而方便的方法。为提升异常心音的检测性能,提出了一种基于双向长短时记忆网络(Bi⁃directional Long Short⁃Term Memory,Bi⁃LSTM)和时序注意力的异常心音检测算法。首先对心音片段进行分帧处理,使用平均幅度差函数(Average Magnitude Difference Function,AMDF)和短时过零率(Short⁃Time Zero⁃Crossing Rate,STZCR)提取每帧心音信号的初始特征;然后将它们拼接后作为Bi⁃LSTM的输入,并引入时序注意力机制,挖掘特征的长期依赖关系,提取心音信号的上下文时域特征;最后通过Softmax分类器,实现正常/异常心音的分类。在PhysioNet/CinC Challenge 2016提供的心音公共数据集上对所提出的算法使用10折交叉验证法进行了评估,其准确度、灵敏度、特异性、精度和F1评分分别为0.9579、0.9364、0.9642、0.8838和0.9093,优于已有的其他算法。实验结果表明,该算法在无需进行心音分段的基础上就能有效实现异常心音检测,在心血管疾病的临床辅助诊断中具有潜在的应用前景。 展开更多
关键词 心音分类 平均幅度差函数 短时过零率 双向长短时记忆网络 时序注意力机制
在线阅读 下载PDF
基于BO-LSTM的排露沟流域气象水文演变分析及径流预测模型建立 被引量:1
15
作者 康永德 陈佩 +3 位作者 许尔文 任小凤 敬文茂 张娟 《水利水电技术(中英文)》 北大核心 2025年第4期1-11,共11页
【目的】为揭示祁连山排露沟流域水文情势演变特征,并且为流域未来的水资源管理和优化配置提供依据和参考【方法】根据祁连山野外观测站2000—2019年实测径流和水文资料,采用线性趋势法、Pettitt检验、小波分析等方法,开展了降水与气温... 【目的】为揭示祁连山排露沟流域水文情势演变特征,并且为流域未来的水资源管理和优化配置提供依据和参考【方法】根据祁连山野外观测站2000—2019年实测径流和水文资料,采用线性趋势法、Pettitt检验、小波分析等方法,开展了降水与气温对径流量变化的影响,并建立了BO-LSTM排露沟流域径流预测模型。【结果】结果显示:(1)2000—2019年排露沟流域降水、气温和径流呈现两段式的上升趋势,分界点在2010年,降水和径流,第一阶段上升趋势均高于第二阶段,斜率依次为10.74、3.16;气温则相反,第二阶段高于第一阶段,斜率为0.11。并且降水、气温和径流的MK突变检验z值均大于0。(2)降水量在5—10月对径流量变化的贡献率较大;而气温在12月—次年4月对径流变化的贡献率大。(3)排露沟流域气温主要有3 a、14 a两个主周期,其中第一主周期为14 a;径流存在19 a、9 a和3 a三个主周期,其中第一主周期为19 a;降水主要存在4 a、11 a两个主周期,第一主周期为11 a。(4)BO-LSTM排露沟径流预测模型,精度R 2为0.63,均方根误差为14047 m 3,模型在径流量较小月份的预测精度大于径流量较大的月份。【结论】近20年来排露沟流域的降水、气温及径流均呈上升趋势;排露沟流域径流、降水及气温均存在明显的周期性;气温和降水是影响排露沟流域径流的重要因素;径流预测模型可以适用于排露沟流域。上述研究结果为祁连山水资源效应研究和内陆河流域水资源预测提供科学支撑。 展开更多
关键词 水文 水资源 径流演变 排露沟流域 径流预测 神经网络 lstm(long Short-Term Memory)模型 贝叶斯优化算法
在线阅读 下载PDF
基于CNN-CBAM-LSTM的稳态视觉诱发电位脑电信号识别方法
16
作者 巩炫麟 陶庆 +1 位作者 苏娜 马金旭 《科学技术与工程》 北大核心 2025年第10期4175-4182,共8页
在使用传统方法处理稳态视诱发电位(steady-state visual evoked potentials,SSVEP)的脑电信号时,特征提取的准确性和充分性存在不足,影响信号的识别准确率。为此提出了一种基于卷积神经网路(convolutional neural networks,CNN)与卷积... 在使用传统方法处理稳态视诱发电位(steady-state visual evoked potentials,SSVEP)的脑电信号时,特征提取的准确性和充分性存在不足,影响信号的识别准确率。为此提出了一种基于卷积神经网路(convolutional neural networks,CNN)与卷积注意力机制模块(convolutional block attention module,CBAM)和长短时记忆网络(long short-term memory,LSTM)的信号分类识别方法。以CNN为基础框架,通过引入注意力机制对通道及空间特征进行充分提取,加入LSTM提高对时序特征的提取能力,实现对SSVEP信号的目标识别。实验结果显示,所提方法能够充分有效的提取各级特征且识别准确率较高,相比于典型相关分析方法(canonical correlation analysis,CCA)、CNN、CBAM-LSTM、CNN-CBAM识别准确率分别提高了5.3%、2.95%、2.27%、1.71%,可见该模型对SSVEP信号的分类识别有较好的效果。 展开更多
关键词 稳态视觉诱发电位 卷积神经网络 卷积注意力机制模块 长短时记忆网络 目标识别
在线阅读 下载PDF
基于多头注意力机制的Wav2Vec 2.0-LSTM语音情感识别
17
作者 张红兵 孙惠民 《电声技术》 2025年第8期27-29,79,共4页
传统语音情感识别方法依赖人工设计的特征,难以捕捉到语音中的复杂情感信息并进行准确分类。针对该问题提出一种基于多头注意力机制的Wav2Vec 2.0模型和长短期记忆(Long Short-Term Memory,LSTM)网络相结合的语音情感识别模型,并采用加... 传统语音情感识别方法依赖人工设计的特征,难以捕捉到语音中的复杂情感信息并进行准确分类。针对该问题提出一种基于多头注意力机制的Wav2Vec 2.0模型和长短期记忆(Long Short-Term Memory,LSTM)网络相结合的语音情感识别模型,并采用加权准确率和未加全准确率作为评价指标,在两个公开情感数据集IEMOCAP和RAVDESS上进行实验。实验结果表明,相较于其他基线模型,新模型在语音情感识别任务中具有较高的识别精度。 展开更多
关键词 语音情感识别 Wav2Vec 2.0模型 长短期记忆(lstm)网络 多头注意力机制
在线阅读 下载PDF
基于LSTM和增量式PID地铁车门控制系统研究
18
作者 李熙 张宇 +1 位作者 徐金薇 刘广华 《微特电机》 2025年第3期56-59,65,共5页
为提高地铁车门控制的可靠性和安全性,提出一种基于LSTM和增量式PID算法的地铁车门控制系统,采用多功能车辆总线搭建地铁车门中央控制系统,采用列车通信网络搭建门控单元,采用增量式PID算法对车门电机进行控制,采用基于长短期记忆神经... 为提高地铁车门控制的可靠性和安全性,提出一种基于LSTM和增量式PID算法的地铁车门控制系统,采用多功能车辆总线搭建地铁车门中央控制系统,采用列车通信网络搭建门控单元,采用增量式PID算法对车门电机进行控制,采用基于长短期记忆神经网络进行车门防夹识别避障。结果表明,增量式PID算法对电机速度的控制精度为98.36%,高于传统的模糊控制;对比传统的纹波法、速度比较法、电流法,基于LSTM的车门防夹避障的防夹力最小;在10次开关门实验中,开关门的成功率最高,且开关门时间控制在2.2~2.4 s内,所用时间较短。该方法可满足地铁车门的控制要求,具有较高的安全性和可靠性。 展开更多
关键词 多功能车辆总线控制器 车门控制 增量式PID控制 长短期记忆网络 车门防夹
在线阅读 下载PDF
基于VMD-GWO-LSTM深度学习模型的区域物流需求预测
19
作者 董萍 邵舒羽 《北京服装学院学报(自然科学版)》 2025年第3期80-87,共8页
为了提高区域物流需求的预测准确率,解决传统方法存在的复杂度高、精度低、错误率高等问题,本文提出一种新的方法。该方法利用变分模态分解(VMD)算法将原始时间序列的区域物流分解为有限个子序列,并组合灰狼算法优化长短时记忆神经网络(... 为了提高区域物流需求的预测准确率,解决传统方法存在的复杂度高、精度低、错误率高等问题,本文提出一种新的方法。该方法利用变分模态分解(VMD)算法将原始时间序列的区域物流分解为有限个子序列,并组合灰狼算法优化长短时记忆神经网络(GWO-LSTM),构建子序列的训练和预测模型。为验证该方法的有效性,以北京市1981—2024年的物流货运量作为研究对象进行了实证分析。结果表明:该模型在测试集上的均方根误差(RMSE)为500.5374,平均绝对误差(MAE)为373.6501,平均绝对百分比误差(MAPE)为1.36%,同时在2011—2024年的平均预测准确率达到了94.60%。该模型具有数据分解精度高、鲁棒性强、准确率高等优点,可以有效降低物流需求的局部突变带来的预测误差。 展开更多
关键词 区域物流 深度学习 变分模态分解 灰狼优化算法 长短时记忆神经网络(lstm)
原文传递
基于自适应VMD-LSTM的超短期风电功率预测 被引量:5
20
作者 王迪 傅晓锦 杜诗琪 《南京信息工程大学学报》 北大核心 2025年第1期74-87,共14页
针对风电功率波动性较强和预测精度较低的问题,提出一种改进蜣螂优化算法(Logistic-T-Dung Beetle Optimizer,LTDBO)优化变分模态分解(Variational Mode Decomposition,VMD)参数和LTDBO算法优化长短期记忆网络(Long Short-Term Memory,L... 针对风电功率波动性较强和预测精度较低的问题,提出一种改进蜣螂优化算法(Logistic-T-Dung Beetle Optimizer,LTDBO)优化变分模态分解(Variational Mode Decomposition,VMD)参数和LTDBO算法优化长短期记忆网络(Long Short-Term Memory,LSTM)超参数的混合短期风电功率预测模型.首先以平均包络谱峭度作为适应度函数,利用LTDBO算法对VMD分解层数和惩罚因子进行寻优,然后使用VMD对数据清洗后的风电序列进行分解,得到不同频率的平稳的固有模态分量(Intrinsic Mode Function,IMF),并将各IMF输入由LTDBO进行超参数寻优的LSTM进行预测,最后将各IMF预测值进行叠加重构,得到最终结果.实验结果表明:LTDBO算法可以找到VMD和LSTM的最优超参数组合,LTDBO-VMD-LTDBO-LSTM组合模型在风电功率预测领域具有较好的预测精度和鲁棒性. 展开更多
关键词 风电功率 蜣螂优化算法 变分模态分解 长短期记忆网络 数据清洗
在线阅读 下载PDF
上一页 1 2 86 下一页 到第
使用帮助 返回顶部